首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous research has shown that gold nanoparticles can increase the effectiveness of radiation on cancer cells. Improved radiation effectiveness would allow lower radiation doses given to patients, reducing adverse effects; alternatively, it would provide more cancer killing at current radiation doses. Damage from radiation and gold nanoparticles depends in part on the Auger effect, which is very localized; thus, it is important to place the gold nanoparticles on or in the cancer cells. In this work, we use the pH-sensitive, tumor-targeting agent, pH Low-Insertion Peptide (pHLIP), to tether 1.4-nm gold nanoparticles to cancer cells. We find that the conjugation of pHLIP to gold nanoparticles increases gold uptake in cells compared with gold nanoparticles without pHLIP, with the nanoparticles distributed mostly on the cellular membranes. We further find that gold nanoparticles conjugated to pHLIP produce a statistically significant decrease in cell survival with radiation compared with cells without gold nanoparticles and cells with gold alone. In the context of our previous findings demonstrating efficient pHLIP-mediated delivery of gold nanoparticles to tumors, the obtained results serve as a foundation for further preclinical evaluation of dose enhancement.Gold is an inert and generally nontoxic material with unique properties suitable for many applications such as cancer diagnosis and treatment (17). Nanometer-size gold particles have recently been shown to increase radiation damage to tumors (2, 811). With enhanced radiation, the same level of tumor killing can be had with less radiation exposure for a patient, reducing the adverse effects of radiation treatments. Similarly, more tumor killing can be had while using the same levels of radiation that are currently given.The increase in radiation effectiveness with gold nanoparticles is largely a result of two causes. First, gold is capable of absorbing radiation at a significantly higher rate than tissue: up to about 100 times more for keV energies (2). Second, gold nanoparticles that interact with radiation can release extra electrons via the Auger effect. The Auger effect occurs when an atom releases electrons postionization. Multiple electrons, called Auger electrons, can be released per ionization. The Auger electrons usually have low enough energy that their effect is localized to the area surrounding the gold nanoparticles; see, for example, figure 1 in ref. 11. Thus, it is very important to effectively deliver gold nanoparticles to cancer cells in tumors and to locate them near DNA or other vital cellular structures and components.Specific delivery can be accomplished by conjugating gold (or other nanoparticles) to antibodies or ligands that target overexpressed proteins on cancer cell surfaces; this approach has been actively explored for many years for the delivery of small molecules. However, several recent studies have raised serious questions about the efficacy of targeting ligands on nanoparticle accumulation in tumor tissues. Multiple reports have shown that targeted nanoparticles did not lead to increased tumor accumulation over nontargeted controls, although increased cellular uptake was observed in each case (1214). In addition, histologic studies showed that antibodies conjugated with gold nanoparticles do not penetrate deeply into tumors, but mostly stain peripheral tumor regions (15). The direct injection of micrometer-sized gold particles does not lead to tumor targeting, as particles stayed only at the injection site and were not able to diffuse even within a tumor, hindering tumor coverage (16).Our approach is based on the targeting of tumor acidity, which correlates with tumor malignancy (1719). The pH-sensitive targeting agents we are developing are based on the action of a family of pHLIPs (pH Low-Insertion Peptides), which can “sense” acidity at the surface of cancer cells and deliver diagnostic and therapeutic molecules to tumors of different origins (2025). It was shown that pHLIP can promote fusion of liposomes with cancer cells and cellular delivery of various payloads (26, 27), including small gold nanoparticles (26). Recently, pHLIP was successfully used for the targeting of various nanoparticles to tumors and other acidic diseased tissue (2831).pHLIP has also been used to mediate pH-controlled delivery of both 13-nm water-soluble gold nanoparticles coated with luminescent europium into human platelets in vitro (32) and 1.4-nm gold nanoparticles to tumors (33). Intratumoral and i.v. administrations of both demonstrated a significant enhancement of tumor uptake of 1.4-nm gold nanoparticles conjugated with pHLIP. Statistically significant reduction of gold accumulation was observed in acidic tumors and kidney when pH-nonsensitive K-pHLIP was used as a vehicle, suggesting an important role of pH in the pHLIP-mediated targeting of gold nanoparticles.In this work, we made another important step toward clinical application of 1.4-nm gold nanoparticles conjugated with pHLIP. We show that pHLIP can deliver gold to cellular components in a pH-dependent manner and can enhance radiation damage in cells.  相似文献   

2.
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal−metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal−metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.Square-planar d8 platinum(II) polypyridine complexes have long been known to exhibit intriguing spectroscopic and luminescence properties (154) as well as interesting solid-state polymorphism associated with metal−metal and π−π stacking interactions (114, 25). Earlier work by our group showed the first example, to our knowledge, of an alkynylplatinum(II) terpyridine system [Pt(tpy)(C ≡ CR)]+ that incorporates σ-donating and solubilizing alkynyl ligands together with the formation of Pt···Pt interactions to exhibit notable color changes and luminescence enhancements on solvent composition change (25) and polyelectrolyte addition (26). This approach has provided access to the alkynylplatinum(II) terpyridine and other related cyclometalated platinum(II) complexes, with functionalities that can self-assemble into metallogels (2731), liquid crystals (32, 33), and other different molecular architectures, such as hairpin conformation (34), helices (3538), nanostructures (3945), and molecular tweezers (46, 47), as well as having a wide range of applications in molecular recognition (4852), biomolecular labeling (4852), and materials science (53, 54). Recently, metal-containing amphiphiles have also emerged as a building block for supramolecular architectures (4244, 5559). Their self-assembly has always been found to yield different molecular architectures with unprecedented complexity through the multiple noncovalent interactions on the introduction of external stimuli (4244, 5559).Helical architecture is one of the most exciting self-assembled morphologies because of the uniqueness for the functional and topological properties (6069). Helical ribbons composed of amphiphiles, such as diacetylenic lipids, glutamates, and peptide-based amphiphiles, are often precursors for the growth of tubular structures on an increase in the width or the merging of the edges of ribbons (64, 65). Recently, the optimization of nanotube formation vs. helical nanostructures has aroused considerable interests and can be achieved through a fine interplay of the influence on the amphiphilic property of molecules (66), choice of counteranions (67, 68), or pH values of the media (69), which would govern the self-assembly of molecules into desirable aggregates of helical ribbons or nanotube scaffolds. However, a precise control of supramolecular morphology between helical ribbons and nanotubes remains challenging, particularly for the polycyclic aromatics in the field of molecular assembly (6469). Oligo(para-phenylene ethynylene)s (OPEs) with solely π−π stacking interactions are well-recognized to self-assemble into supramolecular system of various nanostructures but rarely result in the formation of tubular scaffolds (7073). In view of the rich photophysical properties of square-planar d8 platinum(II) systems and their propensity toward formation of directional Pt···Pt interactions in distinctive morphologies (2731, 3945), it is anticipated that such directional and noncovalent metal−metal interactions might be capable of directing or dictating molecular ordering and alignment to give desirable nanostructures of helical ribbons or nanotubes in a precise and controllable manner.Herein, we report the design and synthesis of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing hydrophilic OPEs with two 3,6,9-trioxadec-1-yloxy chains. The mononuclear alkynylplatinum(II) terpyridine complex with amphiphilic property is found to show a strong tendency toward the formation of supramolecular structures on diffusion of diethyl ether in dichloromethane or dimethyl sulfoxide (DMSO) solution. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would result in nanotubes or helical ribbons in the self-assembly process. To the best of our knowledge, this finding represents the first example of the utilization of the steric bulk of the moieties, which modulates the formation of directional metal−metal interactions to precisely control the formation of nanotubes or helical ribbons in the self-assembly process. Application of the nucleation–elongation model into this assembly process by UV-visible (UV-vis) absorption spectroscopic studies has elucidated the nature of the molecular self-assembly, and more importantly, it has revealed the role of metal−metal interactions in the formation of these two types of nanostructures.  相似文献   

3.
Membrane recruitment of cytohesin family Arf guanine nucleotide exchange factors depends on interactions with phosphoinositides and active Arf GTPases that, in turn, relieve autoinhibition of the catalytic Sec7 domain through an unknown structural mechanism. Here, we show that Arf6-GTP relieves autoinhibition by binding to an allosteric site that includes the autoinhibitory elements in addition to the PH domain. The crystal structure of a cytohesin-3 construct encompassing the allosteric site in complex with the head group of phosphatidyl inositol 3,4,5-trisphosphate and N-terminally truncated Arf6-GTP reveals a large conformational rearrangement, whereby autoinhibition can be relieved by competitive sequestration of the autoinhibitory elements in grooves at the Arf6/PH domain interface. Disposition of the known membrane targeting determinants on a common surface is compatible with multivalent membrane docking and subsequent activation of Arf substrates, suggesting a plausible model through which membrane recruitment and allosteric activation could be structurally integrated.Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing exchange of GDP for GTP (1). Because many GEFs are recruited to membranes through interactions with phospholipids, active GTPases, or other membrane-associated proteins (15), GTPase activation can be restricted or amplified by spatial–temporal overlap of GEFs with binding partners. GEF activity can also be controlled by autoregulatory mechanisms, which may depend on membrane recruitment (611). Structural relationships between these mechanisms are poorly understood.Arf GTPases function in trafficking and cytoskeletal dynamics (5, 12, 13). Membrane partitioning of a myristoylated (myr) N-terminal amphipathic helix primes Arfs for activation by Sec7 domain GEFs (1417). Cytohesins comprise a metazoan Arf GEF family that includes the mammalian proteins cytohesin-1 (Cyth1), ARNO (Cyth2), and Grp1 (Cyth3). The Drosophila homolog steppke functions in insulin-like growth factor signaling, whereas Cyth1 and Grp1 have been implicated in insulin signaling and Glut4 trafficking, respectively (1820). Cytohesins share a modular architecture consisting of heptad repeats, a Sec7 domain with exchange activity for Arf1 and Arf6, a PH domain that binds phosphatidyl inositol (PI) polyphosphates, and a C-terminal helix (CtH) that overlaps with a polybasic region (PBR) (2128). The overlapping CtH and PBR will be referred to as the CtH/PBR. The phosphoinositide specificity of the PH domain is influenced by alternative splicing, which generates diglycine (2G) and triglycine (3G) variants differing by insertion of a glycine residue in the β1/β2 loop (29). Despite similar PI(4,5)P2 (PIP2) affinities, the 2G variant has 30-fold higher affinity for PI(3,4,5)P3 (PIP3) (30). In both cases, PIP3 is required for plasma membrane (PM) recruitment (23, 26, 3133), which is promoted by expression of constitutively active Arf6 or Arl4d and impaired by PH domain mutations that disrupt PIP3 or Arf6 binding, or by CtH/PBR mutations (8, 3436).Cytohesins are autoinhibited by the Sec7-PH linker and CtH/PBR, which obstruct substrate binding (8). Autoinhibition can be relieved by Arf6-GTP binding in the presence of the PIP3 head group (8). Active myr-Arf1 and myr-Arf6 also stimulate exchange activity on PIP2-containing liposomes (37). Whether this effect is due to relief of autoinhibition per se or enhanced membrane recruitment is not yet clear. Phosphoinositide recognition by PH domains, catalysis of nucleotide exchange by Sec7 domains, and autoinhibition in cytohesins are well characterized (8, 16, 17, 30, 3843). How Arf-GTP binding relieves autoinhibition and promotes membrane recruitment is unknown. Here, we determine the structural basis for relief of autoinhibition and investigate potential mechanistic relationships between allosteric regulation, phosphoinositide binding, and membrane targeting.  相似文献   

4.
Unique tripodal S-donor capping agents with an attached carboxylate are found to bind tightly to the surface of CdSe nanocrystals (NCs), making the latter water soluble. Unlike that in similarly solubilized CdSe NCs with one-sulfur or two-sulfur capping agents, dissociation from the NC surface is greatly reduced. The impact of this behavior is seen in the photochemical generation of H2 in which the CdSe NCs function as the light absorber with metal complexes in aqueous solution as the H2-forming catalyst and ascorbic acid as the electron donor source. This precious-metal–free system for H2 generation from water using [Co(bdt)2] (bdt, benzene-1,2-dithiolate) as the catalyst exhibits excellent activity with a quantum yield for H2 formation of 24% at 520 nm light and durability with >300,000 turnovers relative to catalyst in 60 h.Artificial photosynthesis (AP) represents an important strategy for energy conversion from sunlight to storage in chemical bonds (14). Unlike natural photosynthesis in which CO2 + H2O are converted into carbohydrates and O2, the key energy-storing reaction in AP is the splitting of water into its constituent elements of hydrogen and oxygen (516). As a redox reaction, water splitting can be divided into two half-reactions, of which the light-driven generation of H2 is the reductive component. Many systems for the photogeneration of H2 have been described over the years and they typically consist of a light absorber, a catalyst for H2 formation, and sources of protons and electrons. For systems that function in aqueous media, the protons are provided by water, whereas for nonaqueous systems, the protons are provided by weak, generally organic acids. The source of electrons in these photochemical systems is generally a sacrificial electron donor—that is, a compound that decomposes following one electron oxidation.Reports of the light-driven generation of hydrogen date back more than 30 y, beginning with a multicomponent system containing [Ru(bpy)3]2+ (where bpy is 2,2′-bipyridine) as the chromophore or photosensitizer (PS) and colloidal Pt as the catalyst for making H2 from protons and electrons (17). In these and many subsequent systems, electron mediators were used to accept an electron from the excited chromophore, PS*— thereby serving as an oxidative quencher—and transfer it to the catalyst. Whereas two of the initial mediators were bpy complexes of rhodium and cobalt (17, 18), the overwhelming majority of electron mediators in these systems were dialkylated 2,2′- and 4,4′-bipyridines and their derivatives (1922). The most extensively used of these mediators was methyl viologen (MV2+, dimethyl-4,4′-bipyridinium, usually as its chloride salt). These mediators were subsequently found to undergo deactivation in their role by hydrogenation (23, 24). The sacrificial electron donors used in these studies depended on system pH and were generally based on compounds having tertiary amine functionality for decomposition following oxidation, such as triethylamine (TEA), triethanolamine (TEOA), and ethylenediamine-N,N,N′,N′-tetraacetic acid (EDTA) (17, 1922). A different electron mediator during the early studies on light-driven generation of hydrogen was found to be TiO2, which when platinized served as both the mediator and the catalyst (2528).During the more than three decades that have passed since the initial reports (17, 1922, 2527), every aspect and component of photochemical proton reduction systems have been investigated with the goal of increasing activity and durability. These include new molecular catalysts and different photosensitizers ranging from other metal complexes with long-lived charge-transfer excited states to strongly absorbing organic dyes. With a view toward the possible long-term utilization of hydrogen from solar-driven water splitting, efforts have expanded over the past decade to use components that contain only earth-abundant elements and thus to remove Pt, Pd, Ru, Ir, and Rh from such systems. In this regard, photochemical proton reduction systems have been reported in which complexes of cobalt, nickel, and iron are found to function as catalysts for hydrogen generation (18, 2941). A number of these complexes were inspired by the active sites of hydrogenase enzymes in which Fe is, and Ni may be, present, and a pendant organic base is thought to help as a proton shuttle to a postulated metal-hydride intermediate for H2 formation (30, 31, 35, 37, 42, 43).Another set of complexes investigated as catalysts for proton reduction are complexes of Co having diglyoxime-type ligands that form a pseudomacrocyclic structure (that is, two diglyoxime ligands linked together by either H bonds or BF2 bridges) (4454). Although many of these studies with regard to catalyst development were, and are, based on electrocatalytic generation of H2 (4450), more recent efforts have used the cobaloxime catalysts in light-driven systems (5154). Photosensitizers in these investigations have been either charge transfer metal complexes of Ru(II), Ir(III), Re(I), and Pt(II) or organic dyes. Although some of these systems exhibited significant activity for making H2, all of them suffered from instability that led to cessation of activity after periods ranging from 6 h to 30 h.The use of the cobaloxime catalyst CoCl(pyr)(dmg)2 (where dmg is dimethylglyoximate anion) in conjunction with organic dyes as PS provided the first molecular systems for visible light-driven proton reduction to H2 that were free of precious metals (5557). The most effective of these used a Se-derivatized rhodamine dye as the chromophore with TEOA as the sacrificial electron donor, yielding good activity with an initial turnover frequency (TOF) > 5,000/h (vs. PS) and total turnover number (TON) of 9,000 after 8 h (57). Analysis of this system revealed that it functioned via reductive quenching of PS* by TEOA and subsequent electron transfer from PS to the catalyst. Another organic dye-catalyst system that also exhibited good activity used fluorescein (Fl) as PS and a nickel pyridinethiolate (pyS) catalyst in pH 11 media with TEA as the sacrificial donor. This system also was found to function via reductive quenching of PS* by the electron donor, rather than by direct electron transfer from PS* to the catalyst or an electron mediator (37). A significant number of reviews provide detailed accounts of the various systems studied and their effectiveness with regard to H2 generation (1, 5864). However, all of them, which contain molecular light absorbers [charge transfer (CT) metal complexes and organic dyes], suffer from photoinstability during prolonged irradiation. Additionally, the molecular catalysts for H2 generation may undergo deactivation, as has been established for the Co glyoximate complexes.In an analysis for genuinely viable systems for proton reduction and water oxidation in solar-driven water splitting, Bard and Fox addressed the question of component stability and indicated a need to focus on the use of semiconductors (SCs) as light absorbers based on the wide energy range of SC bandgaps, the electron transfer properties of excited semiconductors, and their potential stability under prolonged irradiation (65). Although the use of semiconductors for photochemical water splitting dates back to a report by Fujishima and Honda in 1972 with TiO2 and UV light, the challenge was to use SCs with absorption maxima that better matched the solar spectrum (66). There have been numerous reports describing efforts in this direction and several recent reviews offer a summary of systems used and results obtained (6775). Semiconductor nanoparticles that exhibit size-constrained electronic properties represent a large and important class of possible light absorbers for the two half-reactions of water splitting. These nanoparticles, which are referred to as quantum dots (QDs) and nanocrystals (NCs), represent a fertile area of study in the context of energy conversion because their bandgaps can be adjusted via their preparation and their solubility can be controlled by their surface stabilizers or capping agents (76). In this way, NCs can offer unique size-dependent optical properties and stronger light absorption over a wider spectral range than do molecular PSs (68, 76). In fact, NCs as light absorbers in combination with precious metal proton reduction catalysts or with Fe-Fe hydrogenase have been studied, yielding interesting photocatalytic systems (7781).We recently communicated such a system for carrying out H2 formation from aqueous protons that possessed great durability and impressive activity. The light absorber in this system was water-solubilized CdSe NCs, the catalyst was an in situ-formed complex of Ni2+ with the water-solubilizing agent dihydrolipoic acid (DHLA), the electron source was ascorbic acid (AA), and the system medium was water at pH 4.5. TONs of more than 600,000 were reported for one set of conditions, using 520 nm light, whereas for a different set of conditions durability over 15 d was found (82). Water solubilization of CdSe NCs using agents such as 3-thiopropionic acid and DHLA has been known for some time, with DHLA more strongly binding via chelation (8385). In the system that we previously reported for H2 production, however, dissociation of DHLA from the CdSe NCs was an essential aspect of its operation to form the Ni-DHLA catalyst (82). On the other hand, the dissociation of DHLA from the CdSe NCs was also found to negatively affect the examination of preformed catalysts because of competing exchange reactions involving DHLA and the catalyst ligands.In our current study, we report a unique hydrogen-generating system using CdSe NCs with much less labile water-solubilizing capping agents. This unique system, which is more durable, allows assessment of the activity of successful H2-generating catalysts that had been established electrochemically or in a different photochemical system. The reduced lability of the water-solubilizing agent is based on having three S donors in close proximity to each other for the formation of a more stable bridging structure to the CdSe nanoparticle.  相似文献   

5.
We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp)140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120–gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.e., a gp120–gp41 disulfide bond and an I559P gp41 change, together designated SOSIP), was assessed. Without SOSIP changes, cleaved trimers disintegrate into their gp120 and gp41-ectodomain (gp41ECTO) components; when only the disulfide bond is present, they dissociate into gp140 monomers. Uncleaved gp140s remain trimeric whether SOSIP substitutions are present or not. However, negative-stain electron microscopy reveals that only cleaved trimers form homogeneous structures resembling native Env spikes on virus particles. In contrast, uncleaved trimers are highly heterogeneous, adopting a variety of irregular shapes, many of which appear to be gp120 subunits dangling from a central core that is presumably a trimeric form of gp41ECTO. Antigenicity studies with neutralizing and nonneutralizing antibodies are consistent with the EM images; cleaved, SOSIP-stabilized trimers express quaternary structure-dependent epitopes, whereas uncleaved trimers expose nonneutralizing gp120 and gp41ECTO epitopes that are occluded on cleaved trimers. These findings have adverse implications for using soluble, uncleaved trimers for structural studies, and the rationale for testing uncleaved trimers as vaccine candidates also needs to be reevaluated.Trimeric envelope glycoprotein (Env gp) spikes on the HIV type 1 (HIV-1) surface mediate entry of the viral genome into the target cell (1, 2). When spikes interact with their cell-surface receptors, a series of conformational changes within the Env culminates in virus–cell membrane fusion. Neutralizing antibodies (NAbs) against various Env epitopes antagonize these events (2, 3). Hence, Env glycoproteins are a focus of vaccine design programs intended to induce NAbs and thereby prevent HIV-1 transmission (3, 4). Env trimers are composed of three gp120 surface glycoprotein subunits and three gp41 transmembrane glycoproteins, the six subunits all associated via noncovalent interactions (5, 6). A critical event in trimer assembly is proteolytic cleavage of the gp160 precursor into its gp120 and gp41 components, a process essential for HIV-1 entry not least because it liberates the fusion peptide (FP) at the gp41 N terminus (5, 6).Trimer-based vaccine strategies involve expressing soluble, recombinant versions of the virion-associated (i.e., native) spikes. To facilitate production and purification, the membrane-spanning and cytoplasmic domains that anchor spikes to the virion, but that are not NAb targets, are eliminated (712). However, the resulting proteins, known as gp140s, are highly unstable and disintegrate into their gp120 and gp41-ectodomain (gp41ECTO) components, making them useless as immunogens. Two fundamentally different protein-engineering strategies have been used to create gp140s that can be produced and purified without falling apart (3, 4, 717). The most common method involves eliminating the cleavage site between gp120 and gp41ECTO, creating uncleaved gp140s (gp140UNC) where the two subunits remain covalently linked (712). Additional trimerization motifs are often added to the gp41ECTO C terminus (1012). Our alternative approach is based on the premise that cleavage is a fundamental feature of Env structure and involves stabilizing fully cleaved gp140s. The critical changes are an appropriately positioned disulfide bond (referred to as “SOS”) to link gp120 to gp41ECTO covalently, and an Ile/Pro (IP) substitution at residue 559 to strengthen inter-gp41ECTO interactions (1317). The resulting cleaved trimers are designated SOSIP gp140s (14). Additional modifications have improved their stability, homogeneity, and antigenicity (1517). Our current design, based on the BG505 subtype A env gene, yields SOSIP.664 trimers that mimic native, virion-associated Env spikes antigenically and when viewed by negative-stain electron microscopy (EM) (1719).Here we show that cleavage is essential for producing stable, soluble gp140 trimers that resemble native Env spikes. EM studies reveal that purified, trimeric gp140UNC proteins are heterogeneous and that the irregularly shaped images rarely resemble a native spike; we refer to them as “aberrant configurations” (ACs). In contrast, cleaved SOSIP gp140 trimers are homogeneous and mimic native spikes; we designate them native-like (NL) trimers. The antigenic properties of the cleaved (NL) and uncleaved (AC) trimers, assessed by surface plasmon resonance (SPR) and enzyme-linked immunoabsorbance assays (ELISA), are consistent with the EM images. Nonneutralizing gp120 and gp41ECTO epitopes are exposed on gp140UNC trimers but occluded on cleaved ones, whereas quaternary structure-dependent epitopes indicative of proper folding are present only on cleaved trimers. Our findings have substantial implications, because uncleaved trimers are being studied structurally and developed as vaccine candidates (3, 9, 10, 12, 20).  相似文献   

6.
Recent evidence suggests that chemokine (C-X-C motif) receptor 4 (CXCR4) contributes to the regulation of blood pressure through interactions with α1-adrenergic receptors (ARs) in vascular smooth muscle. The underlying molecular mechanisms, however, are unknown. Using proximity ligation assays to visualize single-molecule interactions, we detected that α1A/B-ARs associate with CXCR4 on the cell surface of rat and human vascular smooth muscle cells (VSMC). Furthermore, α1A/B-AR could be coimmunoprecipitated with CXCR4 in a HeLa expression system and in human VSMC. A peptide derived from the second transmembrane helix of CXCR4 induced chemical shift changes in the NMR spectrum of CXCR4 in membranes, disturbed the association between α1A/B-AR and CXCR4, and inhibited Ca2+ mobilization, myosin light chain (MLC) 2 phosphorylation, and contraction of VSMC upon α1-AR activation. CXCR4 silencing reduced α1A/B-AR:CXCR4 heteromeric complexes in VSMC and abolished phenylephrine-induced Ca2+ fluxes and MLC2 phosphorylation. Treatment of rats with CXCR4 agonists (CXCL12, ubiquitin) reduced the EC50 of the phenylephrine-induced blood pressure response three- to fourfold. These observations suggest that disruption of the quaternary structure of α1A/B-AR:CXCR4 heteromeric complexes by targeting transmembrane helix 2 of CXCR4 and depletion of the heteromeric receptor complexes by CXCR4 knockdown inhibit α1-AR–mediated function in VSMC and that activation of CXCR4 enhances the potency of α1-AR agonists. Our findings extend the current understanding of the molecular mechanisms regulating α1-AR and provide an example of the importance of G protein-coupled receptor (GPCR) heteromerization for GPCR function. Compounds targeting the α1A/B-AR:CXCR4 interaction could provide an alternative pharmacological approach to modulate blood pressure.Chemokine (C-X-C motif) receptor 4 (CXCR4) is a G protein-coupled receptor (GPCR) that is essential during development. Animals lacking CXCR4 are not viable and demonstrate defects of the hematopoietic and cardiovascular system (1). After birth, CXCR4 is expressed in many tissues, including the heart and vasculature, and fulfills multiple functions in the immune system, such as regulation of leukocyte trafficking, stem cell mobilization, and homing (2, 3). Moreover, CXCR4 is involved in various disease processes, such as HIV infection, cancer metastasis, and tissue repair (35).In addition to these established functions, recent observations suggest that CXCR4 also contributes to the regulation of hemodynamics and blood pressure. Treatment with the CXCR4 antagonists AMD3100 and AMD3465 reduced blood pressure in experimental models of pulmonary arterial and systemic hypertension (6, 7). We have shown previously that AMD3100 reduces hemodynamic stability and blood pressure during the cardiovascular stress response to traumatic and hemorrhagic shock, whereas selective activation of CXCR4 with the noncognate agonist ubiquitin improves hemodynamic stability and increases systemic blood pressure after traumatic, hemorrhagic, and endotoxic shock (813). Because in vivo pharmacological targeting of CXCR4 did not affect myocardial function, these findings suggested that effects of CXCR4 on hemodynamics and blood pressure are mediated via modulation of vascular function (9). Accordingly, we observed that CXCR4 activation enhances and sensitizes vasoconstriction of isolated mesenteric arteries and veins in response to α1-adrenergic receptor (AR) activation with phenylephrine (PE) (9). As these effects were independent of the vascular endothelium, interactions between CXCR4 and α1-AR in vascular smooth muscle likely constitute the physiological basis for these observations (9). The molecular mechanisms underlying interactions between CXCR4 and α1-AR in vascular smooth muscle, however, remain unknown.Crosstalk between GPCRs is a widely recognized principle that expands the physiological repertoire of GPCR-mediated signaling events and functions (1419). Receptor crosstalk can be attributed to a variety of molecular mechanisms, including receptor hetero-oligomerization (1423). The formation of homo- and/or hetero-oligomeric complexes among GPCRs is thought to be important for many aspects of GPCR function (2224).CXCR4 has been shown to associate with multiple chemokine receptors in various expression systems (3, 2528). ARs are also known to be able to form heteromeric receptor complexes (2935), and recent evidence suggests that AR may also be able to form heteromeric complexes with chemokine receptors (3638). Thus, we studied whether α1-AR and CXCR4 may interact on the cell surface of vascular smooth muscle cells through the formation of heteromeric receptor complexes.Here, we provide evidence that heteromeric receptor complexes between α1A-AR and CXCR4 and between α1B-AR and CXCR4 are constitutively expressed in rat and human vascular smooth muscle cells (VSMC). We show that disruption of the quaternary structure of the heteromeric receptor complex by targeting transmembrane helix (TM) 2 of CXCR4 and depletion of heteromeric receptor complexes by CXCR4 knockdown inhibit α1-AR agonist-induced key signaling events and contraction of VSMC. Furthermore, we show that treatment with CXCR4 agonists increases the potency of the α1-AR agonist PE to increase blood pressure in vivo. Our observations suggest that α1-AR function in VSMC is controlled through the formation of heteromeric α1A/B-AR:CXCR4 complexes.  相似文献   

7.
Fundamental relationships between the thermodynamics and kinetics of protein folding were investigated using chain models of natural proteins with diverse folding rates by extensive comparisons between the distribution of conformations in thermodynamic equilibrium and the distribution of conformations sampled along folding trajectories. Consistent with theory and single-molecule experiment, duration of the folding transition paths exhibits only a weak correlation with overall folding time. Conformational distributions of folding trajectories near the overall thermodynamic folding/unfolding barrier show significant deviations from preequilibrium. These deviations, the distribution of transition path times, and the variation of mean transition path time for different proteins can all be rationalized by a diffusive process that we modeled using simple Monte Carlo algorithms with an effective coordinate-independent diffusion coefficient. Conformations in the initial stages of transition paths tend to form more nonlocal contacts than typical conformations with the same number of native contacts. This statistical bias, which is indicative of preferred folding pathways, should be amenable to future single-molecule measurements. We found that the preexponential factor defined in the transition state theory of folding varies from protein to protein and that this variation can be rationalized by our Monte Carlo diffusion model. Thus, protein folding physics is different in certain fundamental respects from the physics envisioned by a simple transition-state picture. Nonetheless, transition state theory can be a useful approximate predictor of cooperative folding speed, because the height of the overall folding barrier is apparently a proxy for related rate-determining physical properties.Protein folding is an intriguing phenomenon at the interface of physics and biology. In the early days of folding kinetics studies, folding was formulated almost exclusively in terms of mass-action rate equations connecting the folded, unfolded, and possibly, one or a few intermediate states (1, 2). With the advent of site-directed mutagenesis, the concept of free energy barriers from transition state theory (TST) (3) was introduced to interpret mutational data (4), and subsequently, it was adopted for the Φ-value analysis (5). Since the 1990s, the availability of more detailed experimental data (6), in conjunction with computational development of coarse-grained chain models, has led to an energy landscape picture of folding (715). This perspective emphasizes the diversity of microscopic folding trajectories, and it conceptualizes folding as a diffusive process (1625) akin to the theory of Kramers (26).For two-state-like folding, the transition path (TP), i.e., the sequence of kinetic events that leads directly from the unfolded state to the folded state (27, 28), constitutes only a tiny fraction of a folding trajectory that spends most of the time diffusing, seemingly unproductively, in the vicinity of the free energy minimum of the unfolded state. The development of ultrafast laser spectroscopy (29, 30) and single-molecule (27, 28, 31) techniques have made it possible to establish upper bounds on the transition path time (tTP) ranging from <200 and <10 μs by earlier (27) and more recent (28), respectively, direct single-molecule FRET to <2 μs (30) by bulk relaxation measurements. Consistent with these observations, recent extensive atomic simulations have also provided estimated tTP values of the order of ∼1 μs (32, 33). These advances offer exciting prospects of characterizing the productive events along folding TPs.It is timely, therefore, to further the theoretical investigation of TP-related questions (19). To this end, we used coarse-grained Cα models (14) to perform extensive simulations of the folding trajectories of small proteins with 56- to 86-aa residues. These tractable models are useful, because despite significant progress, current atomic models cannot provide the same degree of sampling coverage for proteins of comparable sizes (32, 33). In addition to structural insights, this study provides previously unexplored vantage points to compare the diffusion and TST pictures of folding. Deviations of folding behaviors from TST predictions are not unexpected, because TST is mostly applicable to simple gas reactions; however, the nature and extent of the deviations have not been much explored. Our explicit-chain simulation data conform well to the diffusion picture but not as well to TST. In particular, the preexponential factors of the simulated folding rates exhibit a small but appreciable variation that depends on native topology. These findings and others reported below underscore the importance of single-molecule measurements (13, 27, 28, 31, 34, 35) in assessing the merits of proposed scenarios and organizing principles of folding (725, 36, 37).  相似文献   

8.
We report on crystal structures of ternary Thermus thermophilus Argonaute (TtAgo) complexes with 5′-phosphorylated guide DNA and a series of DNA targets. These ternary complex structures of cleavage-incompatible, cleavage-compatible, and postcleavage states solved at improved resolution up to 2.2 Å have provided molecular insights into the orchestrated positioning of catalytic residues, a pair of Mg2+ cations, and the putative water nucleophile positioned for in-line attack on the cleavable phosphate for TtAgo-mediated target cleavage by a RNase H-type mechanism. In addition, these ternary complex structures have provided insights into protein and DNA conformational changes that facilitate transition between cleavage-incompatible and cleavage-compatible states, including the role of a Glu finger in generating a cleavage-competent catalytic Asp-Glu-Asp-Asp tetrad. Following cleavage, the seed segment forms a stable duplex with the complementary segment of the target strand.Argonaute (Ago) proteins, critical components of the RNA-induced silencing complex, play a key role in guide strand-mediated target RNA recognition, cleavage, and product release (reviewed in refs. 13). Ago proteins adopt a bilobal scaffold composed of an amino terminal PAZ-containing lobe (N and PAZ domains), a carboxyl-terminal PIWI-containing lobe (Mid and PIWI domains), and connecting linkers L1 and L2. Ago proteins bind guide strands whose 5′-phosphorylated and 3′-hydroxyl ends are anchored within Mid and PAZ pockets, respectively (47), with the anchored guide strand then serving as a template for pairing with the target strand (8, 9). The cleavage activity of Ago resides in the RNase H fold adopted by the PIWI domain (10, 11), whereby the enzyme’s Asp-Asp-Asp/His catalytic triad (1215) initially processes loaded double-stranded siRNAs by cleaving the passenger strand and subsequently processes guide-target RNA duplexes by cleaving the target strand (reviewed in refs. 1618). Such Mg2+ cation-mediated endonucleolytic cleavage of the target RNA strand (19, 20) resulting in 3′-OH and 5′-phosphate ends (21) requires Watson–Crick pairing of the guide and target strands spanning the seed segment (positions 2–2′ to 8–8′) and the cleavage site (10′–11′ step on the target strand) (9). Insights into target RNA recognition and cleavage have emerged from structural (9), chemical (22), and biophysical (23) experiments.Notably, bacterial and archaeal Ago proteins have recently been shown to preferentially bind 5′-phosphoryated guide DNA (14, 15) and use an activated water molecule as the nucleophile (reviewed in ref. 24) to cleave both RNA and DNA target strands (9). Structural studies have been undertaken on bacterial and archaeal Ago proteins in the free state (10, 15) and bound to a 5′-phosphorylated guide DNA strand (4) and added target RNA strand (8, 9). The structural studies of Thermus thermophilus Ago (TtAgo) ternary complexes have provided insights into the nucleation, propagation, and cleavage steps of target RNA silencing in a bacterial system (9). These studies have highlighted the conformational transitions on proceeding from Ago in the free state to the binary complex (4) to the ternary complexes (8, 9) and have emphasized the requirement for a precisely aligned Asp-Asp-Asp triad and a pair of Mg2+ cations for cleavage chemistry (9), typical of RNase H fold-mediated enzymes (24, 25). Structural studies have also been extended to binary complexes of both human (5, 6) and yeast (7) Agos bound to 5′-phosphorylated guide RNA strands.Despite these singular advances in the structural biology of RNA silencing, further progress was hampered by the modest resolution (2.8- to 3.0-Å resolution) of TtAgo ternary complexes with guide DNA (4) and added target RNAs (8, 9). This precluded identification of water molecules coordinated with the pair of Mg2+ cations, including the key water that acts as a nucleophile and targets the cleavable phosphate between positions 10′-11′ on the target strand. We have now extended our research to TtAgo ternary complexes with guide DNA and target DNA strands, which has permitted us to grow crystals of ternary complexes that diffract to higher (2.2–2.3 Å) resolution in the cleavage-incompatible, cleavage-compatible, and postcleavage steps. These high-resolution structures of TtAgo ternary complexes provide snapshots of distinct key steps in the catalytic cleavage pathway, opening opportunities for experimental probing into DNA target cleavage as a defense mechanism against plasmids and possibly other mobile elements (26, 27).  相似文献   

9.
Mutations that lead to Huntington’s disease (HD) result in increased transmission at glutamatergic corticostriatal synapses at early presymptomatic stages that have been postulated to set the stage for pathological changes and symptoms that are observed at later ages. Based on this, pharmacological interventions that reverse excessive corticostriatal transmission may provide a novel approach for reducing early physiological changes and motor symptoms observed in HD. We report that activation of the M4 subtype of muscarinic acetylcholine receptor reduces transmission at corticostriatal synapses and that this effect is dramatically enhanced in presymptomatic YAC128 HD and BACHD relative to wild-type mice. Furthermore, chronic administration of a novel highly selective M4 positive allosteric modulator (PAM) beginning at presymptomatic ages improves motor and synaptic deficits in 5-mo-old YAC128 mice. These data raise the exciting possibility that selective M4 PAMs could provide a therapeutic strategy for the treatment of HD.Huntington’s disease (HD) is a rare and fatal neurodegenerative disease caused by an expansion of a CAG triplet repeat in Htt, the gene that encodes for the protein huntingtin (1, 2). HD is characterized by a prediagnostic phase that includes subtle changes in personality, cognition, and motor function, followed by a more severe symptomatic stage initially characterized by hyperkinesia (chorea), motor incoordination, deterioration of cognitive abilities, and psychiatric symptoms. At later stages of disease progression, patients experience dystonia, rigidity, and bradykinesia, and ultimately death (37). The cortex and striatum are the most severely affected brain regions in HD and, interestingly, an increasing number of reports suggest that alterations in cortical and striatal physiology are present in prediagnostic individuals and in young HD mice (616).Striatal spiny projection neurons (SPNs) receive large glutamatergic inputs from the cortex and thalamus, as well as dopaminergic innervation from the substantia nigra. In the healthy striatum, the interplay of these neurotransmitters coordinates the activity of SPNs and striatal interneurons, regulating motor planning and execution as well as cognition and motivation (17, 18). Htt mutations lead to an early increase in striatal glutamatergic transmission, which begins during the asymptomatic phase of HD (1214) and could contribute to synaptic changes observed in later stages of HD (19, 20). Based on this, pharmacological agents that reduce excitatory transmission in the striatum could reduce or prevent the progression of alterations in striatal synaptic function and behavior observed in symptomatic stages of HD.Muscarinic acetylcholine receptors (mAChRs), particularly M4, can inhibit transmission at corticostriatal synapses (2125). Therefore, it is possible that selective activation of specific mAChR subtypes could normalize excessive corticostriatal transmission in HD. Interestingly, previous studies also suggest that HD is associated with alterations of striatal cholinergic markers, including mAChRs (2629). We now provide exciting new evidence that M4-mediated control of corticostriatal transmission is increased in young asymptomatic HD mice and that M4 positive allosteric modulators (PAMs) may represent a new treatment strategy for normalizing early changes in corticostriatal transmission and reducing the progression of HD.  相似文献   

10.
A series of multiaddressable platinum(II) molecular rectangles with different rigidities and cavity sizes has been synthesized by endcapping the U-shaped diplatinum(II) terpyridine moiety with various bis-alkynyl ligands. The studies of the host–guest association with various square planar platinum(II), palladium(II), and gold(III) complexes and the related low-dimensional gold(I) complexes, most of which are potential anticancer therapeutics, have been performed. Excellent guest confinement and selectivity of the rectangular architecture have been shown. Introduction of pH-responsive functionalities to the ligand backbone generates multifunctional molecular rectangles that exhibit reversible guest release and capture on the addition of acids and bases, indicating their potential in controlled therapeutics delivery on pH modulation. The reversible host–guest interactions are found to be strongly perturbed by metal–metal and π–π interactions and to a certain extent, electrostatic interactions, giving rise to various spectroscopic changes depending on the nature of the guest molecules. Their binding mode and thermodynamic parameters have been determined by 2D NMR and van’t Hoff analysis and supported by computational study.The study of metal–metal interactions has drawn enormous attention since the past two decades because of the intriguing spectroscopic and photophysical properties arising from the close proximity of the metal centers (1, 2). Square planar d8 platinum(II) complexes with coordination unsaturation are one of the important classes of metal complexes that have been extensively explored because of their capability to exhibit metal–metal interactions and display rich photophysical properties (326). Platinum(II) terpyridine complexes have been found to exhibit rich polymorphism in the solid state (1620) owing to their square planar coordination geometry, which permits facile access to Pt(II)···Pt(II) interactions as well as π–π interactions between the chromophores. It was not until 2001 that the first successful synthesis of platinum(II) terpyridine alkynyl complexes, which possess enhanced solubility and luminescence compared with the chloro counterpart, was reported (16). Additional efforts have been devoted to the use of the system to respond to external stimuli, such as variation in solvent composition (17, 18), pH (19, 20), temperature (21, 22), addition of ionic (2426), and polymeric species (27, 28), in which spectral changes induced by strong Pt(II)···Pt(II) and π−π interactions have been displayed.In the past few decades, enormous efforts have been devoted to the construction of molecular architectures by fusing the organic framework to the transition metal centers through self-assembly processes (2957). There has been continuous interest in the construction of stimuli-responsive metallosupramolecular architectures with diverse sizes, shapes, and symmetries to rationalize the criteria for molecular recognition and impart them on unique areas of applications, such as stereoselective guest encapsulation and molecular transporting devices (4565). Although such a variety of metal–organic macrocyclic architectures has been reported, those involving the use of noncovalent interactions other than those of hydrogen bonding, donor–acceptor, electrostatic, and hydrophobic–hydrophobic interactions as well as luminescence changes that depend on the nature of the guests, which would be attractive for chemo- and biosensing, have been rare and are rather underexplored. Examples of such systems that can exhibit reversible host–guest association are also limited.Since the discovery of anticancer properties of cisplatin in 1969 (58), the coordination chemistry and the development of related species with enhanced properties and reduced cytotoxicity have received enormous attention. Although the potency and cytotoxicity studies are important, the availability of the drugs and their transport and release to the site of action are equally important. Thus, the design of smart drug delivery systems has been an area of growing interest. The first phosphorescent molecular tweezers making use of the alkynylplatinum(II) terpyridine moiety have been reported by our group to show their host–guest interactions with transition metal complexes (57). However, the opened structures of the tweezers have limited their selectivity and functionality. To accomplish the controlled drug delivery functionalities, the first main strategy is to rigidify the molecular architecture of the host from tweezers to a rectangle, so that the guest molecules would be better accommodated within the cavity, which may lead to a more selective encapsulation of guests within a definite size and steric environment. The possibility of introducing responsive functionalities into the molecular rectangles, which may serve as models for the study of on-demand controlled guest capture and release systems, has also been explored. pH-sensitive pyridine moieties have, therefore, been incorporated into the backbone of the rectangle to modulate the reversible host–guest interaction within the constrained rectangle environment on protonation/deprotonation of the pyridine nitrogen atom to achieve multiaddressable functions that would not have been readily achievable with the molecular tweezers structure. Additionally, the use of various platinum and gold complexes as guest molecules, which have been shown to display anticancer therapeutic behavior (5865), may lead to the design of a smart multiaddressable molecular rectangle system that could capture and release specific guest molecules under different pH conditions to achieve proof-of-principle on-demand controlled drug delivery. Herein, the design and synthesis of a series of alkynylplatinum(II) terpyridine molecular rectangles (Fig. 1) with different geometries, topologies and electronic properties are reported. Moreover, the encapsulation of various guest molecules is also investigated in detail to provide a proof-of-principle model for the design of artificial drug delivery systems with the modulation of drug release by pH.Open in a separate windowFig. 1.Molecular structures of rectangles 1−4.  相似文献   

11.
The multisubunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is required for late endosome-lysosome and autophagosome-lysosome fusion in mammals. We have determined the crystal structure of the human HOPS subunit Vps33A, confirming its identity as a Sec1/Munc18 family member. We show that HOPS subunit Vps16 recruits Vps33A to the human HOPS complex and that residues 642–736 are necessary and sufficient for this interaction, and we present the crystal structure of Vps33A in complex with Vps16(642–736). Mutations at the binding interface disrupt the Vps33A–Vps16 interaction both in vitro and in cells, preventing recruitment of Vps33A to the HOPS complex. The Vps33A–Vps16 complex provides a structural framework for studying the association between Sec1/Munc18 proteins and tethering complexes.Eukaryotic cells tightly regulate the movement of macromolecules between their membrane-bound compartments. Multiple proteins and protein complexes interact to identify vesicles or organelles destined to fuse, bring them into close proximity, and then fuse their membranes, thereby allowing their contents to mix (1). Multisubunit tethering complexes modulate key steps in these fusion events by recognizing specific Rab-family small GTPases on the membrane surfaces, physically docking the membranes and then recruiting the machinery that effects the membrane fusion (2, 3).In metazoans, the multisubunit tethering complex homologous to the yeast homotypic fusion and vacuole protein sorting (HOPS) complex (47) is required for the maturation of endosomes (8); the delivery of cargo to lysosomes (9) and lysosome-related organelles, such as pigment granules in Drosophila melanogaster (10); and the fusion of autophagosomes with late endosomes/lysosomes (11). The mammalian HOPS complex comprises six subunits (Vps11, Vps16, Vps18, Vps33A, Vps39, and Vps41) (46). Homologs of HOPS components can be identified in almost all eukaryotic genomes (12) and are thought to be essential; for example, removal of the Vps33A homolog carnation (car) in Drosophila is lethal during larval development (13).HOPS components have been identified in animal models of human disease. A missense point mutation in the murine Vps33a gene gives rise to the buff mouse phenotype, characterized by pigmentation, platelet activity, and motor deficiencies (14). This phenotype closely resembles the clinical presentation of Hermansky–Pudlak syndrome (HPS) (15), and a mutation in the human VPS33A gene has been observed in a patient with HPS who lacked mutations at other known HPS loci (14). In metazoans, there is a second homolog of yeast Vps33 called Vps33B, but disruption of the VPS33B gene in humans gives rise to a clinical phenotype distinct from HPS (16).Human Vps33A is predicted to be a member of the Sec1/Munc18 (SM) family of proteins (7, 17) that, together with SNAREs, comprise the core machinery essential for membrane fusion in eukaryotes (18). Three SNAREs with glutamine residues at the center of their SNARE domain (Qa-, Qb-, and Qc-SNAREs) and one with a central arginine residue (R-SNARE) associate to form a four-helical bundle, the trans-SNARE complex. Formation of this trans-SNARE complex by SNAREs on adjacent membranes drives the fusion of these membranes (18). SM proteins are essential regulators of this process, promoting membrane fusion by correctly formed (cognate) SNARE complexes (18). Although a comprehensive understanding of how SM proteins achieve this still remains elusive, it is clear that SM proteins bind directly both to individual SNAREs and to SNARE complexes (18, 19). Most SM proteins bind strongly and specifically to an N-terminal segment of their cognate Qa-SNARE, the N-peptide, and this interaction is thought to recruit the SM protein to the site of SNARE-mediated fusion (20, 21).When considered as a whole, the HOPS complex has the functional characteristics of an SM protein: It binds SNAREs and SNARE complexes (5, 2224), and yeast HOPS has been shown to promote SNARE-mediated membrane fusion (25, 26). Recent biochemical analysis of Vps33, the yeast Vps33A homolog, shows it to be capable of binding isolated SNARE domains and SNARE complexes but not the N-terminal domain or full cytosolic portion of the Qa-SNARE Vam3 (23, 24). Data from the yeast HOPS complex are consistent with a model whereby Vps33 provides the SM functionality of HOPS, accelerating SNARE-mediated fusion, whereas the rest of the HOPS complex recruits Vps33 (and thus SM function) to the site of SNARE-mediated fusion (24).Although a recent EM study has defined the overall topology of the yeast HOPS complex (27), atomic resolution insights into the assembly of the HOPS complex have thus far been unavailable. Here, we present the 2.4-Å resolution structure of human Vps33A, confirming its structural identity as an SM protein. We have mapped the HOPS epitope that binds Vps33A to a helical fragment comprising residues 642–736 of Vps16, solved the structure of this complex to 2.6-Å resolution, and identified mutations at the binding interface that disrupt the Vps33A–Vps16 complex both in vitro and in cultured cells.  相似文献   

12.
13.
Antiretroviral therapy (ART) reduces the infectiousness of HIV-infected persons, but only after testing, linkage to care, and successful viral suppression. Thus, a large proportion of HIV transmission during a period of high infectiousness in the first few months after infection (“early transmission”) is perceived as a threat to the impact of HIV “treatment-as-prevention” strategies. We created a mathematical model of a heterosexual HIV epidemic to investigate how the proportion of early transmission affects the impact of ART on reducing HIV incidence. The model includes stages of HIV infection, flexible sexual mixing, and changes in risk behavior over the epidemic. The model was calibrated to HIV prevalence data from South Africa using a Bayesian framework. Immediately after ART was introduced, more early transmission was associated with a smaller reduction in HIV incidence rate—consistent with the concern that a large amount of early transmission reduces the impact of treatment on incidence. However, the proportion of early transmission was not strongly related to the long-term reduction in incidence. This was because more early transmission resulted in a shorter generation time, in which case lower values for the basic reproductive number (R0) are consistent with observed epidemic growth, and R0 was negatively correlated with long-term intervention impact. The fraction of early transmission depends on biological factors, behavioral patterns, and epidemic stage and alone does not predict long-term intervention impacts. However, early transmission may be an important determinant in the outcome of short-term trials and evaluation of programs.Recent studies have confirmed that effective antiretroviral therapy (ART) reduces the transmission of HIV among stable heterosexual couples (13). This finding has generated interest in understanding the population-level impact of HIV treatment on reducing the rate of new HIV infections in generalized epidemic settings (4). Research, including mathematical modeling (510), implementation research (11), and major randomized controlled trials (1214), are focused on how ART provision might be expanded strategically to maximize its public health benefits (15, 16).One concern is that if a large fraction of HIV transmission occurs shortly after a person becomes infected, before the person can be diagnosed and initiated on ART, this will limit the potential impact of HIV treatment on reducing HIV incidence (9, 17, 18). Data suggest that persons are more infectious during a short period of “early infection” after becoming infected with HIV (1922), although there is debate about the extent, duration, and determinants of elevated infectiousness (18, 23). The amount of transmission that occurs also will depend on patterns of sexual behavior and sexual networks (17, 2427). There have been estimates for the contribution of early infection to transmission from mathematical models (7, 17, 21, 2426) and phylogenetic analyses (2831), but these vary widely, from 5% to above 50% (23).In this study, we use a mathematical model to quantify how the proportion of transmission that comes from persons who have been infected recently affects the impact of treatment scale-up on HIV incidence. The model is calibrated to longitudinal HIV prevalence data from South Africa using a Bayesian framework. Thus, the model accounts for not only the early epidemic growth rate highlighted in previous research (5, 9, 18), but also the heterogeneity and sexual behavior change to explain the peak and decline in HIV incidence observed in sub-Saharan African HIV epidemics (32, 33).The model calibration allows uncertainty about factors that determine the amount of early transmission, including the relative infectiousness during early infection, heterogeneity in propensity for sexual risk behavior, assortativity in sexual partner selection, reduction in risk propensity over the life course, and population-wide reductions in risk behavior in response to the epidemic (32, 33). This results in multiple combinations of parameter values that are consistent with the observed epidemic and variation in the amount of early transmission. We simulated the impact of a treatment intervention and report how the proportion of early transmission correlates with the reduction in HIV incidence from the intervention over the short- and long-term.  相似文献   

14.
The ability to intercalate guest species into the van der Waals gap of 2D layered materials affords the opportunity to engineer the electronic structures for a variety of applications. Here we demonstrate the continuous tuning of layer vertically aligned MoS2 nanofilms through electrochemical intercalation of Li+ ions. By scanning the Li intercalation potential from high to low, we have gained control of multiple important material properties in a continuous manner, including tuning the oxidation state of Mo, the transition of semiconducting 2H to metallic 1T phase, and expanding the van der Waals gap until exfoliation. Using such nanofilms after different degree of Li intercalation, we show the significant improvement of the hydrogen evolution reaction activity. A strong correlation between such tunable material properties and hydrogen evolution reaction activity is established. This work provides an intriguing and effective approach on tuning electronic structures for optimizing the catalytic activity.Layer-structured 2D materials are an interesting family of materials with strong covalent bonding within molecular layers and weak van der Waals interaction between layers. Beyond intensively studied graphene-related materials (14), there has been recent strong interest in other layered materials whose vertical thickness can be thinned down to less than few nanometers and horizontal width can also be reduced to nanoscale (59). The strong interest is driven by their interesting physical and chemical properties (2, 10) and their potential applications in transistors, batteries, topological insulators, thermoelectrics, artificial photosynthesis, and catalysis (4, 1125).One of the unique properties of 2D layered materials is their ability to intercalate guest species into their van der Waals gaps, opening up the opportunities to tune the properties of materials. For example, the spacing between the 2D layers could be increased by intercalation such as lithium (Li) intercalated graphite or molybdenum disulfide (MoS2) and copper intercalated bismuth selenide (2629). The electronic structures of the host lattice, such as the charge density, anisotropic transport, oxidation state, and phase transition, may also be changed by different species intercalation (26, 27).As one of the most interesting layered materials, MoS2 has been extensively studied in a variety of areas such as electrocatalysis (2022, 3036). It is known that there is a strong correlation between the electronic structure and catalytic activity of the catalysts (20, 3741). It is intriguing to continuously tune the morphology and electronic structure of MoS2 and explore the effects on MoS2 hydrogen evolution reaction (HER) activity. Very recent studies demonstrated that the monolayered MoS2 and WS2 nanosheets with 1T metallic phase synthesized by chemical exfoliation exhibited superior HER catalytic activity to those with 2H semiconducting phase (35, 42), with a possible explanation that the strained 1T phase facilitates the hydrogen binding process during HER (42). However, it only offers two end states of materials and does not offer a continuous tuning. A systematic investigation to correlate the gradually tuned electronic structure, including oxidation state shift and semiconducting–metallic phase transition, and the corresponding HER activity is important but unexplored. We believe that the Li electrochemical intercalation method offers a unique way to tune the catalysts for optimization.In this paper, we demonstrate that the layer spacing, oxidation state, and the ratio of 2H semiconducting to 1T metallic phase of MoS2 HER catalysts were continuously tuned by Li intercalation to different voltages vs. Li+/Li in nanofilms with molecular layers perpendicular to the substrates. Correspondingly, the catalytic activity for HER was observed to be continuously tuned. The lower oxidation state of Mo and 1T metallic phase of MoS2 turn out to have better HER catalytic activities. The performance of MoS2 catalyst on both flat and 3D electrodes was dramatically improved when it was discharged to low potentials vs. Li+/Li.  相似文献   

15.
A Chlamydomonas reinhardtii mutant lacking CGL71, a thylakoid membrane protein previously shown to be involved in photosystem I (PSI) accumulation, exhibited photosensitivity and highly reduced abundance of PSI under photoheterotrophic conditions. Remarkably, the PSI content of this mutant declined to nearly undetectable levels under dark, oxic conditions, demonstrating that reduced PSI accumulation in the mutant is not strictly the result of photodamage. Furthermore, PSI returns to nearly wild-type levels when the O2 concentration in the medium is lowered. Overall, our results suggest that the accumulation of PSI in the mutant correlates with the redox state of the stroma rather than photodamage and that CGL71 functions under atmospheric O2 conditions to allow stable assembly of PSI. These findings may reflect the history of the Earth’s atmosphere as it transitioned from anoxic to highly oxic (1–2 billion years ago), a change that required organisms to evolve mechanisms to assist in the assembly and stability of proteins or complexes with O2-sensitive cofactors.Although the structure and function of photosystem I (PSI) in plants, algae, and cyanobacteria have been elucidated at high spatial and temporal resolution (17), PSI assembly is poorly understood but is a topic of growing interest (7). Unlike PSII, there are essentially no inhibitors of PSI, and PSI assembly intermediates are difficult to separate from mature complexes (79). Furthermore, PSI abundance is not highly controlled by environmental conditions (8), and mutants with much lower levels of PSI than WT cells can still grow under photoautotrophic conditions (10, 11), although they often are light sensitive (12, 13) and the level of PSI in a mutant may not show a linear correlation with its rate of photoautotrophic growth.Progress in understanding PSI assembly has come largely from studies of mutants in putative assembly factors (7, 10, 11, 14, 15), including hypothetical chloroplast open reading frame 3 (Ycf3), Ycf3-interacting protein 1 (Y3IP1), Ycf4, plant-specific putative DNA-binding protein 1 (PPD1), and Ycf37/pale yellow green7-1 (Pyg7-1). Ycf3 is a plastid-encoded protein with tetratricopeptide repeat (TPR) domains believed to interact transiently with PsaA and PSAD (16), whereas Y3IP1 interacts with Ycf3 (10). Ycf4 has two transmembrane domains and is necessary for PSI assembly in Chlamydomonas, but tobacco mutants lacking Ycf4 accumulate sufficient PSI to grow photoautotrophically (11). ALB3 (ALBINO3) mediates the insertion of the chloroplast-encoded core PSI proteins, PsaA and PsaB, into thylakoid membranes (17) but also is involved in the biogenesis of other photosynthetic complexes (7, 18, 19). PPD1 is required for establishing proper structure/function relationships for the luminal portion of PSI (15).One of the least understood of the proteins associated with PSI assembly is the Chlamydomonas protein CGL71. This protein is part of the GreenCut, a bioinformatically assembled set of proteins present in all green lineage organisms examined; many of these proteins are associated with photosynthetic function (2025). CGL71 is orthologous to Ycf37 of Synechocystis (26) and PYG7 of Arabidopsis (27). In this study, we present evidence that supports a role for CGL71 in PSI assembly and, more specifically, in protecting the complex from oxidative disruption during assembly. The requirement of CGL71 for proper assembly of PSI may reflect an evolutionary adaptation that is linked to oxygenation of the Earth’s atmosphere.  相似文献   

16.
The physiological functions of hydrogen sulfide (H2S) include vasorelaxation, stimulation of cellular bioenergetics, and promotion of angiogenesis. Analysis of human colon cancer biopsies and patient-matched normal margin mucosa revealed the selective up-regulation of the H2S-producing enzyme cystathionine-β-synthase (CBS) in colon cancer, resulting in an increased rate of H2S production. Similarly, colon cancer-derived epithelial cell lines (HCT116, HT-29, LoVo) exhibited selective CBS up-regulation and increased H2S production, compared with the nonmalignant colonic mucosa cells, NCM356. CBS localized to the cytosol, as well as the mitochondrial outer membrane. ShRNA-mediated silencing of CBS or its pharmacological inhibition with aminooxyacetic acid reduced HCT116 cell proliferation, migration, and invasion; reduced endothelial cell migration in tumor/endothelial cell cocultures; and suppressed mitochondrial function (oxygen consumption, ATP turnover, and respiratory reserve capacity), as well as glycolysis. Treatment of nude mice with aminooxyacetic acid attenuated the growth of patient-derived colon cancer xenografts and reduced tumor blood flow. Similarly, CBS silencing of the tumor cells decreased xenograft growth and suppressed neovessel density, suggesting a role for endogenous H2S in tumor angiogenesis. In contrast to CBS, silencing of cystathionine-γ-lyase (the expression of which was unchanged in colon cancer) did not affect tumor growth or bioenergetics. In conclusion, H2S produced from CBS serves to (i) maintain colon cancer cellular bioenergetics, thereby supporting tumor growth and proliferation, and (ii) promote angiogenesis and vasorelaxation, consequently providing the tumor with blood and nutritients. The current findings identify CBS-derived H2S as a tumor growth factor and anticancer drug target.The endogenous gasotransmitter hydrogen sulfide (H2S) is a stimulator of vasorelaxation (13), angiogenesis (35), and cellular bioenergetics (6, 7). H2S is generated from l-cysteine by two pyridoxal-5′-phospate–dependent enzymes, cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE), and by the combined action of cysteine aminotransferase and 3-mercaptopyruvate sulfurtransferase (3-MST) (810). H2S exerts its cellular actions via multiple mechanisms (115), including activation of potassium channels (13), stimulation of kinase pathways (4, 11, 12), and inhibition of phosphodiesterases (3, 15).Both ATP generation and angiogenesis are vital factors for the growth and proliferation of tumors (1619). Using human colon cancer tissues and cancer-derived cell lines, we have now conducted a series of in vitro and in vivo studies to explore whether endogenous, tumor cell-derived H2S plays a role as a tumor-derived survival factor. The results show that CBS is selectively overexpressed in colon cancer, and that H2S produced by it serves to maintain the tumor''s cellular bioenergetics and to promote tumor angiogenesis.  相似文献   

17.
18.
Schizophrenia may involve an elevated excitation/inhibition (E/I) ratio in cortical microcircuits. It remains unknown how this regulatory disturbance maps onto neuroimaging findings. To address this issue, we implemented E/I perturbations within a neural model of large-scale functional connectivity, which predicted hyperconnectivity following E/I elevation. To test predictions, we examined resting-state functional MRI in 161 schizophrenia patients and 164 healthy subjects. As predicted, patients exhibited elevated functional connectivity that correlated with symptom levels, and was most prominent in association cortices, such as the fronto-parietal control network. This pattern was absent in patients with bipolar disorder (n = 73). To account for the pattern observed in schizophrenia, we integrated neurobiologically plausible, hierarchical differences in association vs. sensory recurrent neuronal dynamics into our model. This in silico architecture revealed preferential vulnerability of association networks to E/I imbalance, which we verified empirically. Reported effects implicate widespread microcircuit E/I imbalance as a parsimonious mechanism for emergent inhomogeneous dysconnectivity in schizophrenia.Schizophrenia (SCZ) is a disabling psychiatric disease associated with widespread neural disturbances. These involve abnormal neurodevelopment (13), neurochemistry (47), neuronal gene expression (811), and altered microscale neural architecture (2). Such deficits are hypothesized to impact excitation-inhibition (E/I) balance in cortical microcircuits (12). Clinically, SCZ patients display a wide range of symptoms, including delusions, hallucinations (13, 14), higher-level cognitive deficits (15, 16), and lower-level sensory alterations (17). This display is consistent with a widespread neuropathology (18), such as the E/I imbalance suggested by the NMDA receptor (NMDAR) hypofunction model (1921). However, emerging resting-state functional magnetic resonance imaging (rs-fMRI) studies implicate more network-specific abnormalities in SCZ. Typically, these alterations are localized to higher-order association regions, such as the fronto-parietal control network (FPCN) (18, 22) and the default mode network (DMN) (23, 24), with corresponding disturbances in thalamo-cortical circuits connecting to association regions (25, 26). It remains unknown how to reconcile widespread cellular-level neuropathology in SCZ (20, 21, 27, 28) with preferential association network disruptions (29, 30).Currently a tension exists between two competing frameworks: global versus localized neural dysfunction in SCZ. Association network alterations in SCZ, identified via neuroimaging, may arise from a localized dysfunction (3, 9, 31, 32). Alternatively, they may represent preferential abnormalities arising emergently from a nonspecific global microcircuit disruption (20, 33). Mechanistically, an emergent preferential effect could occur because of intrinsic differences between cortical areas in the healthy brain, leading to differential vulnerability toward a widespread homogenous neuropathology. For example, histological studies of healthy primate brains show interregional variation in cortical cytoarchitectonics (3438). Additional studies reveal differences in microscale organization and activity timescales for neuronal populations in higher-order association cortex compared with lower-order sensory regions (3840). However, these well-established neuroanatomical and neurophysiological hierarchies have yet to be systematically applied to inform network-level neuroimaging disturbances in SCZ. In this study, we examined the neuroimaging consequences of cortical hierarchy as defined by neurophysiological criteria (i.e., functional) rather than anatomical or structural criteria.One way to link cellular-level neuropathology hypotheses with neuroimaging is via biophysically based computational models (18, 41). Although these models have been applied to SCZ, none have integrated cortical hierarchy into their architecture. Here we initially implemented elevated E/I ratio within our well-validated computational model of resting-state neural activity (18, 42, 43) without assuming physiological differences between brain regions, but maintaining anatomical differences. The model predicted widespread elevated functional connectivity as a consequence of elevated E/I ratio. In turn, we tested this connectivity prediction across 161 SCZ patients and 164 matched healthy comparison subjects (HCS). However, we discovered an inhomogeneous spatial pattern of elevated connectivity in SCZ generally centered on association cortices.To capture the observed inhomogeneity, we hypothesized that pre-existing intrinsic regional differences between association and lower-order cortical regions may give rise to preferential network-level vulnerability to elevated E/I. Guided by primate studies examining activity timescale differences across the cortical hierarchy (39, 44), we incorporated physiological differentiation across cortical regions in the model. Specifically, we tested whether pre-existing stronger recurrent excitation in “association” networks (39, 40) would preferentially increase their functional connectivity in response to globally elevated E/I. Indeed, modeling simulations predicted preferential effects of E/I elevation in association networks, which could not be explained by structural connectivity differences alone.Finally, we empirically tested all model-derived predictions by examining network-specific disruptions in SCZ. To investigate diagnostic specificity of SCZ effects, we examined an independent sample of bipolar disorder (BD) patients (n = 73) that did not follow model-derived predictions. These results collectively support a parsimonious theoretical framework whereby emergent preferential association network disruptions in SCZ can arise from widespread and nonspecific E/I elevations at the microcircuit level. This computational psychiatry study (45) illustrates the productive interplay between biologically grounded modeling and clinical effects, which may inform refinement of neuroimaging markers and ultimately rational development of treatments for SCZ.  相似文献   

19.
cAMP is an evolutionary conserved, prototypic second messenger regulating numerous cellular functions. In mammals, cAMP is synthesized by one of 10 homologous adenylyl cyclases (ACs): nine transmembrane enzymes and one soluble AC (sAC). Among these, only sAC is directly activated by bicarbonate (HCO3); it thereby serves as a cellular sensor for HCO3, carbon dioxide (CO2), and pH in physiological functions, such as sperm activation, aqueous humor formation, and metabolic regulation. Here, we describe crystal structures of human sAC catalytic domains in the apo state and in complex with substrate analog, products, and regulators. The activator HCO3 binds adjacent to Arg176, which acts as a switch that enables formation of the catalytic cation sites. An anionic inhibitor, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, inhibits sAC through binding to the active site entrance, which blocks HCO3 activation through steric hindrance and trapping of the Arg176 side chain. Finally, product complexes reveal small, local rearrangements that facilitate catalysis. Our results provide a molecular mechanism for sAC catalysis and cellular HCO3 sensing and a basis for targeting this system with drugs.The ubiquitous second messenger cAMP regulates diverse physiological processes, from fungal virulence to mammalian brain function (1, 2). In mammals, cAMP can be generated by any of 10 differently expressed and regulated adenylyl cyclases (ACs): nine transmembrane enzymes (tmACs) and one soluble AC (sAC) (3). TmACs reside in the cell membrane, where they mediate cellular responses to hormones acting through G protein-coupled receptors (4). In contrast, sAC functions in various intracellular locations, providing cell-specific spatial and temporal patterns of cAMP (57) in response to intracellular signals, including calcium, ATP, and bicarbonate (HCO3) (3, 810). HCO3 regulation of sAC enzymes is a direct effect on their catalytic domains and is conserved across bacterial, fungal, and animal kingdoms (1, 1113). Via modulation of sAC, and sAC-like cyclase activities, HCO3 serves as an evolutionarily conserved signaling molecule mediating cellular responses to HCO3, CO2, and pH (3, 14). In mammals, sAC acts as a CO2/HCO3/pH sensor in processes such as sperm activation (15), acid-base homeostasis (16), and various metabolic responses (10, 17, 18). sAC has also been implicated in skin and prostate cancer and as a target for male contraceptives (1921).All mammalian ACs are class III nucleotidyl cyclases sharing homologous catalytic domains. Their catalytic cores are formed through symmetrical or pseudosymmetrical association of two identical or highly similar catalytic domains, C1 and C2 (2224); in mammalian ACs, both domains reside on a single polypeptide chain. Such C1C2 pseudoheterodimers form two pseudosymmetrical sites at the dimer interface: the active site and a degenerated, inactive pocket (3, 23). A conserved Lys and an Asp/Thr in the active site recognize the base of the substrate ATP, and two conserved Asp residues bind two divalent cations, normally Mg2+ (23). The ions, called ion A and ion B, coordinate the substrate phosphates and support the intramolecular 3′-hydroxyl (3′-OH) attack at the α-phosphorous to form cAMP and pyrophosphate (PPi) (3). In tmACs, the degenerate site binds forskolin (24), a plant diterpene that activates tmACs but has no effect on sAC (25). The forskolin activation mechanism and the existence of physiological ligands for this site in tmACs or in sAC remain unclear.There are two sAC isoforms known to be generated by alternative splicing (26). Full-length sAC comprises N-terminal catalytic domains along with ∼1,100 residues with a little understood function except for an autoinhibitory motif and a heme-binding domain (3, 27, 28). Exclusion of exon 12 (26) generates a truncated isoform, sACt (residues 1–490), which comprises just the two sAC catalytic domains (sAC-cat) (25). sACt is widely expressed, and it is the isoform most extensively biochemically characterized (3, 8, 11). It is directly activated by Ca2+ and HCO3; Ca2+ supports substrate binding, and HCO3 increases turnover and relieves substrate inhibition (8), and this regulation is conserved in sAC-like enzymes from Cyanobacteria to humans (3, 13, 29). In a homodimeric, HCO3-regulated sAC homolog from Spirulina platensis, adenylyl cyclase C (CyaC), HCO3 appeared to facilitate an active site closure required for catalysis (13), but the HCO3 binding site and its mechanism of activation remained unknown.Here, we present crystal structures of the human sAC-cat in apo form and in complex with substrate, products, bicarbonate, and a pharmacological inhibitor. The structures reveal insights into binding sites and mechanisms for sAC catalysis and for its regulation by physiological and pharmacological small molecules.  相似文献   

20.
In vitro evidence suggests that plasmacytoid dendritic cells (pDCs) are intimately involved in the pathogenesis of lupus. However, it remains to be determined whether these cells are required in vivo for disease development, and whether their contribution is restricted to hyperproduction of type I IFNs. To address these issues, we created lupus-predisposed mice lacking the IFN regulatory factor 8 (IRF8) or carrying a mutation that impairs the peptide/histidine transporter solute carrier family 15, member 4 (SLC15A4). IRF8-deficient NZB mice, lacking pDCs, showed almost complete absence of anti-nuclear, anti-chromatin, and anti-erythrocyte autoantibodies, along with reduced kidney disease. These effects were observed despite normal B-cell responses to Toll-like receptor (TLR) 7 and TLR9 stimuli and intact humoral responses to conventional T-dependent and -independent antigens. Moreover, Slc15a4 mutant C57BL/6-Faslpr mice, in which pDCs are present but unable to produce type I IFNs in response to endosomal TLR ligands, also showed an absence of autoantibodies, reduced lymphadenopathy and splenomegaly, and extended survival. Taken together, our results demonstrate that pDCs and the production of type I IFNs by these cells are critical contributors to the pathogenesis of lupus-like autoimmunity in these models. Thus, IRF8 and SLC15A4 may provide important targets for therapeutic intervention in human lupus.Extensive evidence suggests that type I IFNs are major pathogenic effectors in lupus-associated systemic autoimmunity. A well-documented pattern of expression of type I IFN-inducible genes occurs in peripheral blood mononuclear cells of patients with systemic lupus erythematosus (SLE) (13), and reduced disease is observed in some lupus-predisposed mice that either lack the common receptor (IFNAR) for these cytokines (4, 5) or have been treated with IFNAR-blocking antibody (6). Consequently, attention has focused on defining the cell subsets and signaling processes involved in type I IFN production, the mechanisms by which these mediators accelerate disease, and approaches to interfere with these pathogenic events.Early in vitro studies showed that type I IFN production can be induced in normal blood leukocytes by SLE autoantibodies complexed with nucleic acid-containing apoptotic/necrotic cell material, and further work demonstrated that this activity is sensitive to RNase and DNase digestion (7, 8). These results were integrated in a more comprehensive scheme following the demonstration that type I IFN induction by these complexes is mediated by the engagement of endosomal Toll-like receptors (TLRs) (911). Similarly, antigenic cargo containing nucleic acids was found to promote B-cell proliferation in a TLR9- or TLR7-dependent manner, with this effect enhanced by type I IFN signaling (9, 12, 13). The contribution of nucleic acid-sensing TLRs to systemic autoimmunity was further corroborated by studies in lupus-predisposed mice lacking or overexpressing TLR7 and/or TLR9 (14-20), and in Unc93b1 (3d) mutant mice in which signaling by endosomal TLRs is extinguished (21).The cell population involved in type I IFN production in response to lupus-related immune complexes corresponds to natural IFN-producing cells (22, 23). These cells, known as plasmacytoid DCs (pDCs), are the most potent producers of type I IFNs, a functional characteristic attributed to constitutive expression of TLR7, TLR9, and IRF7 and likely signaling from a unique intracellular compartment (2427). The involvement of pDCs in lupus is further suggested by the reduced frequency of these cells in patient blood together with increases in afflicted organs, presumably caused by the attraction of activated pDCs to inflammatory sites (10). Similar increases have been noted in inflammatory tissues of patients with Sjögren''s syndrome (28), rheumatoid arthritis (29, 30), dermatomyositis (31), and psoriasis (32).Collectively, these results suggest that pDCs, acting through type I IFN hyperproduction, are major pathogenic contributors to lupus. Whether the participation of these cells is obligatory remains to be documented in vivo, however. Here, using congenic lupus-predisposed mice lacking pDCs (as well as other DC subsets) owing to IRF8 deficiency, or exhibiting pDC-specific defects in endosomal TLR signaling and type I IFN production owing to Slc15a4 (feeble) mutation, we provide strong evidence that pDCs are indeed required for disease development, and this effect appears to be mediated by hyperproduction of inflammatory cytokines, most likely type I IFNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号