首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Physiological and histochemical studies have demonstrated the control and innervation of sympathetic nerves to the artery and vein vessels of splanchnic circulation. In our laboratory, we first used the technique of retrograde transport of horseradish peroxidase to identify the origin of sympathetic neurons innervating the mesenteric vein. In this study, double fluorescence staining technique was used for a simultaneous localization of the sympathetic postganglionic neurons supplying the mesenteric artery and vein in rats. First-order branches of mesenteric artery (A) and vein (V) in the vicinity of ileo-cecal junction were isolated for application of fluorescent dyes (Fast Blue, FB and Diamidino Yellow, DY). The application of FB and DY on A and V was alternated in the next animal to minimize the difference in dye uptake. The animal was allowed to recover for 6-7 days assuring a complete uptake of FB and DY into the cytoplasm and nucleus, respectively. The number of FB, DY and double staining neurons in the prevertebral and paravertebral ganglia were counted under a fluorescent microscope after animal fixation and serial frozen section (30 microm) of the sympathetic ganglia. Our study revealed the following findings: (1) Distribution of the fluorescence-staining neurons in the sympathetic ganglia was as follows: right celiac ganglion (39%), superior mesenteric ganglion (30%), left celiac ganglion (26%), inferior mesenteric ganglion (1%) and paravertebral ganglia (4%). (2) Double staining neurons that dually innervate A and V amounted to 54% of total staining neurons. There were 41% neurons singly innervating A and 5% innervating V. (3) The ratio of neurons supplying the A and V ranged from 1.41 to 1.75 (average 1.61). (4) There was no distinct topographical distribution with respect to the neuron location innervating A and V. The distribution of neurons appeared in a scattering pattern.  相似文献   

2.
We have studied the prostaglandin I2 production by endothelial and subendothelial cells of rabbit aortae and vena cavae. Rabbits were injected intravenously with 0, 10 or 100 mg/kg aspirin. One, 3, 6 or 30 hours later, segments of thoracic aorta or inferior vena cava were removed and their capacity to produce prostaglandin I2 was measured, using a bioassay system. Both endothelial and subendothelial cells of the arteries and veins produced prostaglandin I2 which was inhibited by aspirin in doses of 10 and 100 mg/kg. The inhibitory effect of aspirin on venous prostaglandin I2 production was relatively short-lived and returned to baseline levels within 3 to 6 hours. In contrast, the inhibitory effect of aspirin on prostaglandin I2 production by arteries lasted for at least 6 hours and by 20 hours had only returned to 50–70% of baseline. When experiments were performed in vitro, a similar difference in the duration of aspirin effect on venous and arterial prostaglandin I2 production was also observed. These data are consistent with the hypothesis that the turnover of cyclo-oxygenase is more rapid in venous than in arterial cells.  相似文献   

3.
Activity of arterial baroreceptors is modulated by neurohumoral factors, including nitric oxide (NO), released from endothelial cells. Baroreceptor reflex responses can also be modulated by NO signaling in the brainstem nucleus tractus solitarius (NTS), the primary central target of cardiovascular afferents. Our recent studies indicate that brain‐derived neurotrophic factor (BDNF) is abundantly expressed by developing and adult baroreceptor afferents in vivo, and released from cultured nodose ganglion (NG) neurons by patterns of baroreceptor activity. Using electrical field stimulation and ELISA in situ, we show that exogenous NO nearly abolishes BDNF release from newborn rat NG neurons in vitro stimulated with single pulses delivered at 6 Hz, but not 2‐pulse bursts delivered at the same 6‐Hz frequency, that corresponds to a rat heart rate. Application of L‐NAME, a specific inhibitor of endogenous NO synthases, does not have any significant effect on activity‐dependent BDNF release, but leads to upregulation of BDNF expression in an activity‐dependent manner. The latter effect suggests a novel mechanism of homeostatic regulation of activity‐dependent BDNF expression with endogenous NO as a key player. The exogenous NO‐mediated effect does not involve the cGMP‐protein kinase G (PKG) pathway, but is largely inhibited by N‐ethylmaleimide and TEMPOL that are known to prevent S‐nitrosylation. Together, our current data identify previously unknown mechanisms regulating BDNF availability, and point to NO as a likely regulator of BDNF at baroafferent synapses in the NTS. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
The vascular effects of endothelin-1 (ET-1) were compared with those elicited by phorbol 12,13-dibutyrate (PDB), an activator of the protein kinase C (PKC), to analyze the involvement of this enzyme on ET-1 responses. PDB and ET-1 caused slow-developing contractions (sustained and transient, respectively), which were reduced by the PKC inhibitor, staurosporine (1 and 10 nM). Only the contractile effects evoked by ET-1 were reduced in Ca-free medium and by the Ca channel antagonist, nifedipine (1 microM), and increased by the Ca channel agonist, BAY K 8644 (10 nM). PDB (10 and 30 nM) preincubation reduced the vasoconstriction elicited by 5-hydroxytryptamine (5-HT; 0.01, 0.1 and 1 microM) in a way dependent on phorbol concentration and preincubation time, whereas ET-1 (1 nM) increased the contractile response to 5-HT (0.1 microM). Furthermore, PDB (0.1 microM) also reduced the responses elicited by ET-1 (30 microM) and vice versa. ET-1 (0.1 microM) induced transient translocation of PKC activity from the cytosol to the membrane, which was less than that produced by PDB (0.1 microM). Electrical stimulation induced [3H]noradrenaline (NA) release, which was increased by PDB (10 and 100 nM) and not affected by ET-1 (10 nM). These results indicate: (1) the responses induced by PDB and ET-1 were independent and dependent on extracellular Ca, respectively; (2) PKC is involved in NA release and 5-HT responses, but mainly in desensitization of these responses, and (3) PKC is activated by ET-1 and is implicated in vascular actions of ET-1, but other mechanisms, such as the activation of ET-1 receptors and opening of dihydropyridine-sensitive Ca channels also appear to be involved.  相似文献   

5.
One prerequisite for understanding the physiological relevance of intercellular calcium waves in glia is the examination of mechanisms that trigger these waves. Here, we show that stimulation of cultured septal neurons to produce a large and sustained calcium rise in the soma can initiate calcium waves in surrounding glial cells. The initiation of calcium waves is dependent on calcium influx through voltage-gated calcium channels on the neuron. The waves are not due to direct stimulation of the glial cells or to loss of neuronal membrane integrity. Mechanism of wave initiation is distinct from that involved in wave propagation and does not involve glutamate or acetylcholine release. Communication via gap junctions, or nitric oxide production, is not involved in the initial signaling between a stimulated neuron and the surrounding astrocytes. Suramin, a blocker of P2 receptors blocked the waves but failed to abolish the responses in glial cells immediately surrounding the stimulated neuron. Our results suggest that patterns of calcium rises on neurons, like those seen in glutamate cytotoxicity, can cause calcium waves in surrounding glial cells.  相似文献   

6.
目的探讨椎动脉压迫致同侧颈内静脉狭窄的DSA重要征象-开关征。方法分析2例颈内静脉狭窄患者的DSA影像学表现,并对照1例颈内静脉狭窄和1例颈内静脉闭塞患者的DSA表现。按照椎动脉弯曲的不同走行方式对椎动脉进行分型。结果本文2例患者椎动脉走出枢椎的横突孔后,1例水平向外、1例向前外走行,再穿过寰椎横突孔,从而形成了对颈内静脉的压迫。颈内静脉随着后方椎动脉的搏动,呈现压迫由轻到重,由重到轻连续变化的现象。压迫加重时,颈内静脉由狭窄至不全闭塞至致闭塞,造影剂由通过受限直至不能通过;压迫逐渐减轻时,颈内静脉由闭塞至不全开放至致开放,造影剂由不能通过至可以通过直至顺利通过,始终处于开-关-开-关的动态变化中。对于这种颈内静脉狭窄段随着其后方椎动脉的搏动,狭窄程度发生规律性变化的现象,作者命名其为"开关征"。结论 "开关征"是提示存在椎动脉压迫导致颈内静脉狭窄或闭塞的重要征象。  相似文献   

7.
The actions of mammalian tachykinins on neurons of rat coeliac-superior mesenteric ganglia (C-SMG) were examined using intracellular recording in isolated preparations. Application of substance P, neurokinin A and neurokinin B produced fast and slow depolarizations in the ganglion cells. The two responses were clearly distinguishable in their electrophysiological characteristics. The results suggest that different receptor mechanisms are involved in fast and slow depolarizing actions of tachykinins in rat C-SMG cells.  相似文献   

8.
Labelled nerve cells were located in the distal colon of the guinea-pig 4-5 days after the retrograde tracing agent, Fast blue, was injected into the inferior mesenteric ganglia. Labelled neurons were only found in the myenteric plexus. Their frequency increased from oral to anal and was greater towards the mesenteric border, compared with the anti-mesenteric aspect, of the colon. Many retrogradely labelled neurons were immunoreactive for vasoactive intestinal peptide or calbindin. In the inferior mesenteric ganglia, vasoactive intestinal peptide and calbindin immunoreactive nerve fibres surrounded the same clumps of nerve cell bodies. Almost all calbindin and vasoactive intestinal peptide immunoreactive terminals degenerated after the nerves running from the large intestine to the inferior mesenteric ganglia were cut. It is concluded that the great majority of calbindin and vasoactive intestinal peptide immunoreactive terminals in the inferior mesenteric ganglia arise from nerve cell bodies in the myenteric plexus of the large intestine.  相似文献   

9.
Central venous cannulation is a routine procedure. We describe a rare complication of internal jugular vein catheterization leading to radiculopathy of the right upper arm. MRI of the neck showed compression of the spinal cord and C2-C7 roots by the engorged veins. Digital subtraction angiography demonstrated a fistula between subclavian artery and internal jugular vein. The fistula was successfully occluded by stent placement in the artery.  相似文献   

10.
Antibodies made against serotonin (5HT) were used to identify the serotonin neuronal system in the developing and adult nervous system of Drosophila melanogaster. The 5HT neuronal pattern is composed of a small number of neurons, 84 in larvae and 106 in adults, distributed in clusters composed of one to five neurons in the CNS; 5HT immunoreactive (5HT-IR) neurons appear to be predominantly intrasegmental interneurons; however, intersegmental 5HT-IR fibers are observed and at least some neurons send peripheral fibers. Acquisition of 5HT immunoreactivity in the CNS occurs late in embryogenesis, by 16-18 hours, and most if not all the 5HT neurons appear to persist into adulthood. During early metamorphosis, the intensity of 5HT-IR neuropil transiently decreases. Other changes in the CNS during this period are reflected in the appearance of two new 5HT clusters and 5HT-IR neuropil in the developing optic lobes. Comparison of the 5HT-IR pattern with other transmitter systems in Drosophila as well as comparison of the 5HT-IR pattern within different insect species is presented.  相似文献   

11.
The cerebellar fastigial nucleus (FN) was electrically stimulated for 1 h in anesthetized rats and the middle cerebral artery occluded at various times thereafter. Stimulation of the FN but not dentate nucleus reduced the volume of the focal infarction to 50%. Protection persisted for 10 but disappeared by 30 d. Intrinsic neuronal pathways which function to condition central neurogenic neuroprotection can protect the brain from ischemic injury by processes independent of cerebral blood flow.  相似文献   

12.
Abstract  We investigated the distribution and density of perivascular nerves in human mesenteric arteries and veins and their responses to noradrenaline (NA), ATP and neuropeptide Y (NPY) in control (non-inflamed) and inflamed bowel, using confocal microscopy and in vitro pharmacology. The density of innervation at the adventitial-medial border of arteries and within the medial muscle coat of veins was increased in inflammatory bowel disease (IBD). Expression of markers for both sympathetic nerves and sensory-motor nerves was significantly increased in IBD. Calcitonin gene-related peptide-containing sensory-motor nerves were present in control arteries and IBD, but not in control veins. The density of 5-hydroxytryptamine-containing nerves was variable in controls, but consistently increased (three to four times) in IBD. Vasoactive intestinal peptide (VIP) expression increased (doubled) in arteries and veins. Arteries and veins contracted to NA and ATP, but only veins constricted to NPY. ATP contractions were reduced in arteries and veins in IBD, while contractions to NA were only slightly reduced. Neuropeptide Y induced significantly greater (20%) contractions of IBD veins. In summary, the density of sympathetic and sensory-motor innervation of both mesenteric arteries and veins was increased in IBD. Both 5-hydroxytryptamine and VIP immunoreactivity were also increased. The responses of both arteries and veins to ATP, and to a lesser extent NA, were reduced in IBD while responses to NPY were greater in veins. Decreased responses to ATP indicate changes in purinergic-mediated transmission in the pathological state.  相似文献   

13.
Postganglionic sympathetic neurons, which are exquisitely sensitive to small changes in levels of target-derived nerve growth factor (NGF), express two transmembrane receptors: 1) the trkA receptor mediates neuron survival and neurite outgrowth; and 2) the p75 neurotrophin receptor (p75NTR) enhances neuronal responsiveness of trkA to NGF. Elevating levels of NGF induces several morphological and neurochemical alterations in sympathetic neurons, including axonal sprouting, increased levels of p75NTR mRNA relative to trkA mRNA, and increased accumulations of NGF in hypertrophied somata. Spontaneously hypertensive rats (SHR) display both elevated NGF levels and increased sympathetic axonal innervation of the mesenteric vasculature. In this investigation we assessed whether sympathetic neurons innervating the mesenteric vasculature of SHR display other features indicative of increased levels of target-derived NGF. In 5-week-old SHR, levels of both p75NTR and trkA mRNA in mesenteric sympathetic neurons were significantly elevated compared to levels in age-matched control rats. By 15 and 30 weeks of age, levels of p75NTR mRNA expression in mesenteric sympathetic neurons were similar between SHR and control rats. Accumulations of NGF were depleted in the sympathetic somata of 15- and 30-week-old SHR compared to age-matched control rats. Moreover, sympathetic neurons in SHR were not hypertrophied, as the sizes of somata were comparable between SHR and control rats. Our data illustrate that despite having augmented levels of NGF in the mesenteric vasculature, SHR do not display many of the morphological and neurochemical features that are associated with an enhanced responsiveness by sympathetic neurons to elevated levels of target-derived NGF.  相似文献   

14.
Single-cell recording, electrolytic lesion and electrical stimulation studies have indicated that the pontomedullary reticular formation (PMRF) plays a role in head movement (HM) control. However, recent studies utilizing excitotoxin lesions of the PMRF have reported no effect on HM. In the present study, we have examined the acute and chronic motor effects of injecting ibotenic acid (IBO) into the nucleus reticularis pontis oralis, nucleus reticularis pontis caudalis and rostral medullary nucleus gigantocellularis of the feline PMRF. IBO injections in all of these regions induced tonic flexion of the head toward the ipsilateral side. This effect lasted 4-16 h. It was followed by a second phase in which head flexion and whole body circling were directed toward the contralateral side. Although this forced contralateral head turning disappeared within two days, the tendency to turn contralaterally and the impaired ability to make rapid ipsilateral HMs were present throughout survival periods lasting more than 4 months. Unilateral IBO PMRF lesions reduced the amplitude of vestibular induced quick phase (anti-compensatory) HMs toward the ipsilateral side and resulted in abnormally large and persistent slow compensatory HMs toward the contralateral side. Following IBO injections, the threshold intensity for HMs evoked by electrical stimulation at the injection site was elevated, and the amplitude and velocity of evoked HMs reduced. Histological data indicated that the reticular area involved in HM control was relatively large and probably extended beyond the PMRF region examined here. However, lesions including the nucleus reticularis pontis caudalis (NRPC) produced more severe and persistent HM deficits than those including the nucleus reticularis gigantocellularis. These data together with available anatomical and electrophysiological evidence indicate that PMRF neurons play a critical role in the generation of fast horizontal HMs toward the ipsilateral side.  相似文献   

15.
The subcellular storage and release of noradrenaline (NA), dopamine-β-hydroxylase (DβH), and neuropeptide Y (NPY) was studied in the isolated perfused sheep spleen. Subcellular distribution studies showed a bimodal distribution for NA which was well reflected by DβH and indicated the occurrence of two types of NA storage vesicles. The most dense, presumably large dense-cored vesicles (LDV), contain both membrane-bound and soluble DβH the less dense presumably corresponds to small dense-cored vesicles (SDV) and at least does not contain soluble DβH. The distribution of NPY is extended but shows a peak only at the position of LDV, indicating that LDV contain NPY. Continuous electrical stimulation of the splenic nerve at 2 Hz, 5 Hz, 10 Hz, and 20 Hz or at 20 hz with bursts induced the release of NA, NPY, and DβH. The ratio among these components was constant. The fractional release of DβH and NA was comparable at all frequencies used; that of NPY was 10–20 times lower, suggesting the occurrence of a large nonreleasable NPY pool. The present data argue against a high frequency stimulation or intermittent stimulation-induced preferential release of NPY from adrenergic neurons and question the concept of frequency-dependent chemical coding of sympathetic transmission in general. The simplest interpretation of our data is that NA and NPY are released at all frequencies from a single pool. The present findings might signify that only large dense-cored vesicles are involved in the sympathetic stimulation-evoked secretion of catecholamines from adrenergic nerve terminals of the isolated sheep spleen. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Electrical stimulation of the vomeronasal organ in male hamsters activated Fos expression in neurons of the chemosensory pathways, as in experiments where animals were stimulated with female chemical stimuli. Fos was also activated in gonadotropin hormone releasing hormone (GnRH, or LHRH) neurons in the rostral medial preoptic region of the brain, a possible substrate for GnRH influence on chemosensory-dependent reproductive behavior.  相似文献   

17.
18.
The search for signalling systems regulating development of noradrenergic and cholinergic sympathetic neurons is a classical problem of developmental neuroscience. While an essential role of bone morphogenetic proteins for induction of noradrenergic properties is firmly established, factors involved in the development of cholinergic traits in vivo are still enigmatic. Previous studies have shown that the c-ret receptor and cholinergic properties are coexpressed in chick sympathetic neurons. Using in situ hybridization we show now that a loss-of-function mutation of the c-ret receptor in mice dramatically reduces numbers of cells positive for choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) in stellate ganglia of homozygous newborn animals. The number of neurons positive for tyrosine hydroxylase (TH) mRNA, the rate-limiting enzyme of noradrenaline synthesis, is reduced to a smaller degree and expression levels are not detectably altered. Already at embryonic day 16 (E16), ChAT and VAChT-positive cells are affected by the c-ret mutation. At E14, however, ChAT and VAChT mRNAs are detectable at low levels and no difference is observed between wildtype and mutant mice. Our data suggest that c-ret signalling is necessary for the maturation of cholinergic sympathetic neurons but dispensable for de novo induction of ChAT and VAChT expression.  相似文献   

19.
20.
We investigated the functional role of oscillatory activity in the local field potential (LFP) of the subthalamic nucleus (STN) in the pathophysiology of Parkinson’s disease (PD). It has been postulated that beta (15–30 Hz) oscillatory activity in the basal ganglia induces PD motor symptoms. To assess this hypothesis, an LFP showing significant power in the beta frequency range (23 Hz) was used as a stimulus both in vitro and in vivo. We first demonstrated in rat brain slices that STN neuronal activity was driven by the LFP stimulation. We then applied beta stimulation to the STN of 16 rats and two monkeys while quantifying motor behaviour. Although stimulation‐induced behavioural effects were observed, stimulation of the STN at 23 Hz induced no significant decrease in motor performance in either rodents or primates. This study is the first to show LFP‐induced behaviour in both rats and primates, and highlights the complex relationship between beta power and parkinsonian symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号