首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmembrane sodium transport pathways were studied in principal and intercalated cells of the isolated perfused rabbit cortical collecting duct. Intracellular electrolyte concentrations in individual collecting duct cells were measured by electron microprobe analysis during blockage of basolateral Na-K-ATPase by ouabain and simultaneous inhibition of sodium entry across the apical and/or basolateral cell membrane. In principal cells the ouabain-induced rise in cell sodium concentration could only partially be blocked by amiloride (10–4mol/l) in the perfusion fluid. Amiloride (10–3mol/l) added to the bathing solution produced a further, significant reduction of sodium influx. In principal cells the ouabain-induced increase in sodium concentration was completely prevented by amiloride in the perfusion solution in combination with omission of sodium from the peritubular bathing solution. In intercalated cells ouabain caused a less pronounced increase in sodium concentration than in principal cells. Neither amiloride in the perfusate, nor amiloride in both bathing and perfusion solution, significantly reduced the ouabain-induced rise in intercalated cell sodium concentration. These results indicate that in principal cells amiloride-sensitive sodium channels constitute the predominant pathway for sodium entry across the apical cell membrane. In addition, substantial amounts of sodium enter principal cells across the basolateral cell membrane, probably via Na-H exchange. Finally, the data suggest that in intercalated cells sodium channels and the Na-H exchange are sparse or even absent.  相似文献   

2.
The study of ion conductances in the intact cortical collecting duct (CCD) with the patch-clamp method is rather difficult. An optimized method to isolate CCD cells from rat kidneys using an in vivo followed by an in vitro enzyme digestion is described. Individual CCD segments were collected after this digestion and incubated in EGTA-buffered medium. This procedure resulted in single cells or cell clusters. These freshly isolated CCD cells were studied with different modifications of the patch-clamp method. Membrane voltages measured in the cell-attached-nystatin configuration were –74 ±1mV (n=13) and –68±3 mV (n=22) in cells isolated from normal and mineralocorticoid-treated rats respectively. These values and those measured with the nystatin-perforated slow-whole-cell configuration (–79 ±1mV, n=23) are comparable to those measured in principal cells of isolated CCD segments. The cells hyperpolarized after the addition of amiloride and depolarized with the addition of adiuretin to the bath. The amiloride effect was enhanced when cells were isolated from deoxycorticosterone-acetate-treated rats. The cells were strongly depolarized upon elevation of the extracellular K+-concentration and did not demonstrate a measurable Cl conductance. A large-conductance K+ channel (174 pS, n=5, cell-attached, 145 mmol/l K+ in the pipette; 140 pS, n=12, cell-free, 3.6 mmol/l K+ in the bath) was seen. It had a very low activity on the cell, but a high open probability when excised into a solution with 1 mmol/l Ca2+ on the cytosolic side. More often a small-conductance K+ channel (36–52 pS, n=19, cell-attached; 30 pS, n=5, cell-free) with a high open probability was found on the cell. These freshly isolated cells seem to be a powerful preparation to study the properties and regulation of ion conductances of rat CCD with several electrophysiological methods. These freshly isolated CCD cells maintain the conductance properties known from principal cells of the intact CCD.  相似文献   

3.
In order to study the mechanism of pancreatic HCO 3 transport, a perfused preparation of isolated intra-and interlobular ducts (i.d. 20–40 m) of rat pancreas was developed. Responses of the epithelium to changes in the bath ionic concentration and to addition of transport inhibitors was monitored by electrophysiological techniques. In this report some properties of the basolateral membrane of pancreatic duct cells are described. The transepithelial potential difference (PDte) in ducts bathed in HCO 3 -free and HCO 3 -containing solution was –0.8 and –2.6 mV, respectively. The equivalent short circuit current (Isc) under similar conditions was 26 and 50 A·cm–2. The specific transepithelial resistance (Rte) was 88 cm2. In control solutions the PD across the basolateral membrane (PDbl) was –63±1 mV (n=314). Ouabain (3 mmol/l) depolarized PDbl by 4.8±1.1 mV (n=6) within less than 10 s. When the bath K+ concentration was increased from 5 to 20 mmol/l, PDbl depolarized by 15.9±0.9 mV (n=50). The same K+ concentration step had no effect on PDbl if the ducts were exposed to Ba2+, a K+ channel blocker. Application of Ba2+ (1 mmol/l) alone depolarized PDbl by 26.4±1.4 mV (n=19), while another K+ channel blocker TEA+ (50 mmol/l) depolarized PDbl only by 7.7±2.0 mV (n=9). Addition of amiloride (1 mmol/l) to the bath caused 3–4 mV depolarization of PDbl. Furosemide (0.1 mmol/l) and SITS (0.1 mmol/l) had no effect on PDbl. An increase in the bath HCO 3 concentration from 0 to 25 mmol/l produced fast and sustained depolarization of PDbl by 8.5±1.0 mV (n=149). It was investigated whether the effect of HCO 3 was due to a Na++-dependent transport mechanism on the basolateral membrane, where the ion complex transferred into the cell would be positively charged, or whether it was due to decreased K+ conductance caused by lowered intracellular pH. Experiments showed that the HCO 3 effect was present even when the bath Na+ concentration was reduced to a nominal value of 0 mmol/l. Similarly, the HCO 3 effect remained unchanged after Ba2+ (5 mmol/l) was added to the bath. The results indicate that on the basolateral membrane of duct cells there is a ouabain sensitive (Na++K+)-ATPase, a Ba2+ sensitive K+ conductance and an amiloride sensitive Na+/H+ antiport. The HCO 3 effect on PDbl is most likely due to rheogenic anion exit across the luminal membrane.  相似文献   

4.
The fine control of NaCl absorption regulated by hormones takes place in the distal nephron of the kidney. In collecting duct principal cells, the epithelial sodium channel (ENaC) mediates the apical entry of Na+, which is extruded by the basolateral Na+,K+-ATPase. Simian virus 40-transformed and “transimmortalized” collecting duct cell lines, derived from transgenic mice carrying a constitutive, conditionally, or tissue-specific promoter-regulated large T antigen, have been proven to be valuable tools for studying the mechanisms controlling the cell surface expression and trafficking of ENaC and Na+,K+-ATPase. These cell lines have made it possible to identify sets of aldosterone- and vasopressin-stimulated proteins, and have provided new insights into the concerted mechanism of action of serum- and glucocorticoid-inducible kinase 1 (Sgk1), ubiquitin ligase Nedd4-2 (neural precursor cell-expressed, developmentally down-regulated protein 4-2), and 14-3-3 regulatory proteins in modulating ENaC-mediated Na+ currents. Epidermal growth factor and induced leucine zipper protein have also been shown to repress and stimulate ENaC-dependent Na+ absorption, respectively, by activating or repressing the mitogen-activated protein kinase externally regulated kinase1/2. Overall, these findings have provided evidence suggesting that multiple pathways are involved in regulating NaCl absorption in the distal nephron.  相似文献   

5.
Sodium reabsorption in the papillary collecting duct of rats   总被引:1,自引:0,他引:1  
Using the shrinking droplet method and simultaneous perfusion of the peritubular capillaries the isotonic reabsorption of Ringer's solution from the papillary collecting ducts was measured. Under control conditions the volume reabsorption from the papillary collecting ducts wasJ v±SE=2.6±0.1 · 10–5 cm3 · cm–2 · s–1. In rats which were on low Na+ diet,J v increased to 127%, and in adrenalectomized animals it decreased to 34% of the control value. Three hours after application of aldosterone in the adrenalectomized animalsJ v was partially restored to 63% of control rats. Amiloride 10–4 M, added to the luminal perfusate, produced a strong inhibition ofJ v (to 32% of control). Acetazolamide, 10–4 M, added to both perfusates, reducedJ v very strongly (to 40% of control), while omission of bicarbonate reduced it only to 77% of control. Acetazolamide, added to bicarbonate-free perfusates, did not result in a significant further reduction ofJ v. The data indicate that the Na+ reabsorption from the papillary collecting duct is controlled by mineralocorticoids. Furthermore, they suggest the existence of two transport mechanisms in the luminal cell membrane: 1. An amiloride-sensitive entry step and 2. an entry step via a Na+–H+-countertransport mechanism, the latter being less important.  相似文献   

6.
Using the patch clamp technique, one type of K+ channel was identified in the apical cell membrane of cultured principal cells of rabbit renal collecting ducts in the cell-attached or excised-patch configuration. The channel was highly selective for K+ over Na+ (typically 30-70-fold) and had a conductance of 180, SD±39 pS (n=6), referred to a situation of 140 mmolar K+-Ringer solution present on either surface of the patch membrane. Channel activity was completely blocked by Ba2+ (5 mmol/l) and partially inhibited by Na+. The latter was evidenced by a deviation from Goldman rectification at high cytoplasm-positive membrane potentials, which was observed when Na+ competed with K+ for channel entrace from the cytoplasmic surface. Channel open probability depended strongly on membrane voltage and cytoplasmic Ca2+ concentration. Open-close kinetics exhibited double exponential behaviour, with a strong voltage dependence of the slow open time constant. Infrequently also a substate conductance level was identified. The voltage and calcium dependence suggest that the channel plays a role in adjusting K+ secretion to Na+ absorption in the fine regulation of cation excretion in renal collecting ducts.  相似文献   

7.
Impalement studies in isolated perfused cortical collecting ducts (CCD) of rats have shown that the basolateral membrane possesses a K+ conductive pathway. In the present study this pathway was investigated at the single-channel level using the patch-clamp technique. Patch-clamp recordings were obtained from enzymatically isolated CCD segments and freshly isolated CCD cells with the conventional cell-free, cell-attached and the cell-attached nystatin method. Two K+ channels were found which were highly active on the cell with a conductance of 67±5 pS (n=18) and 148±4 pS (n=21) with 145 mmol/l K+ in the pipette. In excised patches the first channel had a conductance of 28±2 pS (n=15), whereas the second one had a conductance of 85±1 pS (n=53) at 0 mV clamp voltage with 145 mmol/l K+ on one side and 3.6 mmol/l K+ on the other side of the membrane. So far it has not been possible to characterize the smaller channel further. Excised, and with symmetrical K+ concentrations of 145 mmol/l, the intermediate channel had a linear conductance of 198±19 pS (n=5). After excision in the inside-out configuration the open probability (P o) of this channel was low (0.18±0.05, n=13) whereas in the outside-out configuration this channel had a threefold higher P o (0.57±0.04, n=12). Several inhibitors were tested in excised membranes. Ba2+ (1 mmol/l), tetraethylammonium (TEA+, 10 mmol/l) and verapamil (0.1 mmol/l) all blocked this channel reversibly. Furthermore P o was reversibly reduced by 10 nmol/l charybdotoxin (outside-out). This K+ channel of the basolateral membrane was regulated by cellular pH. P o was reduced to 26±3% at pH 6.5 (n=6) and increased to 216±18% at pH 8.5 (n=7) compared to pH 7.4. Half-maximal inhibition was reached at pH 7.0. The channel had its highest P o at a Ca2+ activity of less than 10–8 mol/l (n=13). Increasing the Ca2+ activity to 1 mmol/l on the cytosolic side of the membrane resulted in a reduction of P o to 13±3% (n=11). Half-maximal inhibition was reached at a Ca2+ activity of 10–5 mol/l. The high activity of both K+ channels of the basolateral membrane on the cell indicates that they may serve for K+ recirculation across the basolateral membrane.  相似文献   

8.
The Na+2ClK+ cotransporter in the apical membrane of the cortical thick ascending limb of the Henle's loop (cTAL) of rabbit nephron utilizes the electrochemical gradient for Na+ to transport K+ and Cl against an unfavorable electrochemical gradient from lumen to cell interior. In the present study attempts are made to measure intracellular K+ activity ( ) under control conditions and after inhibition of the cotransport system by furosemide (50·10–6 mol·l–1). 70 cTAL segments of 55 rabbits were perfused in vitro. Conventional Ling-Gerard and K+-selective microelectrodes were used to measure the PD across the basolateral membrane (PDbl) as well as the PD sensed by the single barrelled K+-selective electrode ( ). PDbl was –64±1 (n=65) mV and +15±1 (n=32) mV under control conditions. The positive value, significantly different from zero, indicates that is higher than predicted for passive distribution. The estimate for obtained from PDbl and was 113±8 mmol·l–1. Furosemide lead to the previously reported hyperpolarization of PDbl by 17±4 (n=13) mV and to a reduction of from 15±1 to 5±1 (n=20) mV. The , obtained from this set of data, was 117±9 mmol·l–1, and was not different from the control value. The present data indicate that is significantly above Nernst equilibrium under control conditions. The source for this above equilibrium accumulation of K+ stems from the carrier mediated uptake of Na+2Cl and K+. Consequently, the electrochemical gradient for K+ is rapidly reduced when the carrier is blocked by furosemide. The electrochemical gradient for K+, under control conditions, energizes the back leak of K+ from cell to lumen. This K+ flux is one component responsible for the lumen positive transepithelial PD.Parts of this study have been presented at the 58th Tagung Deutsche Physiologische und Deutsche Pharmakologische Gesellschaft, Mainz 1983; 67th Federation Meeting, Chicago 1983. This study was supported by Deutsche Forschungsgemeinschaft Gr. 480/5-7  相似文献   

9.
Intracellular microelectrode techniques were used together with inhibitors of Na+ transport (amiloride) and H+ transport (acetazolamide and SITS1) to identify principal cells and intercalated cells in the outer stripe of the rabbit outer medullary collecting duct. The principal cell (n=9) had a basolateral membrane voltage (V bl) of –64.7±3.2 mV, a fractional resistance of the apical membrane (fR a=R a/R a+R bl) of 0.82±0.02, and a K+-selective basolateral membrane. Luminal amiloride hyperpolarizedV bl by 10.3±2.1 mV and increasedfR a to near unity (n=7). Bath acetazolamide and SITS were without effect on these parameters. The intercalated cell (n=5) had aV bl of –25.0±3.2 mV, afR a of 0.99±0.01, and a Cl-selective basolateral membrane. Bath acetazolamide or SITS hyperpolarizedV bl by 26.4±8.2 mV. Luminal amiloride did not alterV bl of this cell. The differential effects of the inhibitors also indicate that the principal and intercalated cells are probably not directly coupled electrically.  相似文献   

10.
Summary Sodium content and transport of red blood cells were examined in 98 male blood donors. Regarding their blood pressure they were classified into the following groups: (a) 57 normotensives, (RR<140/90 mm Hg); (b) 24 borderline hypertensives (140/90RR<160/95 mm Hg); and (c) 17 hypertensives (RR>160/100 mm Hg). Compared with the normotensives the borderline hypertensives have significantly reduced red cell sodium content. The ouabain-resistant net Na+ uptake and the relative Na+ uptake, as a measure of the Na+/K+ pump, were significantly increased. With rising blood pressures the measured values turn to normal, so that no difference exists between the normotensive and hypertensive groups. It is supposed that in the initial or even prehypertensive state a considerable enhancement of the pump activity occurs, simultaneously accompanied by less marked increases in sodium influx, leading to a reduced intracellular sodium content. In the course of hypertension, possibly caused by the formation of a pump inhibitor, the sodium content of red cells turns to normal or supernormal values.Abbreviations BMI body mass index - BHT borderline hypertensive - Ca ion 2+ ionized plasma calcium - HT hypertensive - k relative OR net Na+ uptake - [Na+]i, [K+]i intracellular sodium and potassium content in RBCs - NT normotensive - OR ouabain-resistant - RBCs red blood cells - Na OR net Na+ uptake  相似文献   

11.
To examine the mechanisms of H+ transport in the mid-inner medullary collecting duct of hamsters, we measured the intracellular pH (pHi) in the in vitro perfused tubules by microscopic fluorometry using 2,7-bis(carboxyethyl)-carboxyfluorescein (BCECF) as a fluorescent probe. In the basal condition, pHi was 6.74±0.04 (n=45) in HCO 3 -free modified Ringer solution. Either elimination of Na+ from the bath or addition of amiloride (1 mM) to the bath produced a reversible fall in pHi After acid loading with 25 mM NH4Cl, pHi spontaneously recovered with an initial recovery rate of 0.096±0.012 (n=23) pH unit/min. In the absence of ambient Na+, after removal of NH 4 + , the pHi remained low (5.95±0.10, n=8) and showed no signs of recovery. Subsequent restoration of Na+ only in the lumen had no effect on pHi. However, when Na+ in the bath was returned to the control level, pHi recovered completely. Amiloride (1 mM) in the bath completely inhibited the Na+-dependent pHi recovery. Furthermore, elimination of Na+ from the bath, but not from the lumen, decreased pHi from 6.97±0.07 to 6.44±0.05 (n=12) in the HCO 3 /Ringer solution or 6.70±0.03 to 6.02±0.05 (n=8) in the HCO 3 free solution. pHi spontaneously returned to 6.76±0.08 with a recovery rate of 0.017±0.5 pH unit/min in the presence of CO2/HCO 3 , whereas it did not recover in the absence of CO2/HCO 3 . Although elimination of ambient Na+ depolarized the basolateral membrane voltage (V B) from –78±1.2 to –72 ±0.6 mV (n=5, P<0.01), the level of V B was not sufficient to explain the pHi recovery solely by HCO 3 entry driven by the voltage. These results indicate that (a) pHi of the inner medullary collecting duct is regulated mainly by a Na+/H+ exchanger in the basolateral membranes, (b) no apparent Na+-dependent H+ transport system exists in the luminal membranes and (c) Na+-independent H+ transport may also operate in the presence of CO2/HCO 3 Preliminary data were reported at the Conference on Bicarbonate, Chloride, and Proton Transport Systems, New York, USA, in January 1989  相似文献   

12.
Morphological studies have demonstrated that a chronic increase in distal Na+ delivery causes hypertrophy of the distal convoluted tubule (DCT). To examine whether high NaCl-intake also causes functional changes in the well defined DCT, we measured transmural voltage (V T), lumen-to-bath Na+ flux (J Na(LB)), and net K+ secretion (J K(net)) in DCTs obtained from control rabbits and those on high NaCl-intake diets. The lumen negativeV T was significantly greater in the high NaCl group than in the control group. The net K+ secretion (pmol mm–1 min–1) was greater in the high NaCl-intake group (54.1±13.0 vs 14.7±5.6). The K+ permeabïlities in both luminal and basolateral DCT membranes, as assessed by the K+-induced transepithelial voltage deflection inhibitable with Ba2+, were increased in the experimental group. The lumen-to-bath22Na flux (pmol mm–1 min–1) was also greater in the experimental group (726±119 vs 396±65). TheV T component inhibitable with amiloride was also elevated in the high NaCl-intake group. Furthermore, Na+–K+-ATPase activity of the DCT was higher in the experimental than in the control group. We conclude that high NaCl intake increases both Na+ reabsorption and K+ secretion by the DCT. This phenomenon is associated with an increased Na+–K+-ATPase activity along with increased Na+ and K+ permeabilities of the luminal membrane, and an increase in the K+ permeability of the basolateral membrane. Cellular mechanisms underlying these functional changes remain to be established.  相似文献   

13.
Recent in vitro studies from the rat and rabbit have suggested a tightly coupled sodium/hydrogen ion exchanger on the luminal membrane of proximal tubules. The steep sodium gradient from the lumen to cell supplies indirect energy for hydrogen ions to be pumped from the cell to the lumen. However, a proton translocating pump has been demonstrated in other epithelia, which is independent of sodium transport and directly driven by ATP. To examine the role that sodium might play in the process of acidification, rat proximal convoluted tubules and their surrounding peritubular capillaries were perfused in vivo with artificial ultrafiltrate-like perfusion solutions. Total CO2 absorption was measured by microcalorimetry during alterations in sodium transport by replacement of the sodium with an impermeant cation, choline, or by inhibition of the (Na++K+)-ATPase by removing potassium from both perfusion solutions. Under control conditions the absolute rate of total CO2 absorption was 140 pmol/mm·min. In the choline substitution and potassium removal experiments, absolute total CO2 absorption fell to 23 and 28 pmol/mm·min, respectively. The data suggest that: 1) in the rat superficial proximal convoluted tubule approximately 80% of the bicarbonate absorption is tightly coupled to sodium transport; 2) this process is driven indirectly by the (Na++K+)-ATPase system; and 3) the residual 20% of acidification appears to be mediated by another mechanism or may be a consequence of technical liminations.  相似文献   

14.
The K+ channels of the principal cells of rat cortical collecting duct (CCD) are pH sensitive in excised membranes. K+ secretion is decreased with increased H+ secretion during acidosis. We examined whether the pH sensitivity of these K+ channels is present also in the intact cell and thus could explain the coupling between K+ and H+ secretion. Membrane voltages (V m), whole-cell conductances (g c), and single-channel currents of K+ channels were recorded from freshly isolated CCD cells or isolated CCD segments with the patch-clamp method. Intracellular pH (pHi) was measured using the pH-sensitive fluorescent dye 2-7-bis(carboxyethyl)-5-6-carboxyfluorescein (BCECF). Acetate (20 mmol/l) had no effect on V m, g c, or the activity of the K+ channels in these cells. Acetate, however, acidified pHi slightly by 0.17±0.04 pH units (n=19). V m depolarized by 12±3 mV (n=26) and by 23±2 mV (n=66) and g c decreased by 26±5% (n=13) and by 55±5% (n=12) with 3–5 or 8–10% CO2, respectively. The same CO2 concentrations decreased pHi by 0.49±0.07 (n=15) and 0.73±0.11 pH units (n=12), respectively. Open probability (P o) of all four K+ channels in the intact rat CCD cells was reversibly inhibited by 8–10% CO2. pHi increased with the addition of 20 mmol/l NH4 +/NH3 by a maximum of 0.64±0.08 pH units (n=33) and acidified transiently by 0.37±0.05 pH units (n=33) upon NH4 +/NH3 removal. In the presence of NH4 +/NH3 V m depolarized by 16±2 mV (n=66) and g c decreased by 26±7% (n=16). The activity of all four K+ channels was also strongly inhibited in the presence of NH4 +/NH3. The effect of NH4 +/NH3 on V m and g c was markedly increased when the pH of the NH4 +/NH3-containing solution was set to 8.5 or 9.2. From these data we conclude that cellular acidification in rat CCD principal cells down-regulates K+ conductances, thus reduces K+ secretion by direct inhibition of K+ channel activity. This pH dependence is present in all four K+ channels of the rat CCD. The inhibition of K+ channels by NH4 +/NH3 is independent of changes in pHi and rather involves an effect of NH3.  相似文献   

15.
Summary The main excretory duct of the submaxillary gland of normal and adrenalectomized rats was perfused with bicarbonate Ringer's solution and the following values were measured: the transepithelial electrical potential difference, the specific electrical resistance of the epithelium, and the transepithelial net fluxes for Na+ and K+. From the potential difference and the resistance, the short circuit current was calculated. Following adrenalectomy the short circuit current dropped to about one half, while the electrical resistance increased around twofold and the transepithelial potential difference remained constant. The reduction of short circuit current was accompanied by a 30% reduction of Na+ reabsorption whereas K+ secretion was only slightly diminished Acute substitution of aldosterone to adrenalectomized animals led to a restitution of the Na+ fluxes and showed a tendency to increase K+ secretion. Following the administration of Actinomycin D to normal animals, Na+ resorption declined as in adrenalectomized rats but K+ secretion remained essentially unchanged. From these observations it is concluded that the hypothetical aldosterone-induced proteins act only on Na-resorption and that they may act by both increasing the sodium permeability of the luminal cell membrane and stimulating active Na+ transport. The latter effect does not seem to consist of a non specific enhancement of the energy supply since it does not influence the active potassium secretion of the cell.  相似文献   

16.
The signaling cascade resulting in the death of several types of cells treated with ouabain or other cardiotonic steroids (CTS) remains poorly understood. Recently, we observed that ouabain kills epithelial and endothelial cells via its interaction with Na+, K+ -ATPase, but independently of inhibition of Na+, K+ -ATPase-mediated ion fluxes and inversion of the [Na+]i/[K+]i ratio. Here, we report that the death of ouabain-treated epithelial cells from the Madin-Darby canine kidney (C7-MDCK) and endothelial cells from porcine aortae is suppressed by acidification of medium from pH 7.4 to 7.0, i.e. under conditions when pHi was decreased from 7.2 to 6.9. The rescue of ouabain-treated C7-MDCK cells was also detected under selective intracellular acidification caused by inhibition of Na+/H+ exchanger. In these cells, neither Na+, K+ pump activity nor [3H]-ouabain binding was significantly affected by modest acidification. The death of ouabain-treated cells was independent of inhibition of RNA and protein synthesis with actinomycin D and cycloheximide. In contrast, both compounds sharply attenuated the protective action of acidified medium. Thus, our results show that very modest intracellular acidification is sufficient to inhibit the Na+ i/K+ i-independent death signal triggered in epithelial and endothelial cells by CTS. They also suggest that the protective action of acidification is mediated by de novo expression of genes involved in inhibition of the cell death machinery.  相似文献   

17.
Summary Changes of coronary flow in the isolated perfused spontaneously beating guinea pig heart were induced by elevation of potassium concentration in the perfusion medium (4–16 meq/l). Potassium caused a dose-dependent transient increase of diastolic coronary inflow. The response was inhibited by ouabain (1.4×10–7 M) or reduced temperature. Rubidium ions elicited almost identical vasodilator effects which were also inhibited by ouabain.Autoregulation of coronary flow, reactive hyperemia, and hypoxic coronary dilation were not significantly altered in the presence of ouabain.The results support the hypothesis that potassium as well as rubidium cause vasodilation by activating a Na+, K+-ATPase. On the other hand, they do not favour the view of an essential involvement of potassium ions in local regulation of coronary flow under the conditions studied.A preliminary report of this study was presented at the 42nd meeting of the German Physiologic Society in Hannover, Germany [Pflügers Arch.343, R20 (1973)].  相似文献   

18.
We intend to develop a bioartificial kidney using tubular epithelial cells and artificial membranes, and to evaluate the reabsorptive function of the confluent layers. Madin-Darby canine kidney (MDCK) cells were cultured on a nucleopore polycarbonate membrane for up to 4 weeks after confluence to examine the influence of culture period on their properties, such as the localization of Na+/K+-ATPase and active Na+ transport. The results were as follows. Ouabain-sensitive Na+ active transport declined at 3 to 4 weeks after confluence in each matrix. The localization of Na+/K+-ATPase indicated depolarization in the cell membrane 3 to 4 weeks after confluence. Prolongation of the culture period increased the formation of an upheaving cell mass after the formation of the confluent monolayer. Scanning electron microscopy revealed fewer microvilli and more flat cells after 3 to 4 weeks of confluency. We conclude that the decline of Na+ active transport in the MDCK cells was due to both the formation of multilayers and a decline of cell function throughout the long period of culture following the formation of the confluent monolayers. Further study for selection of membrane material, the extracellular matrix, and species of cells should be continued. Laboratories for Structure and Function Research Department of Physiology  相似文献   

19.
Single-channel current recordings were carried out on excised inside-out patches of baso-lateral plasma membrane from exocrine acinar cells. The mouse pancreas and submandibular gland as well as the pig pancreas were investigated.In the mouse pancreas the voltage-insensitive Ca2+-activated cation channel was studied. Single-channel current-voltage (i/v) relationships were studied in symmetrical Rb+-rich solutions and in asymmetrical Rb+/Na+ and Na+/Rb+ solutions. In all cases the i/v relations were linear and had the same slope representing a single-channel conductance of about 33 pS which is identical to that previously obtained with symmetrical Na+ solutions or asymmetrical Na+/K+ solutions.In the mouse submandibular gland and the pig pancreas the voltage and Ca2+-activated K+ channel was studied. The outward currents observed after depolarization in the presence of quasi-physiological Na+/K+ gradients were immediately abolished when all the K+ in the bath fluid was replaced by Rb+ (bath fluid in contact with inside of plasma membrane). This effect was immediately and fully reversible upon return to the high K+ solution.The voltage and Ca2+-activated K+ channel was also studied in asymmetrical K+/Rb+ and Rb+/K+ solutions. In the first case inward (K+) currents could be observed but not outward (Rb+) currents, while in the other case inward (Rb+) currents could not be seen whereas outward (K+) currents were measured. The current-voltage relationships were approximately linear and the null potential was close to 0 mV in both situations. In contrast the null potential for current through the K+ channel in the presence of asymmetrical Na+/K+ or Li+/K+ solutions was about –70 mV and with reversed gradients about +60 mV.Outward K+ currents of reduced size (through the voltage and Ca2+-activated K+ channel) could be observed when the bath fluid contained 75 mM K+ and 75 mM Rb+, but not (in the same membrane patches) when 150 mM Rb+ and no K+ was present.It is concluded that the large voltage- and Ca2+-activated K+ channel has an extremely low Rb+ conductance. It is possible, however, that the permeability for Rb+ may be about the same as for K+. The voltage-insensitive Ca2+-activated cation channel does not discriminate between K+ and Rb+.  相似文献   

20.
In this study we examined by impalement techniques properties of the macroscopic K+ conductances in the luminal and basolateral membrane of principal cells from isolated perfused cortical collecting ducts (CCD) of the rat. Both membranes possess a dominating K+ conductance. Compared to their behaviour with K+, both membranes appear much less permeable to NH 4 + and Rb+, and the K+ conductances of both membranes are inhibited by these cations. In light of these findings, it is very unlikely that significant amounts of NH 4 + , which is secreted in the CCD, cross the principal cells as NH 4 + . Several inhibitors with known effects on K+ channels in patch-clamp studies have been examined. Tetraethylammonium, which inhibits the excised K+ channels of these cells, has no effect on the macroscopic K+ conductances of either membrane. Verapamil, which inhibits the K+ channels in the luminal membrane, acts predominantly on the basolateral membrane K+ conductance in the intact tubule. Therefore, some of the macroscopic properties of the K+ conductances are distinct from those of single channels thus far observed in patchclamp studies.Supported by DFG Schl 277/2-1 and Gr 480/10  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号