首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD40 is present on both normal and neoplastic B-lineage cells. CD40 stimulation of normal B cells has been shown to promote normal growth and differentiation, whereas aggressive histology B lymphomas are growth inhibited. The inhibition of neoplastic B-cell growth is believed to occur via activation-induced cell death in which stimuli that typically promote the growth of normal cells prevent the growth of their neoplastic counterparts. We show here that CD40 stimulation using either a soluble recombinant human CD40 ligand (srhCD40L) or anti-CD40 monoclonal antibody resulted in apoptosis of human Burkitt lymphoma cell lines. Additional studies examining the mechanism of CD40-mediated death revealed an increase in bax messenger RNA with a subsequent increase in Bax protein in the mitochondria of the treated cells. In vitro exposure of the cells to bax antisense oligonucleotides resulted in a significant decline in Bax protein levels and partial protection from CD40-mediated death, indicating that induction of Bax was at least one mechanism underlying this inhibitory effect of CD40 stimulation on lymphomas. When immunodeficient mice bearing Burkitt lymphoma were treated with srhCD40L, significant increases in survival were observed indicating a direct antitumor effect as a result of CD40 stimulation in vivo. Overall, these results demonstrate that CD40 ligation of aggressive histology B-lymphoma cells results in inhibition both in vitro and in vivo and thus may be of potential clinical use in their treatment.  相似文献   

2.
Purpose Supplementing conventional treatment with gene therapy to induce an immune response might be beneficial to cancer patients. In this study, we evaluated the efficiency of transduction of breast cancer cells with recombinant adeno-associated virus (rAAV) and effects of cytotoxic agents used in chemotherapy. Furthermore, the capacity of tumor cells expressing transgenic CD40 ligand (CD40L) to stimulate dendritic cells was measured.Methods Breast cancer cell lines were infected with a rAAV encoding the enhanced green fluorescent protein (EGFP) or murine CD40L and transgene expression was analyzed by flow cytometry. Stimulation of isolated human dendritic cells by CD40L-expressing tumor cells was quantified by measuring secreted interleukin 12.Results Infection with an EGFP-encoding rAAV resulted in variable fractions (14–93%, mean 42%) of transgene-expressing cells. Pre-incubation of MM 157, MM 231, and MCF7 cells with epirubicin or carboplatin substantially increased AAV-mediated transgene expression. rAAV/CD40L was used to generate CD40L-transgenic tumor cells, which specifically activated immature dendritic cells, as confirmed by blocking with an antibody binding to CD40L.Conclusions The efficiency of rAAV-mediated gene transfer into breast cancer cells is significantly higher than previously reported and can be further enhanced by co-administration of chemotherapeutic agents. We also confirmed that breast cancer cells can activate human dendritic cells after infection with a CD40L-encoding rAAV.  相似文献   

3.
The pathogenesis of defective interleukin (IL)-12 and interferon (IFN)-gamma production in human immunodeficiency virus (HIV)-infected patients remains to be elucidated. This study investigated the possibility that perturbations in CD40 ligand signaling are involved in this defect. CD40 ligand trimer (CD40LT) stimulated peripheral blood mononuclear cell (PBMC) production of IL-12 in response to Toxoplasma gondii and cytomegalovirus (CMV). Regardless of the CD4 cell count, CD40LT restored IL-12 secretion in response to T. gondii in HIV-infected patients. In the presence of CD40LT, PBMC from both HIV-infected patients and control subjects produced high levels of IL-12 in response to CMV. CD40LT restored T. gondii- and CMV-triggered IFN-gamma secretion by T cells and PBMC from HIV-infected patients with a CD4 cell count >200 cells/microL. CD4 cells from HIV-infected patients, even those with a CD4 cell count >500 cells/microL, had defective CD40L induction after T cell stimulation mediated by antigen-presenting cells. Together, impaired CD40L induction is likely to contribute to defective IL-12 and IFN-gamma production in HIV infection.  相似文献   

4.
Clinical benefits from monoclonal antibody therapy for B-chronic lymphocytic leukemia (B-CLL) have increased interest in developing additional immunotherapies for the disease. CD40 ligand is an accessory signal for T-cell activation and can overcome T-cell anergy. The OX40-OX40 ligand pathway is involved in the subsequent expansion of memory antigen-specific T cells. We expressed both CD40L and OX40L on B-CLL cells by exploiting the phenomenon of molecular transfer from fibroblasts overexpressing these ligands. We analyzed the effects of the modified B-CLL cells on the number, phenotype, and cytotoxic function of autologous T cells in 7 B-CLL patients. Transfer of CD40L and OX40L was observed in all and was followed by the up-regulation of B7-1 and B7-2. The culture of CD40L/OX40L-expressing B-CLL cells with autologous T cells generated CD4+/CD8+ cytotoxic T-cell lines, which secreted interferon-gamma (IFN-gamma) and granzyme-B/perforin in response to autologous, but not to allogeneic, B-CLL cells or to autologous T-cell blasts. CD40L or OX40L alone was insufficient to expand tumor-reactive T cells. The combination of CD40L and OX40L on B-CLL cells may allow the generation of therapeutic immune responses to B-CLL, either by active immunization with modified tumor cells or by adoptive immunotherapy with tumor-reactive autologous T cells.  相似文献   

5.
OBJECTIVE: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently been shown to induce costimulation of mouse T cells in conjunction with signals from the T cell receptor. This study was undertaken to investigate TRAIL-induced costimulation of human T cells in order to determine the role of TRAIL-induced T cell activation in human systemic lupus erythematosus (SLE). METHODS: An in vitro T cell stimulation system with immobilized anti-CD3 and recombinant TRAIL receptor DR4-Fc proteins was used to activate human T cells purified from healthy individuals and from patients with SLE. The T cells were stimulated in vitro to assay their proliferation response by (3)H-thymidine incorporation, and their cytokine production by enzyme-linked immunosorbent assay. Activation of p38 MAPK after TRAIL stimulation was detected with specific anti-phospho-p38 MAPK monoclonal antibodies in Western blots. RESULTS: Enhanced T cell proliferation and increased interleukin-2 and interferon-gamma (IFNgamma) production were demonstrated in human T cells after stimulation with immobilized DR4-Fc and anti-CD3 in vitro. TRAIL engagement selectively activated human CD4, rather than CD8, T cells and augmented IFNgamma production. Activation of p38 MAPK was detected after TRAIL-induced T cell activation. T cells isolated from patients with SLE demonstrated a stronger response to TRAIL-induced costimulation, in terms of proliferation and increased up-regulation of CD25 after activation, when compared with T cells from healthy subjects. CONCLUSION: TRAIL engagement induces costimulation of human CD4 T cells via a p38 MAPK-dependent pathway. The results suggest that enhanced reactivity of T cells to autoantigens as a result of TRAIL-induced costimulation may play a role in the development of human autoimmune diseases.  相似文献   

6.
In a previous study, we described a cell line (BRG-P) derived from a woman with Burkitt's lymphoma (BL) and acquired immunodeficiency syndrome that shared the same characteristic cytogenetic abnormalities as the patient's malignant cells. This cell line contained subclones that displayed an isotype switch from IgM to IgA1 and an accumulation of point mutations in the Vh region genes. Because these two features suggested an antigen-driven process, we began a search for the antigen responsible for the stimulation of the malignant B cells. Specifically, we hypothesized that because the patient's tumor had presented as a lymphomatous infiltration of the breast, the malignant B cells were recruited to this site because of the reactivity of their surface lg with breast tissue. A hybridoma (BRG-H) was obtained by fusing BRG-M cells (an IgM producing subclone of the BRG-P cell) with an appropriate cellular partner. The monoclonal antibody (BRG MoAb) produced by this hybridoma reacted strongly with two of five breast cancer cell lines and stained normal and malignant ductal epithelial cells on breast tissue sections. The antigen recognized by the BRG MoAb consisted of a single, minimally glycosylated polypeptide chain of 45 kD (p45). The BRG MoAb failed to react with a panel of human cell lines from different tissues, except for one cell line from a uterine cervical carcinoma. No reactivity was detected for a panel of exogenous antigens from various pathogens, including human immunodeficiency virus and self- antigens frequently recognized by polyspecific antibodies. Experiments were performed to investigate the functional consequences of the interaction of surface IgM with its specific ligand. Coculture of BRG-M cells with p45+, but not with p45-, breast cells caused apoptosis of BRG-M cells. The specificity of the interaction was shown by the observation that apoptosis was prevented by pretreatment of BRG-M cells with a monovalent F(ab') fragment of rabbit IgG antibody to human mu chains. Moreover, only BRG-M cells, but not other BL cells, underwent apoptosis after exposure to p45+ breast cells. The interaction between the CD40 molecule expressed by BRG-M cells and its specific ligand (CD40L) prevented p45-induced cell apoptosis. Because this interaction mimics that occurring in vivo between T and B cells during immune responses, our data suggest that various events contributed to the emergence of the BL, in this particular patient, including antigenic stimulation possibly assisted by T-cell help.  相似文献   

7.
Inhibition of human B-cell lymphoma growth by CD40 stimulation   总被引:15,自引:4,他引:15  
CD40 is a molecule present on B lymphocyte lineage cells that is important in B-cell differentiation and activation. Signaling through CD40 has been shown to exert costimulatory signals on normal B cells resulting in proliferative and differentiation responses. Examination of several B-cell lymphomas showed cell-surface expression of the CD40 molecule. Incubation of these lymphomas with anti-CD40 antibodies resulted in significant growth inhibition in vitro. Cross-linking of the CD40 antibodies resulted in even greater inhibition of proliferation. A recombinant soluble human CD40 ligand was also shown to inhibit lymphoma proliferation. When various human B-cell lymphomas were transferred into mice with severe combined immune deficiency, the treatment of the mice with anti-CD40 antibodies resulted in significant increases in survival showing that anti-CD40 is efficacious after in vivo administration. Thus, CD40 stimulation by either the antibody or soluble ligand directly inhibits human B-cell lymphoma growth and therefore, may be of significant clinical use in their treatment.  相似文献   

8.
9.
CD40 was originally described as a B-cell-restricted antigen and was subsequently found to be a member of the tumor necrosis factor (TNF) receptor superfamily. CD40 is also expressed on dendritic cells, thymic epithelium, monocytes, and some carcinoma cell lines, and plays a critical role in cell contact-dependent activation. Primary and cultured Hodgkin and Reed-Sternberg (H-RS) cells, the presumed malignant cells of Hodgkin's disease (HD); were found to express high levels of cell surface CD40. We found that recombinant CD40 ligand (CD40L) induced interleukin-8 (IL-8) secretion and enhanced IL-6, TNF, and lymphotoxin-alpha (LT-alpha/TNF-beta) release from cultured H-RS cells. These cytokines play a significant role in the clinical presentation and pathology of HD, a tumor of cytokine-producing cells. CD40L had no mitogenic activity for HD-derived cell lines. In contrast, CD40L enhanced expression of costimulatory molecules intracellular adhesion molecule-T and B7-1 on cultured H-RS cells, both of which are overexpressed on primary H-RS cells. In addition, CD40L induced a 40% to 60% reduction of the expression of the HD-associated CD30 antigen, another member of the TNF receptor superfamily. Primary and cultured H- RS cells express not only CD30, but also CD40. CD40L has pleiotropic biologic activities on H-RS cells, and the CD40-CD40L interaction might be a critical element in the deregulated cytokine network and cell contact-dependent activation cascade typical for HD.  相似文献   

10.
CD40 is expressed on both normal and neoplastic B lymphocytes. Signal transduction through CD40 in vitro has been shown to exert stimulatory effects on normal B cells and inhibitory effects on Epstein-Barr virus (EBV)-induced B-cell lymphoma lines and some other cell lines derived from patients with aggressive histology lymphoma. The transfer of normal human peripheral blood lymphocytes (huPBL) from EBV-seropositive donors into severe combined immune deficient (SCID) mice has been previously shown to result in the generation of human B-cell lymphomas. These tumors are similar to the highly aggressive EBV-induced lymphomas that can arise clinically after transplantation or in the setting of immunodeficiency. Treatment of huPBL-SCID chimeric mice with anti-CD40 or anti-CD20 monoclonal antibodies (MoAb) significantly delayed the development of EBV-induced B-cell lymphoma. However, the effects of the two MoAb were mechanistically distinct. Anti-CD40 treatment prevented lymphoma generation, while still allowing for functional human B-cell engraftment in the huPBL-SCID mice compared with mice receiving no treatment, all of which succumbed to lymphoma. By contrast, treatment with anti-CD20 significantly inhibited total human B-cell engraftment in the SCID recipients, which accounted for the absence of lymphomas. In vitro assays examining the transformation of human B cells by EBV also indicated that anti-CD40 could directly inhibit EBV- transformation, whereas anti-CD20 antibodies had no effect. Thus, anti- CD40 exerts selective effects to allow for the engraftment of normal human B cells and prevent the emergence of EBV lymphomas. Stimulation of CD40 by antibodies or its physiologic ligand may, therefore, be of significant clinical use in the prevention of EBV-induced B lymphomas that may arise when EBV-seropositive individuals receive immunosuppressive regimens after transplantation or in immune deficiency states, such as acquired immune deficiency syndrome.  相似文献   

11.
PC-cell derived growth factor (PCDGF) is an 88-kDa growth factor originally purified from the highly tumorigenic teratoma PC cell line and corresponds to the epithelin/granulin precursor. In teratoma cells, PCDGF expression was shown to be essential for tumorigenicity. We have reported that PCDGF was expressed in estrogen receptor-positive (ER(+)) human mammary epithelial cells in an estrogen-dependent fashion. In this study, we have investigated PCDGF expression in human mammary epithelial cell lines ranging from immortalized nontumorigenic cells to ER(+) and ER(-) breast carcinoma cells. Northern and Western blot analyses indicated that PCDGF mRNA and protein expression was low in nontumorigenic cells and increased in human breast carcinomas cell lines in a positive correlation with their tumorigenicity. Treatment of the ER(-) MDA-MB-468 cells with anti-PCDGF neutralizing antibody resulted in a dose-dependent inhibition of their proliferation, suggesting that secreted PCDGF acted as an autocrine growth factor for breast carcinoma cells. We then examined the in vitro and in vivo growth properties of MDA-MB-468 cells, where PCDGF expression had been inhibited by antisense PCDGF cDNA transfection. Inhibition of PCDGF expression resulted in a reduced proliferation rate in vitro and a 60-80% reduction in colony formation. Tumor formation in vivo was dramatically inhibited in antisense cells with a 90% inhibition of tumor incidence and tumor weight. These results demonstrate the importance of PCDGF overexpression for the proliferation and tumorigenicity of ER(-) breast carcinomas and suggest that PCDGF overexpression may play an important role in human breast cancer.  相似文献   

12.
Koguchi Y  Thauland TJ  Slifka MK  Parker DC 《Blood》2007,110(7):2520-2527
CD40 ligand (CD40L) is an essential effector cytokine for macrophage activation, dendritic cell licensing, and T-cell-dependent antibody responses. Although CD40L is known to be made de novo following antigen recognition, several reports have described surface mobilization of preformed, intracellular CD40L in certain CD4(+) effector T cells. Here we show that rapid surface expression of preformed CD40L following antigen recognition is a general property of both effector and memory CD4(+) T cells, including in vitro and in vivo activated T-cell-receptor transgenic T cells, memory phenotype CD4(+) T cells from pathogen-free naive mice, and polyclonal virus-specific effector and memory T cells. Intracellular CD40L is stored in secretory lysosomes, and colocalizes more strongly with Fas ligand than with CTLA-4, two other molecules that are delivered to the cell surface following antigen recognition. Stimulated surface expression of preformed CD40L is found in memory CD4(+) T cells from CD40-deficient mice, indicating that it does not depend on CD40-induced internalization for delivery to the secretory compartment. We suggest that delivery of preformed CD40L to antigen-presenting cells (APCs) could enable antigen-specific activation of APCs in transient interactions that are too brief to permit de novo synthesis of CD40L.  相似文献   

13.
14.
OX40, a member of the tumor necrosis factor receptor (TNF-R) superfamily, has been shown to play an important role in the survival of antigen-specific CD4(+) T cells. We have previously reported that stimulation of the OX40-expressing and HIV-1 chronically infected T cell line, ACH-2/OX40, with either OX40 ligand (OX40L)-expressing cells or with TNF resulted in the activation of HIV-1 followed by apoptotic cell death. In the present study we found that costimulation via OX40 and TNF-R in OX40-expressing HIV-1-infected T cell lines leads to a marked reduction of HIV-1 production associated with rapid cell death. Since HIV-1-negative OX40(+) T cell lines underwent rapid apoptotic cell death after OX40L and TNF stimulation, it was reasoned that the ACH-2/OX40 cell death was unlikely to be due to HIV-1 infection. Furthermore, we found that the OX40-mediated apoptosis of the CD4(+) T cell line, Molt-4/CCR5-OX40 (M/R5-OX40), required (1) signals mediated via the cytoplasmic tail of OX40, (2) activation of the caspase cascade, including caspase-8 and caspase-3, and (3) induction of endogenous TNF-alpha, but not of TNF-beta, FasL, or TNF-related apoptosis-inducing ligand (TRAIL), suggesting that this apoptosis occurred indirectly via the TNF/TNF-R system. Finally, a fraction of primary activated CD4(+) T cells, expressing high levels of OX40, underwent apoptosis, as revealed by annexin V staining, after cocultivation with OX40L(+) cells. These results suggest a new biological role of the OX40L/OX40 system in controlling the fate of activated CD4(+) T cells and of controlling HIV-1 infection in inflammatory environments.  相似文献   

15.
Xia M  Ling W  Zhu H  Ma J  Wang Q  Hou M  Tang Z  Guo H  Liu C  Ye Q 《Atherosclerosis》2009,202(1):41-47
CD40-mediated inflammatory signaling is a potent activator of endothelial cells (ECs) and effective in triggering the pathogenesis of atherosclerosis, a chronic inflammatory disease. Anthocyanin is considered to exert potent cardiovascular-protective effect partially through its anti-inflammatory property, however, the precise mechanism is still unknown. Here we chose cultured human umbilical vein endothelial cells (HUVECs) to explore the influence of anthocyanin on CD40-mediated endothelial activation and apoptosis and the underlying mechanism. Stimulation of human primary HUVECs by CD40 with its physiological ligand CD40L not only augmented MMP-1, -9 secretion and promoted MMP-1, -9 activities, but also induced endothelial cell apoptosis and death. Treatment of ECs with anthocyanins cyanidin-3-O-beta-glucoside (Cy-3-g) and peonidin-3-O-beta-glucoside (Pn-3-g) prevents CD40-induced endothelial activation by inhibiting production of proinflammatory cytokines and matrix metalloproteinases (MMPs). In addition, exposure to anthocyanins inhibits CD40-induced endothelial apoptosis. Anthocyanins also decreased activation of JNK and p38 induced by CD40. Collectively, our findings suggested that the inhibition of JNK and p38 activation interrupts CD40 induced endothelial cell activation and apoptosis, which thereby may represent a mechanism that would explain the anti-inflammatory response of anthocyanin and its athero-protective function.  相似文献   

16.
17.
Dendritic cells (DCs) are a family of leukocytes that initiate T- and B-cell immunity against pathogens. Migration of antigen-loaded DCs from sites of infection into draining lymphoid tissues is fundamental to the priming of T-cell immune responses. In humans, the major peripheral blood DC (PBDC) types, CD1c+ DCs and interleukin 3 receptor-positive (IL-3R+) plasmacytoid DCs, are significantly expanded in vivo with the use of Flt3 ligand (FL). DC-like cells can also be generated from monocyte precursors (MoDCs). A detailed comparison of the functional potential of these types of DCs (in an autologous setting) has yet to be reported. Here, we compared the functional capacity of FL-expanded CD1c+ PBDCs with autologous MoDCs in response to 3 different classes of stimuli: (1) proinflammatory mediators, (2) soluble CD40 ligand trimer (CD40L), and (3) intact bacteria (Escherichia coli). Significant differences in functional capacities were found with respect to changes in phenotype, migratory capacity, cytokine secretion, and T-cell stimulation. MoDCs required specific stimuli for the expression of functions. They responded vigorously to CD40L or E coli, expressing cytokines known to regulate interferon-gamma (IFN-gamma) in T cells (IL-12p70, IL-18, and IL-23), but required prostaglandin E2 (PGE2) during stimulation to migrate to chemokines. In contrast, PBDCs matured in response to minimal stimulation, rapidly acquired migratory function in the absence of PGE2-containing stimuli, and were low cytokine producers. Interestingly, both types of DCs were equivalent with respect to stimulation of allogeneic T-cell proliferation and presentation of peptides to cytotoxic T lymphocyte (CTL) lines. These distinct differences are of particular importance when considering the choice of DC types for clinical applications.  相似文献   

18.
Natural killer T cells (NKT cells) expressing a semi-invariant CD1d-reactive T cell receptor (invariant NKT, iNKT) can be rapidly activated by monocytes or immature dendritic cells (iDCs) bearing a CD1d-presented glycolipid antigen and can in turn stimulate these myeloid cells to mature and produce IL-12. Previous studies have shown that iNKT-produced IFNgamma and CD40 ligand contribute to this dendritic cell maturation. This study demonstrates that CD1d ligation alone, in the absence of iNKT, could rapidly (within 24 h) stimulate production of bioactive IL-12p70 by CD1d+ human peripheral blood monocytes as well as iDCs. IFNgamma alone had no effect, but it markedly enhanced CD1d-stimulated IL-12 production. Monocyte differentiation, as assessed by CD40 and CD1a up-regulation, was also accelerated by CD1d stimulation, consistent with this representing a physiological response. CD1d ligation on the human monocytic cell line THP-1 similarly specifically stimulated IL-12 production. Biochemical studies showed that IL-12 release correlated with rapid phosphorylation of IkappaB, a critical step in NF-kappaB activation. Selective NF-kappaB inhibition blocked this CD1d-stimulated IL-12 production. Finally, CD1d ligation could also enhance IL-12 production in the presence of suboptimal LPS or CD40 stimulation. These findings demonstrate an innate immune signaling function for CD1d and provide a mechanism for the rapid activation of monocytes and iDCs by CD1d-reactive T cells.  相似文献   

19.
McKenna  HJ; de Vries  P; Brasel  K; Lyman  SD; Williams  DE 《Blood》1995,86(9):3413-3420
A ligand for the tyrosine kinase receptor flt3/flk-2, referred to here as flt3 ligand (flt3L), was recently cloned. The effect of flt3L on purified human CD34+ progenitor cells was examined. flt3 receptor (flt3R) was detected on the surface of human bone marrow cells that were enriched for CD34 expression. The effects of flt3L and the c-kit ligand Steel factor (SLF) on hematopoietic progenitors were compared in clonal colony assays. Both factors synergized with Pixy321 (interleukin- 3 [IL-3]-granulocyte-macrophage colony-stimulating factor fusion protein) to induce granulocytic-monocytic (GM) and high proliferative potential (HPP) colonies and synergized with Pixy321 + erythropoietin (EPO) to induce multipotent granulocytic-erythroid-monocytic- megakaryocytic colonies. Although SLF had a potent effect on colony formation of erythroid restricted progenitor cells (burst-forming unit- erythroid), no effect by flt3L was observed. The addition of flt3L to irradiated long-term marrow cultures seeded with CD34+ cells augmented both total and progenitor cell production. Ex vivo expansion studies with isolated CD34+ bone marrow cells from normal donors showed that flt3L alone supported maintenance of both GM and HPP progenitors for 3 to 4 weeks in vitro. The addition of flt3L to a growth factor combination of IL-1 alpha + IL-3 + IL-6 + EPO resulted in a synergistic effect on progenitor cell expansion comparable to that observed with the addition of SLF to IL-1 alpha + IL-3 + IL-6 + EPO. These data show a function for flt3L in the regulation of both primitive multipotent and lineage-committed hematopoietic progenitor cells.  相似文献   

20.
Recent studies have shown that human myeloid leukaemia cells can differentiate into dendritic cell (DC)-like cells (leukaemia-DCs) when cultured with a combination of cytokines. In the present study, we examined whether the transduction of leukaemia-DCs with OX40 ligand (OX40L), a member of the tumour necrosis factor (TNF) family, resulted in augmentation of their antigen presenting activity. Bicistronic retroviral vectors expressing both human OX40L and enhanced green fluorescent protein (EGFP) or EGFP alone were generated and used for transduction. Fresh leukaemic cells from five patients with acute myeloid leukaemia (AML) were isolated and retrovirally transduced with OX40L during the culture with a combination of cytokines from stem cell factor, fms-like tyrosine kinase (Flt)-3 ligand, granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin-4 (IL-4) and TNF-alpha. After 7 d, the majority of cells showed DC-like morphology, and expressed higher levels of CD80, CD86 and HLA-DR than fresh leukaemic cells. The transduction efficiency was 8.5-27.2%. Leukaemia-DCs transduced with OX40L elicited higher proliferative response of allogeneic CD4+ T cells than fresh leukaemic cells, non-transduced, or mock-transduced leukaemia-DCs. Co-culture of allogeneic CD4+ T cells with OX40L-transduced leukaemia-DCs was superior in the generation of interferon (IFN)-gamma producing CD4+ T cells and in production of IFN-gamma. Furthermore, OX40L-transduced leukaemia-DCs could elicit significant proliferative response of human leucocyte antigen-matched T cells from the donor in allogeneic stem cell transplantation. These results indicate that retroviral transduction of leukaemia-DCs with OX40L augments their antigen presenting cell activity and thus renders them more suitable for tumour vaccines or ex vivo stimulation of leukaemia-specific T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号