首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The U.S. Environmental Protection Agency and the California Air Resources Board studied the exposures of 51 residents of Los Angeles, California, to 25 volatile organic chemicals (VOCs) in air and drinking water in 1987. A major goal of the study was to measure personal, indoor, and outdoor air concentrations, and breath concentrations of VOCs in persons living in households that had previously been measured in 1984. Other goals were to confirm the marked day-night and seasonal differences observed in 1984; to determine room-to-room variability within homes; to determine source emission rates by measuring air exchange rates in each home; and to extend the coverage of chemicals by employing additional sampling and analysis methods. A total of 51 homes were visited in February of 1987, and 43 of these were revisited in July of 1987. The results confirmed previous TEAM Study findings of higher personal and indoor air concentrations than outdoor concentrations of all prevalent chemicals (except carbon tetrachloride); higher personal, indoor, and outdoor air concentrations in winter than in summer; and (in winter only) higher outdoor concentrations at night than in the daytime. New findings included the following: (1) room-to-room variability of 12-hour average concentrations was very small, indicating that a single monitor may be adequate for estimating indoor concentrations over this time span; (2) "whole-house" source emission rates were relatively constant during both seasons, with higher rates for odorous chemicals such as p-dichlorobenzene and limonene (often used in room air fresheners) than for other classes of chemicals; (3) breath concentrations measured during morning and evening were similar for most participants, suggesting the suitability of breath measurements for estimating exposure in the home; (4) limited data obtained on two additional chemicals-toluene and methylene chloride-indicated that both were prevalent at fairly high concentrations and that indoor air concentrations exceeded outdoor concentrations by a factor of about three.  相似文献   

2.
Efforts to assess health risks associated with exposures to multiple urban air toxics have been hampered by the lack of exposure data for people living in urban areas. The TEACH (Toxic Exposure Assessment, a Columbia/Harvard) study was designed to characterize levels of and factors influencing personal exposures to urban air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, California. This present article reports methods and data for the New York City phase of TEACH, focusing on the relationships between personal, indoor, and outdoor concentrations in winter and summer among a group of 46 high school students from the A. Philip Randolph Academy, a public high school located in the West Central Harlem section of New York City. Air pollutants monitored included a suite of 17 volatile organic compounds (VOCs) and aldehydes, particulate matter with a mass median aerodynamic diameter 相似文献   

3.
Air pollution standards and control strategies are based on ambient measurements. For many outdoor air pollutants, individuals are closer to their sources (especially traffic) and there are important indoor sources influencing the relationship between ambient and personal exposures. This paper examines the relationship between volatile organic compounds (VOCs) measured at central site monitoring stations and personal exposures in the Mexico City Metropolitan Area. Over a 1-year period, personal exposures to 34 VOCs were measured for 90 volunteers from 30 families living close to one of five central monitoring stations. Simultaneous 24-h indoor, outdoor and central site measurements were also taken. Dual packed thermal desorption tubes and C(18) DNPH-coated cartridges were used for sampling VOCs and these were analyzed by GC/MS and HPLC, respectively. A factor analysis of the personal exposure data aided in grouping compounds by the most likely source type: vehicular (BTEX, styrene and 1,3-butadiene), secondary formed or photochemical (most aldehydes), building materials and consumer products (formaldehyde and benzaldehyde), cleaning solvents (tetrachloroethene and 1,1,1-trichloroethane), volatilization from water (chloroform and trichloroethene) and deodorizers (1,4-dichlorobenzene). Mean ambient, indoor and personal concentrations were 7/7/14 microg/m(3) for benzene, 1/3/3 for 1,3-butadiene, 6/20/20 for formaldehyde and 3/9/50 for 1,4-dichlorobenzene. Geometric mean (GM) ambient concentrations of trichloroethene and carbon tetrachloride were similar to GM personal exposures. While outdoor and indoor home GM concentrations for most vehicular related compounds (benzene, MTBE, xylenes and styrene) were comparable, the GM personal exposures were twice as high. Indoor concentrations of 1,3-butadiene, 1,1,1-trichloroethane, tetrachloroethane, chloroform, formaldehyde, valeraldehyde, propionaldehyde and n-butyraldehyde were comparable to personal exposures. For certain compounds, such as chloroform, aldehydes, toluene, 1,3-butadiene and 1,4-dichlorobenzene, GM personal exposures were more than two times greater than GM ambient measurements.  相似文献   

4.
家俱展销厅空气中甲醛和挥发性有机物污染的调查   总被引:2,自引:0,他引:2  
目的了解家俱展销厅室内空气中甲醛和挥发性有机物(VOCs)的污染状况、影响因素和对从业人员健康的影响。方法随机选择某市25家家俱展销厅和10家食品超市,分别对其室内空气中甲醛、VOCs和相关影响因素进行监测,并对其从业人员的不良建筑物综合症进行问卷调查。结果家俱销售厅室内空气中甲醛和VOCs的平均浓度分别为0.170mg/m^3和1.01mg/m^3,为《室内空气质量标准》的1.7倍和1.68倍,达标率分别为20%和24%。甲醛和VOCs的浓度与展销厅中的温度和湿度呈正相关,与风速呈负相关。甲醛和VOCs含量均较食品超市空气中的含量高(P〈0.05),家俱销售人员的不良建筑物综合症发生率高于食品超市营业员(P〈0.05)。结论家俱销售厅室内空气中甲醛、VOCs等污染严重,并对家俱销售人员的健康造成一定的危害,其污染程度受室内温度、湿度、通风状况和家俱使用材料类型的影响。  相似文献   

5.
Human exposure research has consistently shown that, for most volatile organic compounds (VOCs), personal exposures are vastly different from outdoor air concentrations. Therefore, risk estimates based on ambient measurements may over- or underestimate risk, leading to ineffective or inefficient management strategies. In the present study we examine the extent of exposure misclassification and its impact on risk for exposure estimated by the U.S. Environmental Protection Agency (U.S. EPA) Assessment System for Population Exposure Nationwide (ASPEN) model relative to monitoring results from a community-based exposure assessment conducted in Baltimore, Maryland (USA). This study is the first direct comparison of the ASPEN model (as used by the U.S. EPA for the Cumulative Exposure Project and subsequently the National-Scale Air Toxics Assessment) and human exposure data to estimate health risks. A random sampling strategy was used to recruit 33 nonsmoking adult community residents. Passive air sampling badges were used to assess 3-day time-weighted-average personal exposure as well as outdoor and indoor residential concentrations of VOCs for each study participant. In general, personal exposures were greater than indoor VOC concentrations, which were greater than outdoor VOC concentrations. Public health risks due to actual personal exposures were estimated. In comparing measured personal exposures and indoor and outdoor VOC concentrations with ASPEN model estimates for ambient concentrations, our data suggest that ASPEN was reasonably accurate as a surrogate for personal exposures (measured exposures of community residents) for VOCs emitted primarily from mobile sources or VOCs that occur as global "background" source pollutant with no indoor source contributions. Otherwise, the ASPEN model estimates were generally lower than measured personal exposures and the estimated health risks. ASPEN's lower exposures resulted in proportional underestimation of cumulative cancer risk when pollutant exposures were combined to estimate cumulative risk. Median cumulative lifetime cancer risk based on personal exposures was 3-fold greater than estimates based on ASPEN-modeled concentrations. These findings demonstrate the significance of indoor exposure sources and the importance of indoor and/or personal monitoring for accurate assessment of risk. Environmental health policies may not be sufficient in reducing exposures and risks if they are based solely on modeled ambient VOC concentrations. Results from our study underscore the need for a coordinated multimedia approach to exposure assessment for setting public health policy.  相似文献   

6.
BACKGROUND: The Toxics Exposure Assessment Columbia-Harvard (TEACH) project assessed exposures and cancer risks from urban air pollutants in a population of high school teenagers in New York City (NYC) and Los Angeles (LA). Forty-six high school students participated in NYC and 41 in LA, most in two seasons in 1999 and 2000, respectively. METHODS: Personal, indoor home, and outdoor home 48-hr samples of volatile organic compounds (VOCs), aldehydes, particulate matter with aerodynamic diameter < or = 2.5 microm, and particle-bound elements were collected. Individual cancer risks for 13 VOCs and 6 particle-bound elements were calculated from personal concentrations and published cancer unit risks. RESULTS: The median cumulative risk from personal VOC exposures for this sample of NYC high school students was 666 per million and was greater than the risks from ambient exposures by a factor of about 5. In the LA sample, median cancer risks from VOC personal exposures were 486 per million, about a factor of 4 greater than ambient exposure risks. The VOCs with the highest cancer risk included 1,4-dichlorobenzene, formaldehyde, chloroform, acetaldehyde, and benzene. Of these, benzene had the greatest contributions from outdoor sources. All others had high contributions from indoor sources. The cumulative risks from personal exposures to the elements were an order of magnitude lower than cancer risks from VOC exposures. CONCLUSIONS: Most VOCs had median upper-bound lifetime cancer risks that exceeded the U.S. Environmental Protection Agency (EPA) benchmark of 1 x 10-6 and were generally greater than U.S. EPA modeled estimates, more so for compounds with predominant indoor sources. Chromium, nickel, and arsenic had median personal cancer risks above the U.S. EPA benchmark with exposures largely from outdoors and other microenvironments. The U.S. EPA-modeled concentrations tended to overestimate personal cancer risks for beryllium and chromium but underestimate risks for nickel and arsenic.  相似文献   

7.
Seven persons volunteered to perform 25 common activities thought to increase personal exposure to volatile organic chemicals (VOCs) during a 3-day monitoring period. Personal, indoor, and outdoor air samples were collected on Tenax cartridges three times per day (evening, overnight, and daytime) and analyzed by GC-MS for 17 target VOCs. Samples of exhaled breath were also collected before and after each monitoring period. About 20 activities resulted in increasing exposure to one or more of the target VOCs, often by factors of 10, sometimes by factors of 100, compared to exposures during the sleep period. These concentrations were far above the highest observed outdoor concentrations during the length of the study. Breath levels were often significantly correlated with previous personal exposures. Major exposures were associated with use of deodorizers (p-dichlorobenzene); washing clothes and dishes (chloroform); visiting a dry cleaners (1,1,1-trichloroethane, tetrachloroethylene); smoking (benzene, styrene); cleaning a car engine (xylenes, ethylbenzene, tetrachloroethylene); painting and using paint remover (n-decane, n-undecane); and working in a scientific laboratory (many VOCs). Continuously elevated indoor air levels of p-dichlorobenzene, trichloroethylene, 1,1,1-trichloroethane, carbon tetrachloride, decane, and undecane were noted in several homes and attributed to unknown indoor sources. Measurements of exhaled breath suggested biological residence times in tissue of 12-18 hr and 20-30 hr for 1,1,1-trichloroethane and p-dichlorobenzene, respectively.  相似文献   

8.
Inhalation is one of the entry ports for different chemicals into the human body. In order to investigate this application route and its negative health effect to humans, the presence of volatile organic compounds (VOCs) in indoor air is monitored since many years. To assess global trends and changes of the distribution and disposition of VOCs and the corresponding personal exposure, this study analyzed annual indoor air concentrations collected over a period of 9 (2006–2014) years in the context of a birth control cohort study of 72 VOCs. Additionally, Short Time-series Expression Model (STEM) was used to identify certain correlation for VOCs from different compound classes. For ~42 % of the compounds, a tendency to lower annual median indoor air concentrations was found, and for ~10 % of the VOCs, a trend to higher annual median indoor air concentrations. No such tendencies were observed for ~22 % of the investigated compounds. For ~26 % of the VOCs, the applied linear regression model was not suitable to predict global trends as annual median values were not linearly distributed. Mann-Kendall test was used to (i) confirm the results from the linear regression model and to (ii) calculate trends for those compounds, where linear regression was found to be unsuitable. Thus, for only approximately four of the investigated VOCs, no prediction was possible using both statistical approaches. STEM analysis revealed the connection of benzene, ethylbenzene, m+p xylene, α-pinene, 3-carene, pentadecane, and decamethlycyclopentasiloxane, in addition to the correlation of 1-butanol, chlorobenzene, heptanal, and 2-ethyl-1-hexanol concentrations.  相似文献   

9.
Asthma is a respiratory disease whose prevalence has been increasing since the mid 1970s and that affects more than 14.6 million residents of the United States. Environmental triggers of asthma include air pollutants that are respiratory irritants. Air toxics emitted into the ambient air are listed in the 1990 Clean Air Act Amendments as hazardous air pollutants (HAPs) if they can adversely affect human health, including the respiratory tract. HAPs include particulate and gaseous-phase pollutants, individual organic compounds and metals, and mixtures. Associations between asthma exacerbation and both particles and indoor volatile organic compounds (VOCs), often referred to as indoor air quality, have been reported. Studies conducted in the United States, Canada, and Europe over the past two decades have shown that most people living in the developed countries spend the majority of their time indoors and that the air concentrations of many air toxics or HAPs are higher indoors than in the ambient air in urban, suburban, and rural settings. Elevated indoor air concentrations result from emissions of air toxics from consumer products, household furnishings, and personal activities. The Relationship of Indoor, Outdoor and Personal Air (RIOPA) study was designed to oversample homes in close proximity to ambient sources, excluding residences where smokers lived, to determine the contribution of ambient emissions to air toxics exposure. The ratios of indoor to outdoor air concentrations of some VOCs in homes measured during RIOPA were much greater than one, and for most other VOCs that had indoor-to-outdoor ratios close to unity in the majority of homes, elevated ratios were found in the paired samples with the highest concentration. Thus, although ambient emissions contribute to exposure of some air toxics indoors as well as outdoors, this was not true for all of the air toxics and especially for the higher end of exposures to most volatile organic air toxics examined. It is therefore critical, when evaluating potential effects of air toxics on asthma or other adverse health end points, to determine where the exposure occurs and the source contributions for each air toxic and target population separately and not to rely solely on ambient air concentration measurements.  相似文献   

10.
The main aim of this study was to investigate exposure to airborne substances that are potentially harmful to health during the production of wood pellets, including wood dust, monoterpenes, and resin acids, and as an indicator of diesel exhaust nitrogen dioxide. In addition, area measurements were taken to assess background exposure levels of these substances, volatile organic compounds (VOCs), and carbon monoxide. Measurements were taken at four wood pellet production plants from May 2004 to April 2005. Forty-four workers participated in the study, and a total of 68 personal measurements were taken to determine personal exposure to wood dust (inhalable and total dust), resin acids, monoterpenes, and nitrogen dioxide. In addition, 42 measurements of nitrogen dioxide and 71 measurements of total dust, resin acids, monoterpenes, VOCs, and carbon monoxide were taken to quantify their indoor area concentrations. Personal exposure levels to wood dust were high, and a third of the measured levels of inhalable dust exceeded the Swedish occupational exposure limit (OEL) of 2 mg/m3. Parallel measurements of inhalable and total dust indicated that the former were, on average, 3.2 times higher than the latter. The data indicate that workers at the plants are exposed to significant amounts of the resin acid 7-oxodehydroabietic acid in the air, an observation that has not been recorded previously at wood processing and handling plants. The study also found evidence of exposure to dehydroabietic acid, and exposure levels for resin acids approached 74% of the British OEL for colophony, set at 50 microg/m3. Personal exposure levels to monoterpenes and nitrogen dioxide were low. Area sampling measurements indicated that aldehydes and terpenes were the most abundant VOCs, suggesting that measuring personal exposure to aldehydes might be of interest. Carbon monoxide levels were under the detection limit in all area measurements. High wood dust exposure levels are likely to have implications for worker health; therefore, it is important to reduce exposure to wood dust in this industry.  相似文献   

11.
成都市部分新装修居室空气中甲醛的浓度   总被引:4,自引:0,他引:4  
目的了解新装修居室空气中甲醛污染情况。方法测定了28户新装修家庭和单位的室内空气和家具的甲醛浓度,同时还测定了其中的2个办公室空气中甲醛的个体接触浓度。结果家具中的甲醛浓度中位数(0.260mg/m3)显著高于室内空气中的浓度(0.062mg/m3),Z=-5.098,P<0.0001;办公室空气中甲醛浓度的中位数为0.046mg/m3,个体采样的中位数为0.078mg/m3,个体接触水平虽略高于空气中的浓度,但差异无显著性(Z=-1.905,P=0.057)。结论家具是室内空气中甲醛污染的来源之一,室内空气采样能较好地代表个体接触水平。  相似文献   

12.
Recent state and federal public school class-size reduction initiatives, increased elementary and pre-K enrollment driven by population growth and immigration, and limited resources for capital projects, modernization, and maintenance at aging schools have increased the prevalence of prefabricated, portable classrooms (portables). At present, approximately one of three California students are taught in portables, whose use is especially prevalent in more populated counties such as Los Angeles, home to the nation's second largest school district. Limited data existed on chemical compound air concentrations, and thus exposures, inside American public schools. Measurements have been limited, usually performed in complaint schools, and varied in sampling protocols and analysis methods. To address a school environment and children's health issue of present concern, an assessment of public school portables was conducted in Los Angeles County. Seven schools in two school districts were recruited, from which 20 classrooms--13 portables, seven in main buildings--were randomly selected. We report indoor air concentrations of 21 target toxic and odorous volatile organic compounds (VOCs), including formaldehyde and acetaldehyde, measured with passive samplers (DNSH PAKS and 3M OVM 3500) in the cooling and heating seasons between June 2000 and June 2001. None of the measured indoor air formaldehyde concentrations exceeded the existing California Air Resources Board guideline (50 ppb, or 60 microg/m(3)). The main sources of aldehydes in classrooms, especially portables, were likely interior finish materials and furnishings made of particleboard without lamination. Indoor air VOC concentrations were generally low in this pilot study. The four most prevalent VOCs measured were toluene, m-/p-xylene, alpha-pinene, and delta-limonene; likely indoor sources were personal, teaching, and cleaning products. Future schools research should attempt larger samples over larger geographical areas.  相似文献   

13.
To begin to develop generalized models for estimating personal exposure to ambient air pollutants within diverse populations, the design of the Oklahoma Urban Air Toxics Study incorporated eight dichotomous macroenvironmental and household factors that were hypothesized to be potential determinants of exposure. Personal, indoor, and outdoor samples of volatile organic compounds (VOCs) were collected over 24-h monitoring periods in 42 households, together with activity diaries and data on the participants' residences. The distributions of the VOC concentrations were moderately to highly left-censored, and were mostly bimodal. The ATSDR minimal risk level (MRL) was exceeded in a small number of the samples. Personal and indoor concentrations tended to be higher than outdoor concentrations, indicating that indoor exposures were dominated by indoor sources. However, indoor concentrations were not correlated with the permeability of the residence, suggesting that the observed indoor concentrations reflected mostly localized, short-term emissions. The influence of the eight dichotomous factors and of the presence of an attached garage was evaluated using the Wilcoxon rank-sum test and by comparison of "excursion fractions", that is, the fractions of each distributions exceeding 10% of the MRL. Dry weather and absence of children in the household were found to be associated with higher exposures in personal or indoor exposures. Given the small sample size, it is possible that these factors were confounded with unidentified household characteristics or activities that were the true determinants of exposure.  相似文献   

14.
15.
The US EPA and the California Air Resources Board studied the exposures of 51 residents of Los Angeles, CA to 25 volatile organic chemicals in air and drinking water in February and July of 1987. Participants carried a personal air monitor consisting of a Tenax cartridge and a small sampling pump for two consecutive 12-hour periods. Concurrently, outdoor air samples were collected in the back yards and indoor air samples were collected in the kitchen and living room. Breath samples were collected at the beginning, middle, and end of the 24-hour monitoring period using a vanmounted spirometer employing Tedlar bags followed by collection on Tenax cartridges. All analyses were by GC/MS. Air exchange measurements were made at all homes using the perfluorotracer method. For most chemicals, personal air concentrations were greater than indoor air levels, which were in turn greater than outdoor air concentrations. Breath concentrations were more stable than air exposures and were significantly correlated with previous exposure. Using the air exchange measurements, whole-house source strengths were estimated to range between approximately zero for carbon tetrachloride to 10,000 micrograms/h for para-dichlorobenzene. Ambient concentrations in February were two-three times those in July, perhaps due to strong inversions.  相似文献   

16.
An indoor air quality research project was conducted in a new private house built in January 1997 to investigate time course changes in formaldehyde concentrations during an 11-month period from April 1997 to February 1998. Indoor and outdoor concentrations of volatile organic compounds (VOCs) and nitrogen dioxide were also measured in August 1997 and February 1998. Indoor formaldehyde concentrations were measured 14 times (48 hrs sampling for each measurement) for 28 days in the living room, a bedroom and the kitchen in April '97. The concentrations exceeded the Japanese Government's guideline value of 0.08 ppm in 34 of the 42 (81.0%). Day to day variation in the formaldehyde concentration was found to be substantial, the range being between 0.073 and 0.232 ppm for the bedroom, for example. In June and August '97, values for 20 of 21 measurements exceeded the guideline, the results suggesting that indoor formaldehyde concentrations remain high until 7 months after the completion of construction. There were positive correlations between the formaldehyde concentrations in the living room and the kitchen and personal exposure levels to formaldehyde, the result indicating a direct influence of the home environment. The formaldehyde concentration in the living room also exhibited a positive correlation with the room temperature. Natural ventilation by opening windows was found to be effective for decreasing the concentration of formaldehyde in the indoor air. Indoor VOC concentrations decreased rapidly after the completion of construction except for that of toluene, which was higher than the outdoor concentration even after 7 months. Indoor concentrations of all of the VOCs were, however, found to be almost the same as those outdoor at the 13 month time point. Indoor nitrogen dioxide concentrations measured in the bedroom in winter (February '98) exceeded the Environmental Air Quality Standard in Japan, this result being considered due to use of an oil fan heater. These data suggest that personal exposure levels to formaldehyde and nitrogen dioxide are high in newly constructed private homes in Japan. In order to avoid prolonged exposure to high concentrations of indoor air pollutants, it is considered very important to take measures such as of use building materials with low formaldehyde emissions and to discontinue the use of oil fan heaters.  相似文献   

17.
人体对NO2的接触量   总被引:3,自引:1,他引:3  
本文用徽章式NO_2个体采样器对15名健康、不吸烟的妇女,接触室内外空气中NO_2的污染水平进行了监测。结果表明:室内无NO_2污染源时,室外NO_2浓度高于室内,个体接触水平介于室内外两者之间,室内存在NO_2污染源时,厨房的浓度高达40plb,室内浓度高于室外。试验者一周中有92%的时间是在室内度过,因此,室内NO_2浓度对人体健康的影响不容忽视。作者认为,对个体、室内和室外采取同时监测的方法,能真实的反映人体接触NO_2的水平。  相似文献   

18.
Information on the work-time exposure of public bus and taxicab drivers to volatile organic compounds (VOCs) may be a critical factor in exploring the association between occupational exposure and health effects. Accordingly, this study evaluated the work-time VOC exposure of public bus and taxicab drivers by measurement of six selected aromatic VOC concentrations in the personal air of public bus and taxicab drivers during winter and summer. Two groups of five public bus drivers (smokers and nonsmokers) and two groups of five taxicab drivers (smokers and nonsmokers) were recruited for the study. The taxicab drivers were found to be exposed to higher aromatic compound levels than the bus drivers during their daily work time. The personal exposure of the bus and taxicab drivers was influenced by whether or not they smoked plus the season. It was also established that the potential exposure of bus drivers to aromatic VOCs did not exceed that of an unemployed reference group, whereas the potential exposure of taxicab drivers did. Meanwhile, based on comparison of the calculated in-vehicle concentrations with those from a previous study, the VOC levels inside public buses and taxicabs were found to be lower than those inside automobiles.  相似文献   

19.
A case of building-related health complaints was investigated with respect to the relationship among frequency of symptoms, antibodies to albumin conjugates of formaldehyde (HCHO), toluene diisocyanate (TDI), and tirmellitic anhydride (TMA), and volatile organic chemicals (VOCs). The indoor air concentrations of VOCs, HCHO, TDI, and TMA did not exceed Fed-OSHA and ACGIH permissible standards. However, HCHO concentrations ranged between 0.05 and 0.08 ppm. The reported symptoms were multiple, involving the eyes, nose, sinuses, throat, lungs, skeletomuscular system, and central nervous system. Anti-HCHO, -TDI, and -TMA isotypes were found in 12 of 14 full-time employees and were nondetectable in one part-time employee. There was a positive, but not statistically significant, correlation (r values ranged between .24 and .55) between symptoms and the geometric mean titers to conjugates. The data suggest that a synergistic immunological response to airborne chemicals may be occurring in these subjects. In conclusion, immunological monitoring of affected individuals where chemicals are suspected may prove to be useful in future investigations of building-related illness.  相似文献   

20.
EPA's TEAM Study has measured exposures to 20 volatile organic compounds in personal air, outdoor air, drinking water, and breath of approximately 400 residents of New Jersey, North Carolina, and North Dakota. All residents were selected by a probability sampling scheme to represent 128,000 inhabitants of Elizabeth and Bayonne, New Jersey, 131,000 residents of Greensboro, North Carolina, and 7000 residents of Devils Lake, North Dakota. Participants carried a personal monitor to collect two 12-hr air samples and gave a breath sample at the end of the day. Two consecutive 12-hr outdoor air samples were also collected on identical Tenax cartridges in the backyards of some of the participants. About 5000 samples were collected, of which 1500 were quality control samples. Ten compounds were often present in personal air and breath samples at all locations. Personal exposures were consistently higher than outdoor concentrations for these chemicals and were sometimes 10 times the outdoor concentrations. Indoor sources appeared to be responsible for much of the difference. Breath concentrations also often exceeded outdoor concentrations and correlated more strongly with personal exposures than with outdoor concentrations. Some activities (smoking, visiting dry cleaners or service stations) and occupations (chemical, paint, and plastics plants) were associated with significantly elevated exposures and breath levels for certain toxic chemicals. Homes with smokers had significantly increased benzene and styrene levels in indoor air. Residence near major point sources did not affect exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号