首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the effects of changing cadence and workload on pedaling technique. Eight cyclists were evaluated during an incremental maximal cycling and two 30-minute submaximal trials at 60 % and 80 % of maximal power output (W (60 %) and W (80 %), respectively). During submaximal 30-minute trials, they cycled for 10 minutes at a freely chosen cadence (FCC), 10 minutes at a cadence 20 % above FCC (FCC + 20 %), and 10 minutes at a cadence 20 % below FCC (FCC - 20 %). Pedal forces and kinematics were evaluated. The resultant force (RF), effective force (EF), index of effectiveness (IE) and IE during propulsive and recovery phase (IEprop and IErec, respectively) were computed. For W (60 %), FCC - 20 % and FCC presented higher EFmean (69 +/- 9 N and 66 +/- 14 N, respectively) than FCC + 20 % (52 +/- 14 N). FCC presented the highest IEprop (81 +/- 4 %) among the cadences (74 +/- 4 and 78 +/- 5 % for FCC - 20 % and FCC + 20 %, respectively). For W (80 %), FCC presented higher EFmean (81 +/- 5 N) than FCC + 20 % (72 +/- 10 N). The FCC - 20 % presented the lower IEprop (71 +/- 7 %) among the cadences. The EFmin was higher for W (80 %) than W (60 %) for all cadences. The IE was higher at W (80 %) (61 +/- 5 %) than W (60 %) (54 +/- 9 %) for FCC + 20 % (all p < 0.05). Lower cadences were more effective during the recovery phase for both intensities and FCC was the best technique during the propulsive phase.  相似文献   

2.
PURPOSE: This study was conducted to determine the effect of high pedaling cadences on maximal cycling power output (W(max)). METHODS: Nine well-trained cyclists performed a continuous, incremental cycle-ergometer test to exhaustion (25 W increases every 3 min) either at 80, 100, or 120 rpm on three different occasions. RESULTS: W(max) was approximately 9% lower during 120 rpm in comparison with 80 and 100 rpm (335 +/- 9, 363 +/- 7, and 370 +/- 12 W, respectively; P < 0.05). During 120 rpm, ventilation rate (V(E)) increased above the increases in expired CO(2), which reduced the power output (PO) at the ventilatory anaerobic threshold (VT(2)) by 11% (P < 0.05). Gross efficiency (GE) did not differ among trials. At 120 rpm, capillary blood lactate concentration ([Lac]) increased above the 80-rpm trial (5.3 +/- 1.2 vs 3.0 +/- 0.7 mM at 300 W; P < 0.05), although pH was not reduced. At 120 rpm, expired CO(2) increased and reduced blood bicarbonate concentration ([HCO(3)(-)]) was reduced, maintaining blood pH similar to the other trials. CONCLUSION: A high pedaling cadence (i.e., 120 rpm) reduces performance (i.e., W(max)) and anaerobic threshold during an incremental test in well-trained cyclists. The data suggest that ventilatory anaerobic threshold (VT(2)) is a sensitive predictor of optimal pedaling cadence for performance, whereas blood pH or efficiency is not.  相似文献   

3.
The purpose was to investigate the effect of 25 weeks heavy strength training in young elite cyclists. Nine cyclists performed endurance training and heavy strength training (ES) while seven cyclists performed endurance training only (E). ES, but not E, resulted in increases in isometric half squat performance, lean lower body mass, peak power output during Wingate test, peak aerobic power output (Wmax), power output at 4 mmol L?1 [la?], mean power output during 40‐min all‐out trial, and earlier occurrence of peak torque during the pedal stroke (P < 0.05). ES achieved superior improvements in Wmax and mean power output during 40‐min all‐out trial compared with E (P < 0.05). The improvement in 40‐min all‐out performance was associated with the change toward achieving peak torque earlier in the pedal stroke (r = 0.66, P < 0.01). Neither of the groups displayed alterations in VO2max or cycling economy. In conclusion, heavy strength training leads to improved cycling performance in elite cyclists as evidenced by a superior effect size of ES training vs E training on relative improvements in power output at 4 mmol L?1 [la?], peak power output during 30‐s Wingate test, Wmax, and mean power output during 40‐min all‐out trial.  相似文献   

4.
5.
The aim of this experiment was to compare the efficiency of elite cyclists with that of trained and recreational cyclists. Male subjects (N = 69) performed an incremental exercise test to exhaustion on an electrically braked cycle ergometer. Cadence was maintained between 80 - 90 rpm. Energy expenditure was estimated from measures of oxygen uptake (VO (2)) and carbon dioxide production (VCO(2)) using stoichiometric equations. Subjects (age 26 +/- 7 yr, body mass 74.0 +/- 6.3 kg, Wpeak 359 +/- 40 W and VO(2)peak 62.3 +/- 7.0 mL/kg/min) were divided into 3 groups on the basis of their VO (2)peak (< 60.0 (Low, N = 26), 60 - 70 (Med, N = 27) and > 70 (High, N = 16) mL/kg/min). All data are mean +/- SE. Despite the wide range in aerobic capacities gross efficiency (GE) at 165 W (GE (165)), GE at the same relative intensity (GE (final)), delta efficiency (DE) and economy (EC) were similar between all groups. Mean GE (165) was 18.6 +/- 0.3 %, 18.8 +/- 0.4 % and 17.9 +/- 0.3 % while mean DE was 22.4 +/- 0.4 %, 21.6 +/- 0.4 % and 21.2 +/- 0.5 % (for Low, Medium and High, respectively). There was no correlation between GE (165), GE (final), DE or EC and VO(2)peak. Based on these data, we conclude that there are no differences in efficiency and economy between elite cyclists and recreational level cyclists.  相似文献   

6.
PURPOSE: Differences in gross mechanical efficiency between experienced and inexperienced wheelchair users may be brought about by differences in propulsion technique. The purpose of this experiment was to study changes in propulsion technique (defined by force application, left-right symmetry, intercycle variability, and timing) and gross mechanical efficiency during a 3-wk wheelchair practice period in a group of novice able-bodied nonwheelchair users. METHODS: Subjects were randomly divided over an experimental group (N = 10) and a control group (N = 10). The experimental group received a 3-wk wheelchair practice period (3.wk-1, i.e., 9 practice trials) on a computer-controlled wheelchair ergometer, whereas the control group only participated in trials 1 and 9. During all nine practice trials, propulsion technique variables and mechanical efficiency were measured. RESULTS: No significant differences between the groups were found for force application, left-right symmetry, and intercycle variability. The push frequency and negative power deflection at the start of the push phase diminished significantly in the experimental group in contrast to the control group (P < 0.05). Work per cycle, push time, cycle time, and mechanical efficiency increased. CONCLUSION: The practice period had a favorable effect on some technique variables and mechanical efficiency, which may indicate a positive effect of improved technique on mechanical efficiency. Although muscle activation and kinematic segment characteristics were not measured in the present study, they may also impact mechanical efficiency. No changes occurred over time in most force application parameters, left-right symmetry, and intercycle variability during the 3-wk practice period; however, these variables may change on another time scale.  相似文献   

7.
To study the effect of tangential speed of the handrims independent of external power output on gross mechanical efficiency (ME), nine able-bodied subjects performed wheelchair exercise tests on a stationary ergometer. The ergometer allowed for measurement of torque and three-dimensional forces on the rims and tangential velocity of the rear wheels. The experiment comprised two series of submaximal tests against constant external power outputs (0.25 and 0.50 W.kg-1) and four wheelchair speeds (0.83, 1.11, 1.39, and 1.67 m.s-1), which simulated a wheelchair speed of 1.67 m.s-1 and mechanical advantages of 0.43-0.87. ME stayed below 10.5% and changed inversely with speed of movement of the handrims. Peak torques on the right handrim stayed even with speed, leading to a significant increase in peak power output. Energy losses owing to braking torques at the beginning and end of the push phase increased with handrim speed but hardly exceeded 5 W. The effective force component applied to the handrims was below 71% of the magnitude of the total force vector and dropped up to 13% with increasing handrim speed. It is suggested that an ineffective direction of forces on the rims might (partly) be responsible for the low ME and for a decrease in ME in relation to tangential handrim velocity. This suggestion is discussed from a number of theoretical perspectives. It is concluded that the use of handrims with a lower mechanical advantage will increase wheelchair propulsion efficiency.  相似文献   

8.
PURPOSE: To determine the relationship that exists between VO2max and cycling economy/efficiency during intense, submaximal exercise in world-class road professional cyclists. METHODS Each of 11 male cyclists (26+/-1 yr (mean +/- SEM); VO2max: 72.0 +/- 1.8 mL x kg(-1) x min(-1)) performed: 1) a ramp test for O2max determination and 2) a constant-load test of 20-min duration at the power output eliciting 80% of subjects' VO2max during the previous ramp test (mean power output of 385 +/- 7 W). Cycling economy (CE) and gross mechanical efficiency (GE) were calculated during the constant-load tests. RESULTS: CE and GE averaged 85.2 +/- 2.3 W x L(-1) x min(-1) and 24.5 +/- 0.7%, respectively. An inverse, significant correlation was found between 1) VO2max (mL x kg(-0.32) x min(-1)) and both CE (r = -0.71; P = 0.01) and GE (-0.72; P = 0.01), and 2) VO2max (mL x kg(-1) x min(-1)) and both CE (r = -0.65; P = 0.03) and GE (-0.64; P = 0.03). CONCLUSIONS: A high CE/GE seems to compensate for a relatively low VO2max in professional cyclists.  相似文献   

9.
Effect of internal work on the calculation of optimal pedaling rates.   总被引:3,自引:0,他引:3  
The purpose of this study was to calculate optimal pedaling rates based upon external work (EW) rate and mechanical work (MW) rate criteria that respectively exclude and include the internal work (IW) rate of the lower limbs. Metabolic and kinematic data were collected as 12 males pedaled an ergometer at rates of 40, 60, 80, and 98 rpm while producing external power outputs of 49, 98, and 146 W. Energy expenditure (EE) was calculated from steady rate oxygen uptake and respiratory exchange ratio values. The IW rate was determined from digitized kinematic data by modeling the thigh, shank, and foot as a three-segment linked system and calculating their changes in potential, translational kinetic, and rotational kinetic energy. The EW rate was calculated from the observed pedaling rate and the ergometer resistance. The MW rate was defined as the sum of the EW rate and IW rate. At each level of external power output, the MW rate increased linearly with pedaling rate increments while the EE displayed a curvilinear relationship. Both gross efficiency (GE = EW rate/EE) and mechanical efficiency (ME = MW rate/EE) responded quadratically to pedaling rate treatments but a repeated measures ANOVA revealed significant differences in their beta 0, beta 1, and beta 2 regression coefficients. Optimal pedaling rates calculated from ME were consistently higher (82 to 101 rpm) than those determined from GE (35 to 57 rpm). The pedaling rates that optimized ME, but not GE, are similar to the rates reported to be biomechanically optimal and preferred by trained cyclists. This study demonstrates that the choice of a work rate criterion can alter the meaning and interpretation of metabolic data.  相似文献   

10.
The aim of this study was to determine the effect of hyperoxic-supplemented interval training on endurance performance. Using a single-blind, randomised control-trial design, 16 well-trained cyclists were randomly assigned to either hyperoxic or normoxic training. Participants visited the laboratory twice per week, for 4 weeks, to perform high-intensity interval training sessions. A 20 km TT, incremental exercise test and 60s all-out test were conducted pre- and post-intervention. Smaller effects for most physiological measures, including VO 2peak (1.9 ± 4.3%) and lactate threshold (0.3 ± 8.3%), were observed after training in hyperoxia compared to normoxia. There was a small increase in mean power during the 20 km TT after hyperoxia [2.1 ± 3.7%; effect size (ES): - 0.30 ± 0.39] but this was less than that observed after normoxia (4.9 ± 3.9%; ES: - 0.44 ± 0.60). During the 60 s all-out test, the peak relative power was relatively unchanged, whereas mean relative power was increased in normoxia (2.3 ± 3.4%) but not hyperoxia (0.3 ± 1.2%; ES: - 0.34 ± 0.49). Hyperoxic-supplemented interval training in the competitive season had less effect on endurance and high-intensity performance and physiology in trained endurance cyclists compared to interval training in normoxia. Therefore hyperoxic-supplemented training at sea level appears to be not worthwhile for maximising performance in competitive endurance athletes.  相似文献   

11.
Effect of ultramarathon cycling on the heart rate in elite cyclists   总被引:1,自引:0,他引:1       下载免费PDF全文
OBJECTIVES: To analyse the heart rate (HR) response and estimate the ultraendurance threshold-the optimum maintainable exercise intensity of ultraendurance cycling-in ultraendurance elite cyclists competing in the Race across the Alps. METHODS: HR monitoring was performed in 10 male elite cyclists during the first Race across the Alps in 2001 (distance: 525 km; cumulative altitude difference: 12 600 m) to investigate the exercise intensity of a cycle ultramarathon and the cardiopulmonary strains involved. Four different exercise intensities were defined as percentages of maximal HR (HR(max)) as follows: recovery HR (HR(re)), <70% of HR(max); moderate aerobic HR (HR(ma)), 70-80%; intense aerobic HR (HR(ia)), 80-90%; and high intensity HR (HR(hi)), >90%. RESULTS: All athletes investigated finished the competition. The mean racing time was 27 hours and 25 minutes, and the average speed was 18.6 km/h. The mean HR(max) was 186 beats/min, and the average value of measured HRs (HR(average)) was 126 beats/min resulting in a mean HR(average)/HR(max) ratio of 0.68, which probably corresponds to the ultraendurance threshold. The athletes spent 53% (14 hours 32 minutes) of total race time within HR(re), 25% (6 hours 51 minutes) within HR(ma), 19% (5 hours 13 minutes) within HR(ia), and only 3% (49 minutes) within HR(hi), which shows the exercise intensity to be predominantly moderate (HR(re) + HR(ma) = 78% or 21 hours 23 minutes). The HR response was influenced by the course profile as well as the duration. In all subjects, exercise intensity declined significantly during the race, as indicated by a decrease in HR(average)/HR(max) of 23% from 0.86 at the start to 0.66 at the end. CONCLUSIONS: A substantial decrease (10% every 10 hours) in the HR response is a general cardiovascular feature of ultramarathon cycling, suggesting that the ultraendurance threshold lies at about 70% of HR(max) in elite ultramarathon cyclists.  相似文献   

12.
13.
This study examined the impact of sport specificity on the time course of fatigue during maximal voluntary eccentric, concentric and isometric torque production following a submaximal isokinetic fatiguing exercise. Seven cyclists and seven triathletes performed a fatiguing exercise consisting of nine sets of 31 isokinetic concentric knee extensions at 1.05 rad . s (-1). Fatigue was assessed pre-exercise, after three and six sets, and post-exercise. The maximal knee extension torque associated with electromyographic (EMG) activity was recorded during voluntary contractions and electrically induced contractions (single and paired twitches). The maximal voluntary eccentric torque production declined in cyclists (18 +/- 3.5 %, p < 0.05) and was not significantly affected in triathletes (5 +/- 2.5 %, p > 0.05). The decrease in cyclists was associated with an increase in the sum of the normalized EMG (nRMS) values of the three agonist muscles (p < 0.01). Although no significant difference was observed between groups, the two-way repeated-measure analysis of variance revealed a time effect on maximal concentric and isometric torque, twitch contractile and electrophysiological response (M (max)) properties. No modification in the activation and coactivation levels was observed. In conclusion, these results indicate that the time course of fatigue, especially during eccentric contractions, is mediated by sport-specific adaptations likely due to the mode of muscle contraction used in the activity.  相似文献   

14.
ObjectiveTo determine the effect of short-term cold-water immersion (CWI) on muscle pain sensitivity after maximal anaerobic power training in track cyclists.DesignRepeated measures.SettingUniversity Laboratory.Participants12 elite sprint track cyclists (age 24,75 ± 4,23 years).Main outcome measuresPPT measurements were made on dominant lower extremity (right) in 20 reference points, including anterior thigh muscles, posterior thigh muscles and posterior cuff muscles. PPT levels were measured: 1) before workout, 2) immediately after workout, but before CWI 3) 1 h after CWI and 4) 12 h after CWI. Mean PPT values for each muscle group per participant were calculated for further statistical analysis.ResultsThe average PPT for anterior thigh muscles decreased significantly after effort (p = 0.001) and increased significantly 1 h after CWI (p = 0.048). In posterior thigh muscles PPT decreased significantly after effort (p = 0.014) and increased significantly 1 h and 12 h after CWI (p = 0.045 and p = 0.25 respectively). However, in posterior cuff muscles PPT decreased only after effort (p = 0.001).ConclusionsShort-term repeated sprint exercise appears to affect PPT in track cyclists. This study have reported that CWI in 5 °C for 5 min have had a beneficial effect in minimizing PPT 1 h post repeated maximal sprint training.  相似文献   

15.
Effects of power training with stretch-shortening cycle (SSC) exercises on mechanical efficiency (ME) were investigated with 9 young women who trained 3 times a week for 4 months. The training included various types of jumping exercises. Before and after the training as well as after the detraining (2 months) the subjects performed 6 different submaximal exercises with a special sledge apparatus. Each exercise involved 60 muscle actions lasting for a total of 3 min per testing condition. The work intensities were determined individually according to the recordings of distance obtained during the single maximal concentric exercises. The training caused the greatest changes of ME in conditions of higher prestretch intensities. The ME values changed from 49.3 ± 12.9% to 55.4 ± 12.1% in pure eccentric exercises and from 39.5 ± 4.6% to 46.1 ± 5.0% in SSC exercises during the training. After the training, the subjects preactivated their leg extensor muscles earlier before the impact, and the eccentric working phase was more powerful, because of higher tendomuscular stiffness. Higher preactivation of the measured muscles, higher flexion of knee and increased dorsiflexion of ankle joints in the beginning of contact caused the increased stiffness, possibly through more powerful reflex activation. At the same time the metabolic demands of muscles decreased, causing the increases of ME.  相似文献   

16.
This study investigated the effect of 10 W*min(-1) (Slow ramp, SR), 30 W*min(-1) (Medium ramp, MR) and 50 W*min(-1) (Fast ramp, FR) exercise protocols on assessments of the first (VT1) and second (VT2) ventilation thresholds and peak oxygen uptake (VO(2)peak) in 12 highly-trained male cyclists (mean +/- SD age = 26 +/- 6 yr). Expired gas sampled from a mixing chamber was analyzed on-line and VT1 and VT2 were defined as two break-points in 20-s-average plots of pulmonary ventilation (V(E)), ventilatory equivalents for O(2) (V(E)/VO(2)) and CO(2) (V(E)/VCO(2)), and fractions of expired O(2) (F(E)O(2)) and CO(2) (F(E)CO(2)). Arterialized-venous blood samples were analyzed for blood-gas and acid-base status. VO(2)peak was significantly lower (p < 0.05) for SR (4.65 +/- 0.53 l small middle dot min(-1)) compared to MR (4.89 +/- 0.56 l *min(-1)) and FR (4.88 +/- 0.57 l *min(-1)) protocols. CO(2) output and blood PCO(2) were lower (p < 0.05), and V(E)/VCO(2) was higher (p < 0.05), above VT1 for SR compared to MR and FR protocols. No significant differences were observed among the protocols for VO(2), % VO(2)peak, V(E), plasma lactate ([La(-)]) and blood hydrogen ion concentration ([H(+)]), and heart rate (HR) values at VT1 or VT2. The work rate (WR) measured at VT1, VT2 and VO(2)peak increased (p < 0.05) with steeper ramp slopes. It was concluded that, in highly-trained cyclists, assessments of VT1 and VT2 are independent of ramp rate (10, 30, 50 W*min(-1)) when expressed as VO(2), % VO(2)peak, V(E), plasma [La(-)], blood [H(+)] and HR values, whereas VO(2)peak is lower during 10 W*min(-1) compared to 30 and 50 W*min(-1) ramp protocols. In addition, the WR measured at VT1, VT2 and VO(2)peak varies with the ramp slope and should be utilized cautiously when prescribing training or evaluating performance.  相似文献   

17.
18.
H. Stehr 《Der Radiologe》1996,36(4):279-284
Summary Electromedical technology and systems are an integral part of health services and contribute to their costs. Despite the sometimes high capital costs, they have proofed to be effective and efficient for health services. Technological assessment with respect to benefit and cost aspects has been well and systematically evaluated, but requires much work in detail. In many cases less sophisticated procedures are sufficiently effective for a reliable evaluation. Corresponding results that show the cost-saving potential of advanced technology for radiology are reported. Eingegangen am 21. Februar 1996 Angenommen am 29. Februar 1996  相似文献   

19.
Comparison of in vitro effectiveness of mechanical thrombectomy devices   总被引:4,自引:0,他引:4  
PURPOSE: To determine the in vitro efficacy of clot removal of the following hydrodynamic thrombectomy devices: the AngioJet (AJ), Hydrolyser (HL), Oasis (OS), and Amplatz Thrombectomy Device (ATD). All devices have 6-F catheters. MATERIALS AND METHODS: Thrombectomy of 5-day-old porcine clots (n = 68; 8.5 g) was performed with the AJ without a guide wire [AJ(gw0)], with a coaxial 0.016-inch guide wire [AJ(gw.016)], and with a 0.035-inch guide wire [AJ(gw.035)]), and with the HL, OS, and ATD in an artery flow model (pulsed flow: 700 L/min) simulating the superficial femoral artery (7-mm inner tube diameter). The effluent was passed through a three-step filter system (10-1,000 microm; pressure drop: 35 mm Hg). RESULTS: Mean thrombectomy time ranged from 49 seconds (AJ(gw0)) to 88 seconds (OS; P < .001). The fluid balance with use of the AJ(gw.035) was 0.89, whereas the mean ratio of applied saline solution to aspirated fluid for the other devices was not isovolumetric (AJ(gw0), 0.8; AJ(gw.016), 0.78; HL, 0.73; OS, 0.62; P < .05). Remaining thrombus ranged in size from 8.2 mg (AJ(gw0)) to 27.3 mg (AJ(gw.035); P = .079). Hydrodynamic devices (0.6% [OS] to 0.98% [AJ(gw.016)]) caused low amounts of added emboli greater 10 microm, 100 microm, and 1,000 microm. The ATD (5.19%) caused the most extensive embolization (P < .001). CONCLUSIONS: The tested mechanical thrombectomy devices have the power for sufficient thrombectomy in vitro; however, they showed moderate differences in performance. In contrast to hydrodynamic devices, the ATD fragmentation device showed a higher peripheral embolization rate of particles larger than 1,000 microm; adjunctive in vivo treatment would probably be required.  相似文献   

20.
Determinants of performance and mechanical efficiency of effort have been made on a group of ten male nordic skiers, all participants in the University of Toronto ski-team. The oxygen intake at the maximum attainable speed of skiing on a level course averaged 89.6 percent of the maximum oxygen intake observed during uphill treadmill running; the latter (average 63.9 ml.kg-1 min-1) may be compared with values greater than 80 ml.kg1 min-1 for international competitors. Maximum heart rates and respiratory gas exchange ratios were generally lower during skiing than running, and it is suggested that the maximum oxygen intake attained during skiing is limited by the individual's skill. In support of this the more experienced skiers were able to reach close to 100 percent of the treadmill maximum oxygen intake during level skiing. A multiple regression analysis indicated that the skiing speed sustained over a one-hour period was related to experience of skiing, maximum oxygen intake, and the percentage of body fat. Assuming a dynamic friction coefficient of 0.075, a drag area of 0.7 m2 and a drag coefficient of 1.0, the gross mechanical efficiency of the university-class skier averaged a little under 20 percent, with a net efficiency of 21.3 percent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号