首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although clinical, pathological, and biochemical effects of organophosphorus-induced delayed neuropathy (OPIDN) have been intensively investigated in the adult hen, detailed electrophysiological studies are lacking. Adult white leghorn hens were treated with a single oral dose of either 30 mg/kg tri-2-cresyl phosphate (TOCP), 750 mg/kg TOCP, 4 mg/kg di-n-butyl-2,2-dichlorovinyl phosphate (DBCV), or 30 mg/kg di-n-butyl-2,2-dichlorovinyl phosphinate (DBCV-P). The 750 mg/kg TOCP and DBCV, but not the 30 mg/kg TOCP and DBCV-P, treatments resulted in clinical signs of OPIDN and mild to marked damage of the tibial nerve 21 days after dose. Twenty-four hr lymphocyte neurotoxic esterase (NTE) inhibition was used as an index of brain NTE inhibition for the various organophosphorus compound (OP) treatment. Twenty-four hr lymphocyte NTE inhibition for 30 mg/kg TOCP, 750 mg/kg TOCP, DBCV, and DBCV-P was 54.1, 87.1, 84.8, and 68.3%, respectively. Twenty-one days after dose, the TOCP-treated hens exhibited some abnormalities in conduction velocity and action potential duration in the tibial or sciatic nerves. No abnormalities were observed in action potential parameters of either the DBCV or DBCV-P treatments. Neurotoxic OP (TOCP and DBCV) treatment resulted in decreased refractoriness in the tibial nerve, increased refractoriness in the sciatic nerve, and elevated strength duration threshold for both nerves. These changes were not present in nerves from DBCV-P (a non-neurotoxic NTE inhibitor)-treated hens. These results suggest that refractory period and strength duration abnormalities in peripheral nerve correlate well with the production of OPIDN and are evident without coincident clinical signs or histopathology.  相似文献   

2.
This work evaluated the potential of the isoforms of methamidophos to cause organophosphorus-induced delayed neuropathy (OPIDN) in hens. In addition to inhibition of neuropathy target esterase (NTE) and acetylcholinesterase (AChE), calpain activation, spinal cord lesions and clinical signs were assessed. The isoforms (+)-, (±)- and (-)-methamidophos were administered at 50mg/kg orally; tri-ortho-cresyl phosphate (TOCP) was administered (500mg/kg, po) as positive control for delayed neuropathy. The TOCP hens showed greater than 80% and approximately 20% inhibition of NTE and AChE in hen brain, respectively. Among the isoforms of methamidophos, only the (+)-methamidophos was capable of inhibiting NTE activity (approximately 60%) with statistically significant difference compared to the control group. Calpain activity in brain increased by 40% in TOCP hens compared to the control group when measured 24h after dosing and remained high (18% over control) 21 days after dosing. Hens that received (+)-methamidophos had calpain activity 12% greater than controls. The histopathological findings and clinical signs corroborated the biochemical results that indicated the potential of the (+)-methamidophos to be the isoform responsible for OPIDN induction. Protection against OPIDN was examined using a treatment of 2 doses of nimodipine (1mg/kg, i.m.) and one dose of calcium gluconate (5mg/kg, i.v.). The treatment decreased the effect of OPIDN-inducing TOCP and (+)-methamidophos on calpain activity, spinal cord lesions and clinical signs.  相似文献   

3.
The poor absorption of organophosphate delayed neurotoxins through the gastrointestinal tract has been suggested as a reason why young chickens are not susceptible to organophosphate-induced delayed neurotoxicity (OPIDN). In the present study, 4-wk-old White Leghorn chickens were administered a single dose of 500 mg tri-o-tolyl phosphate (TOTP)/kg body weight or 100 mg o-tolyl saligenin phosphate (TSP)/kg body weight via the oral, intramuscular, or intraperitoneal route. In addition, TOTP TSP were administered intravenously at 250 and 50 mg/kg body weight, respectively. Forty-eight hours after dosing, half the birds in each group were killed for subsequent determination of whole-brain and sciatic nerve neurotoxic esterase (NTE) activity while the remaining 5 birds per group were observed daily from d 7 through d 21 for development of OPIDN clinical signs. TOTP administered by the 4 routes generally resulted in whole-brain and sciatic nerve NTE inhibition in excess of 85%. TSP given via the different routes resulted in 75-84% inhibition of whole-brain NTE activity and 66-79% inhibition of sciatic nerve NTE activity. No birds displayed clinical signs typical of OPIDN during the 21-d test. Thus, the resistance of the young chicken to the delayed effects of organophosphate compounds is due to factors other than the poor absorption of the compound through the gastrointestinal tract or the inability of the bird to convert TOTP to its neuroactive metabolite, TSP.  相似文献   

4.
Immature cockerels were susceptible to OPIDN when dosed with TOCP. Using 30 broiler-breed cockerels, 6 w old, 10 birds each received 28 daily im injections of either 50 mg estradiol, 100 mg testosterone or 0.1 ml of vehicle. At 7 w of age, 5 birds in each of the 3 groups received a single oral dose of 500 mg TOCP/kg body weight, while the remaining 5 birds/groups were given corn oil. The birds were observed daily for 14 d beginning on day 8 post-TOCP exposure for the development of clinical signs characteristic of OPIDN. At 21 d post-TOCP, all birds were killed and the adrenal gland and testes were prepared for histopathology of the birds that received TOCP, 1 of 5 that were given testosterone and 2 of 5 that received estradiol had signs typical of OPIDN. All of the 5 birds that received TOCP alone showed OPIDN signs. The testes of the TOCP-exposed birds that showed clinical signs had reductions in the size of the seminiferous tubules and no evidence of spermatogenic activity. This study demonstrated that sex hormones can modulate the clinical effects of TOCP in immature cockerels through unknown mechanisms that are similar to those reported for corticosterone in adult chickens.  相似文献   

5.
Organophosphorus (OP) used as pesticides and hydraulic fluids can produce acute poisoning known as OP-induced delayed neuropathy (OPIDN), whose effects take long time to recover. Thus a secure therapeutic strategy to prevent the most serious effects of this poisoning would be welcome. In this study, tri-o-cresyl phosphate (TOCP, 500 mg/kg p.o.) was given to hens, followed or not by nimodipine (1 mg/kg i.m.) and calcium gluconate (Ca-glu 5 mg/kg i.v.). Six hours after TOCP intoxication, neuropathy target esterase (NTE) activity inhibition was observed, peaking after 24 h exceeding 80% inhibition. A fall in the plasmatic calcium levels was noted 12 h after TOCP was given and, in the sciatic nerve, Ca2+ fell 56.4% 24 h later; at the same time calcium activated neutral protease (CANP) activity increased 308.7%, an effect that lasted 14 days. Any bird that received therapeutic treatment after TOCP intoxication presented significant signs of OPIDN. These results suggest that NTE may be implicated in the regulation of calcium entrance into cells being responsible for the maintenance of normal function of calcium channels, and that increasing CANP activity is responsible to triggering OPIDN. Thus, with one suitably adjusted dose of nimodipine as well as Ca-glu, we believe that this treatment strategy may be used in humans with acute poisoning by neuropathic OP.  相似文献   

6.
The neuropathic syndrome resulting in the cat and the rat from single or multiple doses of the phosphorous acid ester tiphenyl phosphite (TPP) has been reported to differ from the syndrome caused by numerous phosphoric acid esters, which is known as organophosphorous compound-induced delayed neurotoxicity (OPIDN). Since the hen is used to test compounds for OPIDN, we chose to study the neurotoxicity of single subcutaneous doses of TPP using this animal model. TPP (1000 mg/kg) produced progressive ataxia and paralysis which began to develop 5–10 days after dosing. Similar signs were observed when subcutaneous doses of the OPIDN-causing agents tri-o-cresyl phosphate (TOCP) or diisopropyl phosphorofluoridate (DFP) were administered. The minimum neurotoxic dose of TPP was 500 mg/kg. Prior administration of phenylmethylsulfonyl fluoride (PMSF) prevented the development of a neuropathy induced by DFP, but did not fully protect the hens from TPP or TOCP. PMSF slowed, but did not prevent, the neuropathy caused by TOCP. PMSF reduced the neurotoxicity of 500 mg/kg TPP, but increased the neurotoxicity of 1000 mg/kg TPP. TPP was found to be a very potent inhibitor of neurotoxic esterase (NTE), the putative target site for OPIDN, in vitro, with a ki of about 2.1×105 M–1min–1. Equimolar doses of either TPP (1000 mg/kg) and TOCP (1187 mg/kg) caused over 80% inhibition of neurotoxic esterase (NTE) in brain and sciatic nerve. This high level of NTE inhibition persisted for several weeks. This prolonged inhibition probably accounts for the inability of PMSF to block the neurotoxicity of TOCP. The dose-response curve for NTE inhibition 48 h after dosing indicated that a level of 70% inhibition correlated with the neurotoxicity of TPP.Subneurotoxic doses of TPP and DFP were found to have an additive effect which could be blocked by PMSF. These results indicate that TPP can cause OPIDN in the hen. The synergism between PMSF and the higher dose of TPP suggests the presence of a second neurotoxic effect as well.  相似文献   

7.
The acute toxicity of tri-ortho-cresyl phosphate (TOCP) and the development of delayed neurotoxicity were characterized in the scaleless hen, a featherless mutant, and compared to the responses observed in normally feathered birds. Brain acetylcholinesterase (AChE) activity was comparable between scaleless and normal hens, but nonspecific cholinesterase (ChE) activities of brain and plasma were significantly higher in scaleless birds. The acute ID50 of TOCP for plasma ChE activity was 690 mg/kg for scaleless birds and 240 mg/kg for normal ones following sc administration. However, there was no difference in the ID50 for plasma ChE activity between normal and scaleless hens treated sc with the active metabolite of TOCP, 2-(o-cresyl)-4H-1:3:2-benzodioxaphosphoran-2-one, or parathion. The onset of clinical signs of delayed neurotoxicity in scaleless birds was 8 to 14 days after sc or dermal treatment with TOCP and caused typical axonal fragmentation in the sciatic nerve. Plasma creatine phosphokinase activity was significantly increased following the onset of delayed neurotoxicity in both lines of birds. Dermal application of TOCP to a 50-cm2 area on the backs of scaleless hens inhibited plasma ChE activity in a dose-related manner (ID50 = 115 mg/kg), and the lowest dose of TOCP, 114 mg/kg, did not produce delayed neurotoxicity. The results show that the scaleless hen can be used to determine a no-observable effect level for delayed neurotoxicity which regulatory agencies could use to extrapolate a safe level of human dermal exposure to organophosphates that produce delayed neurotoxicity.  相似文献   

8.
Phenylmethylsulfonyl fluoride (PMSF), a nonneuropathic inhibitorof neurotoxk esterase (NTE), is a known potentiator of organophosphorus-induceddelayed neurotoxicity (OPIDN)- The ability of PMSF posttreatment(90 mg/kg, sc, 4 hr after the last PSP injection) to modifydevelopment of delayed neurotoxicity was examined in 2-, 5-,and 8-week-old White Leghorn chickens treated either one, two,or three times (doses separated by 24 hr) with the neuropathicOP compound phenyl saligenin phosphate (PSP, 5 mg/kg, sc). NTEactivity was measured in the cervical spinal cord 4 hr afterthe last PSP treatment. Development of delayed neurotoxicitywas measured over a 16-day postexposure period. All PSP-treatedgroups exhibited >97% NTE inhibition regardless of age ornumber of OP treatments. Two-week-old birds did not developclinical signs of neurotoxicity in response to either singleor repeated OP treatment regimens nor following subsequent treatmentwith PMSF. Five-week-old birds were resistant to the clinicaleffects of a single PSP exposure and were minimally affectedby repeated doses. PMSF posttreatment, however, significantlyamplified the clinical effects of one, two, or three doses ofPSP. A single exposure to PSP induced slight to moderate signsof delayed neurotoxicity in 8-week-old birds with more extensiveneurotoxicity being noted following repeated dosing. As with5-week-old birds, PMSF exacerbated the clinical signs of neurotoxicitywhen given after one, two, or three doses of PSP in 8-week-oldbirds. Axonal degeneration studies supported the clinical findings:PMSF posttreatment did not influence the degree of degenerationin 2-week-old chickens but resulted in more severe degeneration(relative to PSP only exposure) in cervical cords from both5- and 8-week-old birds. The results indicate that PMSF doesnot alter the progression of delayed neurotoxicity in very young(2 weeks of age) chickens but potentiates PSP-induced delayedneurotoxicity in the presence of 0–3% residual NTE activityin older animals. We conclude that posttreatment with neuropathicor nonneuropathic NTE inhibitors, following virtually completeNTE inhibition by either single or repeated doses of a neuropathicagent in sensitive age groups, can modify both the clinicaland morphological indices of delayed neurotoxicity. This studyfurther supports the hypothesis that potentiation of OPIDN occursthrough a mechanism unrelated to NTE.  相似文献   

9.
The effect of the microsomal enzyme inducer beta-naphthoflavone (beta NF) on the development of organophosphorus-induced delayed neuropathy (OPIDN) was examined in two laboratories (VPI and MSU), utilizing two strains of White Leghorn hens. A single intraperitoneal injection of beta NF at 80 mg/kg body weight 48 h prior to administration of o-tolyl saligenin phosphate (TSP), the neuroactive metabolite of tri-o-tolyl phosphate (TOTP), caused a significant increase in hepatic microsomal cytochrome P-450 concentrations and aniline hydroxylase activities after 72 h in both strains. Hepatic carboxylesterase and cholinesterase activities were not affected by beta NF treatment in either strain. Administration of TSP in single subcutaneous doses of 20 and 25 mg/kg body weight (VPI) or 30 and 60 mg/kg body weight (MSU) caused significant inhibition of whole-brain neuropathy target esterase (NTE) activity 24 h postdosing, and hens subsequently developed clinical signs characteristics of OPIDN. beta NF had no significant effect on NTE inhibition or on initiation or severity of OPIDN clinical signs. However, OPIDN clinical signs were less severe in the strain of bird (MSU) with the higher intrinsic hepatic carboxylesterase activity and the higher beta NF-induced cytochrome P-450 concentration. The study indicates that microsomal enzyme induction, which has been shown to alleviate TOTP-induced delayed neuropathy, could not alleviate OPIDN resulting from exposure to TSP. This study also suggests that strain may affect susceptibility to TSP-induced delayed neuropathy.  相似文献   

10.
Adult white leghorn chickens, ring-necked pheasants, mallards, bobwhites, and Japanese quail were administered single oral doses of tri-o-tolyl phosphate (TOTP) at levels of 125, 250, 500, and 1000 mg/kg body weight. Corn oil served as the vehicle control. At 24 h after dosing, half the birds from each group were killed for determination of whole-brain neurotoxic esterase (NTE) activity. The remaining birds were maintained for 21 d. Daily observations for the development of clinical signs typical of delayed neurotoxicity were begun 7 d after dosing and continued for the subsequent 14 d. In both the Japanese quail and bobwhite, all doses of TOTP resulted in NTE inhibition in excess of 70%, yet no birds of either species developed ataxia or paralysis. However, in the mallard none of the doses of TOTP caused inhibition of NTE activity greater than 61% nor resulted in the development of clinical signs. In the pheasant, all doses of TOTP caused at least a 70% inhibition of whole-brain NTE activity, yet only birds receiving 500 and 1000 mg/kg developed clinical signs. In the chicken, all TOTP doses caused inhibition of NTE in excess of 80%, and all doses resulted in clinical signs typical of delayed neurotoxicity.  相似文献   

11.
The present study is concerned with the involvement of strain differences in rodent sensitivity to organophosphorous compound-induced delayed neurotoxicity (OPIDN). The inhibitory effect of three doses of tri-o-cresyl phosphate (TOCP) on neurotoxic esterase (NTE) and acetylcholinesterase (AChE) in brain was compared in three strains of rat: Long-Evans (LE) animals, which have been reported to be sensitive to the neurotoxic effects of TOCP, and Sprague-Dawley (SD) or Fischer 344 (F344) strains, with which negative results have been obtained. Differences in basal levels were found for NTE (LE greater than F344) greater than SD, with a range of 4.87-7.47 nmol phenylvalerate hydrolyzed/mg protein), but not AChE. Strain differences in inhibition by TOCP were found with both assays, with Sprague-Dawley animals being much less sensitive to esterase inhibition than either Long-Evans or Fischer 344 rats. The ED50 values for NTE inhibition were estimated to be 458, 209, and 288 mg/kg for SD, F344, and LE rats, respectively. The ED50 values for AChE inhibition were estimated to be 1007, 408, and 420 mg/kg for SD, F344, and LE rats, respectively. Liver microsomes from the Fischer animals had less cytochrome P-450 than those from the other two strains. Differences in the ability of the strains to either form or inactivate the active metabolite of TOCP may account for the variation observed. While metabolism may play a role in the differences in the level of NTE inhibition in SD rats compared to the LE strain, it cannot account for the lack of sensitivity of the F344 animals to OPIDN. These results may be important in selecting a strain for the study of the toxic effects of organophosphorous compounds in rats.  相似文献   

12.
This study reports that CD-1 strain mice are neuropathologically and biochemically responsive to acute doses of tri-ortho-cresyl phosphate (TOCP). Young (25-30 g) male and female animals were exposed (po) to a single dose of TOCP (580-3480 mg/kg) and sampled for neurotoxic esterase (NTE) activity at 24 and 44 hr postexposure and for neuropathic damage 14 days later. Biochemically, high intragroup variability existed at the lower doses, and at higher levels of TOCP exposure (i.e., greater than or equal to 1160 mg/kg), mean brain NTE inhibition never exceeded 68%. Hen and mouse brain NTE activity, assayed in vitro for sensitivity to inhibition by tolyl saligenin phosphate (TSP), the active neurotoxic metabolite of TOCP, showed similar IC50 values. Histologically, highly variable spinal cord damage was recorded throughout treatment groups and mean damage scores followed a dose-response pattern with no apparent correlation to threshold (i.e., greater than or equal to 65%) inhibition of brain NTE activity. Topographically, axonal degeneration in the mouse spinal cord predominated in the lateral and ventral columns of the upper cervical cord. Unlike the rat, which displays degeneration in the upper cervical cord's dorsal columns (i.e., gracilis fasciculus) in response to TOCP intoxication, treated mice showed minimal damage to this tract. To examine this discrepancy further, ultrastructural morphometric analysis of axon diameters in the cervical cord was performed in control mice and rats. These results indicated that in both species, the largest diameter (greater than or equal to 4 microns) axons are housed in the ventral columns of the cervical spinal cord, suggesting that axon length and diameter may not be the only criteria underlying fiber tract vulnerability in OPIDN.  相似文献   

13.
The sensitivity of the mouse to organophosphorus-induced delayed neurotoxicity (OPIDN) has been investigated. One group of five mice received two single 1000-mg/kg po doses of tri-o-cresyl phosphate (TOCP) at a 21-day interval (on Days 1 and 21 of the study); a second group of five mice was given 225 mg/kg of TOCP daily for 270 days. A third group of five animals served as an untreated control. All animals were killed 270 days after the start of the experiment. Daily po dosing of 225 mg/kg TOCP caused a decrease in body weight gain, muscle wasting, weakness, and ataxia which progressed to severe hindlimb paralysis at termination. On the other hand, po administration of two single 1000-mg/kg doses of TOCP at a 21-day interval produced no observable adverse effects. Brain acetylcholinesterase (AChE) and neurotoxic esterase (NTE) activity were 35 and 10% of the control, respectively, in daily dosed animals while AChE and NTE in mice receiving two single 1000-mg/kg doses of TOCP were not significantly altered from the control group. Plasma butyrylcholinesterase activity was 12% of the control group in daily dosed animals. Hepatic microsomal enzyme activities of aniline hydroxylase and p-chloro-N-methylaniline demethylase and NADPH-cytochrome P-450 content in daily dosed animals were increased (141 to 161% of the control group) when compared to controls and mice receiving two single 1000-mg/kg doses of TOCP; the latter being not significantly different from each other. Degeneration of the axon and myelin of the spinal cord and sciatic fascicle were observed and were consistent with OPIDN. This study demonstrates that chronic dosing of TOCP produces OPIDN and induces hepatic microsomal enzyme activity in mice. It is concluded that while the mouse is susceptible to OPIDN, it is a less sensitive and a less appropriate test animal for studying this effect when compared to the adult hen.  相似文献   

14.
A rodent model of organophosphorus-induced delayed neuropathy (OPIDN) has been developed using Long-Evans adult male rats exposed to tri-ortho-cresyl phosphate (TOCP). In the present study an attempt was made to relate neurochemical with neuropathological changes in rats exposed to single dosages of TOCP ranging from 145 to 3480 mg/kg. The degree of neurotoxic esterase (NTE) inhibition, measured at 20 and 44 hr and at 14 days postexposure was correlated with the appearance of spinal cord pathology 14 days postexposure in a separate group of similarly dosed rats. Those dosages that inhibited mean NTE activity in spinal cord greater than or equal to 72% and brain greater than or equal to 66% of control values within 44 hr postexposure produced marked spinal cord pathology 14 days postexposure in greater than or equal to 90% of similarly dosed animals. In contrast, dosages of TOCP which inhibited mean NTE activity in the spinal cord less than or equal to 65% and in the brain less than or equal to 57% produced spinal cord pathology in less than or equal to 15% of the animals. These data indicate that NTE inhibition may be used as a biochemical predictor for TOCP-induced neurological damage in rats.  相似文献   

15.
The effects of desbromoleptophos, fenitrothion, and fenthion on brain acetylcholinesterase (AChE), brain neurotoxic esterase (NTE), and walking were investigated in immature chicks, below the age of organophosphorus ester-induced delayed neurotoxicity (OPIDN). Seventy-five milligrams per kilogram of the delayed neurotoxicant desbromoleptophos (DBL) and 100 mg/kg of the nonneurotoxicant fenithrothion (FTR) were given orally to 8-d-old chicks. Five milligrams per kilogram of the suspected neurotoxicant fenthion (FEN) was administered topically for 7 d, in 4 different age groups. Behavioral testing was performed for treated and control chicks on various days after treatment. Brain NTE and AChE assays were carried out for treated and control chicks on each day of behavioral testing. NTE and AChE inhibition were around 80 and 50%, respectively, 24 h after treatment, for the chicks treated with DBL. NTE returned to normal levels by 20 d and AChE by 6 d after treatment. FTR caused 56% AChE inhibition but not NTE inhibition 24 h after treatment. NTE inhibition for the FEN-treated chicks never exceeded 25% during the whole period of the experiment, whereas 65 and 54% inhibition of AChE was seen in two age groups. DBL and FEN significantly altered the gait of treated chicks, but the non-OPIDN-inducing FTR did not. FEN-treated chicks developed an atypical ataxia at the normal age for onset of sensitivity to OPIDN. Minimal NTE inhibition, long latency for the development of ataxia, and immaturity of the chicks at treatment distinguish FEN-induced functional deficits from classical OPIDN.  相似文献   

16.
Synthetic polyol-based lubricating oils containing 3% of eithercommercial tricresyl phosphate (TCP), triphenylphosphorothionate(TPPT), or butylated triphenyl phosphate (BTP) additive wereevaluated for neurotoxicity in the adult hen using clinical,biochemical, and neuropathological endpoints. Groups of 17–20hens were administered the oils by oral gavage at a "limit dose"of 1 g/kg, 5 days a week for 13 weeks. A group of positive controlhens was included which received 7.5 mg/kg of one isomer ofTCP (tri-ortho-cresyl phosphate, TOCP) on the same regimen,with an additional oral dose of 500 mg/kg given 12 days beforethe end of the experiment. A negative control group receivedsaline. Neurotoxic esterase (NTE) activity in brain and spinalcord of hens dosed with the lubricating oils was not significantlydifferent from saline controls after 6 weeks of treatment. After13 weeks of dosing, NTE was inhibited 23 to 34% in brains oflubricant-treated hens. Clinical assessments of walking abilitydid not indicate any differences between the negative controlgroup and lubricant-treated hens. Moreover, neuropathologicalexamination revealed no alterations indicative of organophosphorus-induceddelayed neuropathy (OPIDN). in hens treated with the positivecontrol, significant inhibition of NTE was observed in brainand spinal cord at both 6 and 13 weeks of dosing; this groupalso demonstrated clinical impairment and pathological lesionsindicative of OPIDN. In conclusion, the results of the presentstudy indicated that synthetic polyol-based lubricating oilscontaining up to 3% TCP, TPPT, or BTP had low neurotoxic potentialand should not pose a hazard under realistic conditions of exposure.  相似文献   

17.
Hou WY  Long DX  Wang HP  Wang Q  Wu YJ 《Toxicology》2008,252(1-3):56-63
Little is known regarding early biochemical events in organophosphate-induced delayed neurotoxicity (OPIDN) except for the essential inhibition of neuropathy target esterase (NTE). We hypothesized that the homeostasis of lysophosphatidylcholine (LPC) and/or phosphatidylcholine (PC) in nervous tissues might be disrupted after exposure to the organophosphates (OP) which participates in the progression of OPIDN because new clues to possible mechanisms of OPIDN have recently been discovered that NTE acts as lysophospholipase (LysoPLA) in mice and phospholipase B (PLB) in cultured mammalian cells. To bioassay for such phospholipids, we induced OPIDN in hens using tri-o-cresyl phosphate (TOCP) as an inducer with phenylmethylsulfonyl fluoride (PMSF) as a negative control; and the effects on the activities of NTE, LysoPLA and PLB, the levels of PC, LPC, and glycerophosphocholine (GPC), and the aging of NTE enzyme in the brain, spinal cord, and sciatic nerves were examined. The results demonstrated that the activities of NTE, NTE-LysoPLA, LysoPLA, NTE-PLB and PLB were significantly inhibited in both TOCP- and PMSF-treated hens. The inhibition of NTE and NTE-LysoPLA or NTE-PLB showed a high correlation coefficient in the nervous tissues. Moreover, the NTE inhibited by TOCP was of the aged type, while nearly all of the NTE inhibited by PMSF was of the unaged type. No significant change in PC or LPC levels was observed, while the GPC level was significantly decreased. However, there is no relationship found between the GPC level and the delayed symptoms or aging of NTE. All results suggested that LPC and/or PC homeostasis disruption may not be a mechanism for OPIDN because the PC and LPC homeostasis was not disrupted after exposure to the neuropathic OP, although NTE, LysoPLA, and PLB were significantly inhibited and the GPC level was remarkably decreased.  相似文献   

18.
Simultaneous intoxication with hexacarbon solvents and organophosphorus compounds has been considered a possible critical factor in some occupational neuropathies and their interactions proved to cause potentiation effects in hens [1-3]. A high degree of inhibition of neuropathy target esterase (NTE) is needed to develop organophosphorus induced polyneuropathy (OPIDP). In this work, the inhibition of NTE, BuChE and AChE by TOCP on control and n-hexane pretreated (7-15 days, 300 mg/kg per day) hens is studied. Using a single TOCP dose of 200 mg/kg, n-hexane pretreated hens showed synergistic effects, but no significant differences were observed in the inhibition of cholinesterases and NTE in brain or spinal cord. With lower TOCP dose (20 mg/kg) statistically significant differences were observed, which were not drastic but could be important because they involved an increase of inhibition up to critical threshold values (from 40-50% to 60-70% inhibition). However, no clinical effects were observed in these animals. Possible mechanisms of neurotoxic interaction are discussed.  相似文献   

19.
Certain sulfonates, like phenylmethanesulfonyl fluoride (PMSF), carbamates, and phosphinates, when given prior to neuropathic doses of organophosphates such as diisopropyl phosphorofluoridate (DFP), protect hens from organophosphate-induced delayed polyneuropathy (OPIDP). Protection was related to inhibition of the putative target of OPIDP, which is called Neuropathy Target Esterase (NTE). NTE inhibition above 70-80% in the nervous system of hens followed by a molecular rearrangement called aging initiates OPIDP. PMSF and other protective chemicals inhibit NTE but OPIDP does not develop because aging cannot occur. DFP (1 mg/kg sc) inhibited NTE above 70-80% in peripheral nerve and caused OPIDP in hens. Lower doses (0.3 and 0.5 mg/kg sc) caused about 40-60% NTE inhibition and no or marginal OPIDP. Chlorpyrifos (90 mg/kg po) also caused OPIDP. When repeated (30 mg/kg sc daily for 9 days) or single (5-120 mg/kg sc) doses of PMSF were given after either DFP or chlorpyrifos, OPIDP developed in birds treated with nonneuropathic doses of DFP and was more severe in birds treated with chlorpyrifos or higher doses of DFP. PMSF increased NTE inhibition to greater than 90%. Promotion of OPIDP with a single dose of PMSF (120 mg/kg sc) was obtained in birds up to 11 days after a marginally neuropathic dose of DFP (0.5 mg/kg sc). Promotion was also obtained with phenyl N-methyl N-benzyl carbamate (40 mg/kg iv) but not with non-NTE inhibitors in vivo such as paraoxon or benzenesulfonyl fluoride when given at maximum tolerated doses. These results indicate that protection from OPIDP is only one effect of PMSF because promotion of OPIDP is also observed depending upon the sequence of dosing. Either effect is always related to the doses of PMSF, which inhibit NTE.  相似文献   

20.
Previous studies have demonstrated that gait is affected in chicks exposed to organophosphorus esters (OPs) that induce delayed neurotoxicity (OPIDN) in adult hens. To investigate the developmental relationship between such functional deficits and OPIDN, chicks were exposed to 3 OPs with different OPIDN potential. Desbromoleptophos (DBL) induces OPIDN in adult hens; fenthion (FEN) has uncertain OPIDN potential; fenitrothion (FTR) does not induce OPIDN. Chicks were treated by injection into the egg on day 15 of incubation, after the presumed period of OP-induced structural teratogenesis. AChE and neurotoxic esterase (NTE) were assayed during incubation and in parallel with post-hatching evaluations of gait. DBL, 125 mg/kg in ovo, caused paralysis in 70% of chicks after hatching. The gait of surviving chicks was affected for at least 6 weeks and marked by toes curling under. NTE was inhibited until 10 days post-hatching and AChE until hatching. FEN did not inhibit NTE significantly, but AChE was significantly inhibited until hatching. Chicks exposed as embryos to FEN were hyperactive and aggressive. Gait was still affected 6 weeks after treatment with 3 mg/kg FEN. FTR at 125 mg/kg inhibited AChE until day 10 post-hatching, but neither inhibited NTE nor affected gait. The growth of OP-exposed chicks was not significantly decreased, so the decreased length and increased width of the stride could not be ascribed to stunted growth. We conclude that OPs cause irreversible effects on gait that are not related to their defined neurotoxic effects, since altered gait (1) occurs below the age of sensitivity to OPIDN, (2) is seen in the absence of NTE inhibition and (3) does not invariably accompany AChE inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号