首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
A region of the interleukin-2 (IL-2) promoter known as the RE/AP element is activated in concert by signals that originate from the T cell antigen receptor and the CD28 coreceptor. We show here that the serine-threonine kinase Akt can provide a costimulatory signal for RE/AP activation that is indistinguishable from the signal provided by CD28. This includes the ability of Akt, like antibodies to CD28, to synergize with protein kinase C theta (PKC-theta) in the induction of RE/AP. Retrovirus-mediated expression of activated Akt in primary T cells from CD28-deficient mice is capable of selectively restoring production of IL-2 and interferon gamma, but not IL-4 or IL-5. Our results provide evidence that CD28 costimulation of different cytokines is mediated by discrete signaling pathways, one of which includes Akt.  相似文献   

9.
10.
11.
12.
IL-10 induces T cell anergy in numerous mouse models and specific immunotherapy of allergy in humans. Here, we demonstrate that IL-10 directly acts on T cells which are stimulated via CD28 by efficiently blocking proliferation and cytokine production. T cells tolerized by IL-10 showed high viability and the unresponsive state was reversed by anti-CD3 monoclonal antibody (mAb) stimulation and IL-2, but not by anti-CD28 mAb stimulation. Signal transduction via CD28 requires CD28 tyrosine phosphorylation and binding of phosphatidylinositol 3-kinase. IL-10 inhibited tyrosine phosphorylation of CD28; thus, the phosphatidylinositol 3-kinase binding to CD28 was blocked. Consequently, IL-10 inhibited the antigen-induced secretion of both Th1 and Th2 cytokines, including IL-2, IFN-gamma, IL-4, IL-5 and IL-13. Furthermore, neutralization of endogenously produced IL-10 significantly increased T cell proliferation and both Th1 and Th2 cytokine production in vitro. Using superantigen stimuli, T cell suppression by IL-10 was merely induced at low doses when co-stimulation by CD28 was essential. Together, these data demonstrate that IL-10 directly acts on the CD28 signaling pathway and this represents an important T cell suppression mechanism leading to anergy.  相似文献   

13.
14.
T cell activation is central to initiating an immune response. Two signals are required: an antigen-specific signal through the T cell receptor (TCR) and an antigen-independent costimulatory signal, primarily through CD28 in naïve T cells. Although many of the molecules involved in TCR signal transduction have been identified, the signaling pathways downstream of CD28 involved in costimulation are not well-defined. Through mutagenesis, we have generated a panel of Jurkat T cell lines in which CD28 costimulation fails to upregulate the RE/AP composite element of the IL-2 promoter. Biochemical analysis and genetic rescue of the defects in these cell lines will lead to a better understanding of CD28 signal transduction.  相似文献   

15.
16.
BACKGROUND: Induction of specific unresponsiveness (tolerance/anergy) in peripheral T cells and recovery by cytokines from the tissue microenvironment represent two key steps in specific immunotherapy (SIT) with whole allergen or antigenic T cell peptides. METHODS: Antigen-specific T cell responses and molecular mechanisms of T cell inactivation were investigated during conventional SIT, T cell epitope peptide immunotherapy and natural exposure to bee venom in allergic and hyperimmune individuals. RESULTS: T cell unresponsiveness, initiated by autocrine action of IL-10, is characterized by suppressed proliferative and cytokine responses. The unresponsive T cells can be reactivated by different cytokines that may mimic the microenvironmental cytokine influence. IL-10 initiates peripheral tolerance by blocking the CD28 costimulatory signal in T cells. Coprecipitation experiments reveal that upon stimulation CD28 and IL-10 receptor are physically associated in T cells. Accordingly, IL-10 binding to its receptor inhibits CD28 tyrosine phosphorylation, the initial step of the CD28 signaling pathway. This leads to inhibition of phosphatidylinositol 3-kinase p85 binding to CD28. IL-10 only affects T cells that receive a stimulation with low numbers of triggered T cell receptors and that require costimulatory signals by CD28. CONCLUSION: These data demonstrate the pivotal role of autocrine IL-10 and the interaction of its receptor with CD28 in the induction of T cell tolerance as an immunoregulatory mechanism controlling antigen-specific T cell responses.  相似文献   

17.
Depressed mitogen-induced IL-2 and IFN-gamma responses after severe mechanical or thermal injury are postulated to result from an expansion of Th2 lymphocytes with concomitant excessive production of IL-4 and/or IL-10. Here, we simultaneously assessed proliferation and Th1 (IFN-gamma) versus Th2 (IL-10, IL-4) lymphokine production in trauma patients' isolated T cells stimulated in a costimulation sufficient, antigen presenting cell independent system (anti CD3 + anti-CD4). T cells with depressed proliferation and IL-2 production simultaneously lost IL-4, IL-10, and IFN-gamma protein and mRNA responses. Exogenous IL-12 addition did not restore IFNgamma responses, but exogenous IL-2 partially restored IL-4, IFN-gamma, and IL-10 production. Although initially partially restored by exogenous IL-2 or stimulation with PMA + ionomycin, patient T cells with persisting anergy progressively lost even these lymphokine and proliferative responses. Development of global T cell anergy was not a result of lost T cell viability or protein synthesis, since it corresponded to predominance of anergic T cells with upregulated expression of CD11b, but downregulated CD28 and CD3 expression. Thus, the subset of posttrauma patients whose isolated T cells become unresponsive experienced progressively worsening global anergy, mediated not by an increased production of Th2 lymphokines, but possibly by T cell incapacity to be activated through TCR triggering or Ca(2+) mobilization.  相似文献   

18.
Chronic engagement of the T cell receptor mediates the induction of T lymphocyte unresponsiveness called clonal anergy. The development of such unresponsiveness has been suggested as one of the mechanisms that regulate peripheral tolerance to self-antigens and hamper the capacity of tumor antigen-specific T cells to eliminate cancerous cells. In the attempt to enhance the effector function of CD4(+) T lymphocytes and their resistance to clonal anergy induction, we have transduced primary T cells with a retroviral vector encoding active p21(ras) (Ras(Leu61)). Here we show that Ras(Leu61) elicited TCR-independent activation of the Ras-Raf-ERK pathway and conferred primary T cells with the ability to secrete IL-2 in response to stimulation with a Ca(2+) ionophore alone, without altering antigen-, CD3/CD28- and PMA/ionomycin-driven IL-2 secretion and T cell proliferation in vitro. However, chronic engagement of the TCR onthe surface of Ras(Leu61) T cells still led to an inability of the cells to produce IL-2 upon restimulation. These results indicate that enforced p21(ras) functionality enhances primary T cells responses to calcium-generated signals, but is insufficient to prevent TCR-driven T cell unresponsiveness and suggest that additional biochemical mechanisms, independent of p21(ras), negatively regulate IL-2 production in unresponsive T cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号