首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Nanotoxicology》2013,7(4):546-556
Abstract

Six TiO2 and two CeO2 nanomaterials with dry sizes ranging from 6–410 nm were tested for their ability to cause DNA centered free radicals in vitro in the concentration range of 10–3,000 ug/ml. All eight of the nanomaterials significantly increased the adduction of the spin trap agent 5,5-dimethyl-1-pyroline N-oxide (DMPO) to DNA as measured by the experimental technique of immuno-spin trapping. The eight nanomaterials differed considerably in their potency, slope, and active concentration. The largest increase in DNA nitrone adducts was caused by a TiO2 nanomaterial (25 nm, anatase) from Alfa Aesar. Some nanomaterials that increased the amount of DNA nitrone adducts at the lowest exposure concentrations (100 ug/ml) were Degussa TiO2 (31 nm), Alfa Aesar TiO2 (25 nm, anatase) and Nanoamor CeO2 (8 nm, cerianite). At exposure concentrations of 10 or 30 ug/ml, no nanomaterials showed significant in vitro formation of DNA nitrone adducts.  相似文献   

2.
《Nanotoxicology》2013,7(3):326-340
Abstract

Nanomaterials are increasingly used in various food applications. In particular, nanoparticulate amorphous SiO2 is already contained, e.g., in spices. Since intestinal dendritic cells (DC) could be critical targets for ingested particles, we compared the in vitro effects of amorphous silica nanoparticles with fine crystalline silica, and micron-sized with nano-sized TiO2 particles on DC. TiO2- and SiO2-nanoparticles, as well as crystalline silica led to an upregulation of MHC-II, CD80, and CD86 on DC. Furthermore, these particles activated the inflammasome, leading to significant IL-1β-secretion in wild-type (WT) but not Caspase-1- or NLRP3-deficient mice. Silica nanoparticles and crystalline silica induced apoptosis, while TiO2 nanoparticles led to enhanced production of reactive oxygen species (ROS). Since amorphous silica and TiO2 nanoparticles had strong effects on the activation-status of DC, we suggest that nanoparticles, used as food additives, should be intensively studied in vitro and in vivo, to ensure their safety for the consumer.  相似文献   

3.
Despite considerable research on the environmental impacts of nanomaterials, we know little about how they influence interactions between species. Here, we investigated the acute (12 d) and chronic (64 d) toxicities of cerium oxide nanoparticles (CeO2 NPs) and bulk particles (0–200?mg/L) to three ciliated protist species (Loxocephalus sp., Paramecium aurelia, and Tetrahymena pyriformis) in single-, bi-, and multispecies microcosms. The results show that CeO2 NPs strongly affected the interactions between ciliated protozoan species. When exposed to the highest CeO2 NPs (200?mg/L), the intrinsic growth rates of Loxocephalus and Paramecium were significantly decreased by 18.87% and 88.27%, respectively, while their carrying capacities declined by more than 90%. However, CeO2 NP exposure made it difficult to predict outcomes of interspecific competition between species. At higher NP exposure (100 and 200?mg/L), competition led to the extinction of both species in the Loxocephalus and Paramecium microcosms that survived in the absence of competitors or CeO2 NPs. Further, the presence of potential competitors improved the survival of Loxocephalus to hundreds of individuals per milliliter in microcosms with Tetrahymena where Loxocephalus would otherwise not be able to tolerate high levels of NP exposure. This result could be attributed to weakened NP adsorption on the cell surface due to competitor-caused reduction of NP surface charge (from ?18.52 to ?25.17?mV) and intensified NP aggregation via phagocytosis of NPs by ciliate cells. Our results emphasize the need to explicitly consider species interactions for a more comprehensive understanding of the ecological consequences of NP exposure.  相似文献   

4.
Due to their catalytic and oxidative properties, cerium dioxide nanoparticles (CeO2NPs) are widely used as diesel additive or as promising therapy in cancerology; yet, scarce data are available on their toxicity, and none on their reproductive toxicity. We showed a significant decrease of fertilization rate, assessed on 1272 oocytes, during in vitro fertilization (IVF) carried out in culture medium containing CeO2NP at very low concentration (0.01?mg.l?1). We also showed significant DNA damage induced in vitro by CeO2NP on mouse spermatozoa and oocytes at 0.01?mg.l?1 using Comet assay. Transmission Electron Microscopy did not detect any nanoparticles in the IVF samples at 0.01?mg.l?1, but showed, at high concentration (100?mg.l?1), their endocytosis by the cumulus cells surrounding oocytes and their accumulation along spermatozoa plasma membranes and oocytes zona pellucida. We did not observe any nanoparticles in the cytoplasm of spermatozoa, oocytes or embryos. This study demonstrates for the first time the impact of CeO2NP on in vitro fertilization, as well as their genotoxicity on mouse spermatozoa and oocytes, at low nanoparticle concentration exposure. Decreased fertilization rates may result from: (1) CeO2NP’s genotoxicity on gametes; (2) a mechanical effect, disrupting gamete interaction and (3) oxidative stress induced by CeO2NP. These results add new and important insights with regard to the reproductive toxicity of nanomaterials requesting urgent evaluation, and support several publications on metal nanoparticles reprotoxicity. Our data highlight the need for in vivo studies after low-dose exposure.  相似文献   

5.
Nanosized titanium dioxide (TiO2) is a common additive in food and cosmetic products. The goal of this study was to investigate if TiO2 nanoparticles affect intestinal epithelial tissues, normal intestinal function, or metabolic homeostasis using in vitro and in vivo methods. An in vitro model of intestinal epithelial tissue was created by seeding co-cultures of Caco-2 and HT29-MTX cells on a Transwell permeable support. These experiments were repeated with monolayers that had been cultured with the beneficial commensal bacteria Lactobacillus rhamnosus GG (L. rhamnosus). Glucose uptake and transport in the presence of TiO2 nanoparticles was assessed using fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). When the cell monolayers were exposed to physiologically relevant doses of TiO2, a statistically significant reduction in glucose transport was observed. These differences in glucose absorption were eliminated in the presence of beneficial bacteria. The decrease in glucose absorption was caused by damage to intestinal microvilli, which decreased the surface area available for absorption. Damage to microvilli was ameliorated in the presence of L. rhamnosus. Complimentary studies in Drosophila melanogaster showed that TiO2 ingestion resulted in decreased body size and glucose content. The results suggest that TiO2 nanoparticles alter glucose transport across the intestinal epithelium, and that TiO2 nanoparticle ingestion may have physiological consequences.  相似文献   

6.
In this study, a Bayesian Network (BN) was developed for the prediction of the hazard potential and biological effects with the focus on metal- and metal-oxide nanomaterials to support human health risk assessment. The developed BN captures the (inter) relationships between the exposure route, the nanomaterials physicochemical properties and the ultimate biological effects in a holistic manner and was based on international expert consultation and the scientific literature (e.g., in vitro/in vivo data). The BN was validated with independent data extracted from published studies and the accuracy of the prediction of the nanomaterials hazard potential was 72% and for the biological effect 71%, respectively. The application of the BN is shown with scenario studies for TiO2, SiO2, Ag, CeO2, ZnO nanomaterials. It is demonstrated that the BN may be used by different stakeholders at several stages in the risk assessment to predict certain properties of a nanomaterials of which little information is available or to prioritize nanomaterials for further screening.  相似文献   

7.
《Nanotoxicology》2013,7(8):1338-1350
Abstract

Nanoscale CeO2 is increasingly used for industrial and commercial applications, including catalysis, UV-shielding and as an additive in various nanocomposites. Because of its increasing potential for consumer and occupational exposures, a comprehensive toxicological characterisation of this nanomaterial is needed. Preliminary results from intratracheal instillation studies in rats point to cytotoxicity and inflammation, though these studies may not accurately use realistic nanoscale exposure profiles. By contrast, published in vitro cellular studies have reported limited toxicological outcomes for the case of nano-ceria. Here, the authors present an integrative study evaluating the toxicity of nanoscale CeO2 both in vitro, using the A549 lung epithelial cell line, and in vivo using an intact rat model. Realistic nano-ceria exposure atmospheres were generated using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES), and rats were exposed via inhalation. Finally, the use of a nanothin amorphous SiO2 encapsulation coating as a means of mitigating CeO2 toxicity was assessed. Results from the inhalation experiments show lung injury and inflammation with increased PMN and LDH levels in the bronchoalveolar lavage fluid of the CeO2-exposed rats. Moreover, exposure to SiO2-coated CeO2 did not induce any pulmonary toxicity to the animals, representing clear evidence for the safe by design SiO2-encapsualtion concept.  相似文献   

8.
《Nanotoxicology》2013,7(4):353-366
Abstract

Novel aspects of engineered nanoparticles offer many advantages for optimising food products and packaging. However, their potential hazards in the gastrointestinal tract require further investigation. We evaluated the toxic and inflammatory potential of two types of particles that might become increasingly relevant to the food industry, namely SiO2 and ZnO. The materials were characterised for their morphology, oxidant generation and hydrodynamic behaviour. Cytotoxicity and interleukin-8 mRNA and protein expression were evaluated in human intestinal Caco-2 cells. Particle pretreatment under simulated gastric and intestinal pH conditions resulted in reduced acellular ROS formation but did not influence cytotoxicity (WST-1 assay) or IL-8 expression. However, the differentiation status of the cells markedly determined the cytotoxic potency of the particles. Further research is needed to determine the in vivo relevance of our current observations regarding the role of particle aggregation and the stage of intestinal epithelial cell differentiation in determining the hazards of ingested particles.  相似文献   

9.
Inhalation is the main route of nanoparticles (NP) exposure during manufacturing. Although many mechanisms of toxicity have been described, the interaction of NP with relevant pneumocytes organelles is not widely understood. Considering that the physicochemical properties of NP influence their toxicological responses, the objective of this study was to evaluate whether exposure to different NP, crystalline Fe3O4 NP and amorphous SiO2 NP could alter pneumocytes organelles in alveolar epithelial cells. To achieve this goal, cell viability, ultrastructural changes, lysosomal damage, mitochondrial membrane potential (MMP), lipid droplets (LD) formation and cytokines production were evaluated by MTT, electron microscopy, lysotracker red staining, JC-1, Oil Red staining and Milliplex® assay respectively. Both NP were observed within lamellar bodies (LB), lysosomes, and cytoplasm causing morphological changes. Exposure to SiO2 NP at 6 h induced lysosomal activation, but not Fe3O4 NP. MMP decreased and LD increased at the highest concentrations after both NP exposure. Pro-inflammatory cytokines were released only after SiO2 NP exposure at 48 h. These results indicate that SiO2 NP have a greater impact than Fe3O4 NP on organelles responsible for energy, secretion, degradation and metabolism in pneumocytes leading to the development of respiratory disorders or the exacerbation of preexisting conditions. Therefore, the established biocompatibility for amorphous NP has to be reconsidered.  相似文献   

10.
The whitening and opacifying properties of titanium dioxide (TiO2) are commonly exploited when it is used as a food additive (E171). However, the safety of this additive can be questioned as TiO2 nanoparticles (TiO2-NPs) have been classed at potentially toxic. This study aimed to shed some light on the mechanisms behind the potential toxicity of E171 on epithelial intestinal cells, using two in vitro models: (i) a monoculture of differentiated Caco-2 cells and (ii) a coculture of Caco-2 with HT29-MTX mucus-secreting cells. Cells were exposed to E171 and two different types of TiO2-NPs, either acutely (6–48?h) or repeatedly (three times a week for 3 weeks). Our results confirm that E171 damaged these cells, and that the main mechanism of toxicity was oxidation effects. Responses of the two models to E171 were similar, with a moderate, but significant, accumulation of reactive oxygen species, and concomitant downregulation of the expression of the antioxidant enzymes catalase, superoxide dismutase and glutathione reductase. Oxidative damage to DNA was detected in exposed cells, proving that E171 effectively induces oxidative stress; however, no endoplasmic reticulum stress was detected. E171 effects were less intense after acute exposure compared to repeated exposure, which correlated with higher Ti accumulation. The effects were also more intense in cells exposed to E171 than in cells exposed to TiO2-NPs. Taken together, these data show that E171 induces only moderate toxicity in epithelial intestinal cells, via oxidation.  相似文献   

11.
《Nanotoxicology》2013,7(8):994-1004
Abstract

The increasing use of nanotechnology in our daily life can have many unintended effects and pose adverse impact on human health, environment and ecosystems. Wider application of engineered nanoparticles, especially TiO2 nanoparticles (TiO2 NP) necessitates the understanding of toxicity and mechanism of action. Metabolomics provides a unique opportunity to find out biomarkers of nanoparticles exposure, which leads to the identification of cellular pathways and their biological mechanisms. Gas chromatography mass spectrometry (GC–MS)-based metabolomics approach was used in the present study to understand the toxicity of sub-lethal concentrations (7.7 and 38.5?µg/ml) of TiO2 NP (<25?nm) in well-known, soil nematode Caenorhabditis elegans (C. elegans). Multivariate pattern recognition analysis reflected the perturbations in the metabolism (amino acids, organic acids, sugars) of C. elegans on exposure to TiO2 NP. The biological pathways affected due to the exposure of TiO2 NP were identified, among them mainly affected pathways are tricarboxylic acid (TCA) cycle, arachidonic acid metabolism and glyoxalate dicarobxylate metabolism. The manifestation of differential metabolic profile in organism exposed to TiO2 (NP or bulk particle) was witnessed as an effect on reproduction. The present study demonstrates that metabolomics can be employed as a tool to understand the potential toxicity of nanoparticles in terms of organism–environment interactions as well as in assessing the organism function at the molecular level.  相似文献   

12.
ABSTRACT

The biological impact of nanomaterials (NMs) is determined by several factors such as size and shape, which need to be taken into consideration in any type of analysis. While investigators often prefer to conduct in vitro studies for detection of any possible adverse effects of NMs, in vivo approaches yield more relevant data for risk assessment. For this reason, Drosophila melanogaster was selected as a suitable in vivo model to characterize the potential risks associated with exposure nanorods (NRs), nanospheres (NSs), nanowires (NWs) forms of titanium dioxide (TiO2), and their microparticulated (or bulk) form, as TiO2. Third instar larvae (72 hr old larvae) were fed with TiO2 (NRs, NSs, or NWs) and TiO2 at concentrations ranging from 0.01 to 10 mM. Viability (toxicity), internalization (cellular uptake), intracellular reactive oxygen species (ROS) production, and genotoxicity (Comet assay) were the end-points evaluated in hemocyte D. melanogaster larvae. Significant intracellular oxidative stress and genotoxicity were noted at the highest exposure concentration (10 mM) of TiO2 (NRs, NSs, or NWs), as determined by the Comet assay and ROS analysis, respectively. A concentration–effect relationship was observed in hemocytes exposed to the NMs. Data demonstrated that selected forms of TiO2.-induced genotoxicity in D. melanogaster larvae hemocytes indicating this organism is susceptible for use as a model to examine in vivo NMs-mediated effects.  相似文献   

13.
《Nanotoxicology》2013,7(6):749-759
Abstract

Although in vitro approaches are the most used for testing the potential harmful effects of nanomaterials, in vivo studies produce relevant information complementing in vitro data. In this context, we promote the use of Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to nanomaterials exposure. The main aim of this study was to evaluate different biological effects associated to cerium oxide nanoparticles (Ce-NPs) and cerium (IV) sulphate exposure. The end-points evaluated were egg-to-adult viability, particles uptake through the intestinal barrier, gene expression and intracellular reactive oxygen species (ROS) production by haemocytes, genotoxicity and antigenotoxicity. Transmission electron microscopy images showed internalisation of Ce-NPs by the intestinal barrier and haemocytes, and significant expression of Hsp genes was detected. In spite of these findings, neither toxicity nor genotoxicity related to both forms of cerium were observed. Interestingly, Ce-NPs significantly reduced the genotoxic effect of potassium dichromate and the intracellular ROS production. No morphological malformations were detected after larvae treatment. This study highlights the importance of D. melanogaster as animal model in the study of the different biological effects caused by nanoparticulated materials, at the time that shows its usefulness to study the role of the intestinal barrier in the transposition of nanomaterials entering via ingestion.  相似文献   

14.
《Nanotoxicology》2013,7(4):355-364
Abstract

The use of engineered nanoparticles in the food sector is anticipated to increase dramatically, whereas their potential hazards for the gastrointestinal tract are still largely unknown. We investigated the cytotoxic and DNA-damaging effects of several types of nanoparticles and fine particles relevant as food additives (TiO2 and SiO2) or for food packaging (ZnO and MgO) as well as carbon black on human intestinal Caco-2 cells. All particles, except for MgO, were cytotoxic (LDH and WST-1 assay). ZnO, and to lesser extent SiO2, induced significant DNA damage (Fpg-comet), while SiO2 and carbon black were the most potent in causing glutathione depletion. DNA damage by TiO2 was found to depend on sample processing conditions. Interestingly, application of different TiO2 and ZnO particles revealed no relation between particle surface area and DNA damage. Our results indicate a potential hazard of several food-related nanoparticles which necessitate investigations on the actual exposure in humans.  相似文献   

15.
Nanoparticles (NPs) are decorated with proteins and other biomolecules when they get into contact with biological systems. The presence of proteins in cell culture medium can therefore have effects on the biological outcome in cell-based tests. In this study, the manufactured nanomaterials silicon dioxide (SiO2), titanium dioxide (TiO2), iron-III-oxide (Fe2O3), and carbon black (CB) were used to study their interaction with single proteins from bovine and human plasma (albumin, fibrinogen and IgG) as well as with complete human serum. The protein binding capacity of the material was investigated and 1D gel electrophoresis was used to separate the bound proteins and to identify the bands by matrix-assisted laser desorption/ionisation-time-of-flight (MALDI-TOF) mass spectrometry.We found that the NP surface chemistry had a great impact on the amount of bound protein with distinct ligands for each of the tested particles. The hydrophobic CB NPs bound much more protein than the hydrophilic metal oxide NPs. Among the single proteins investigated, fibrinogen showed the strongest affinity for SiO2, TiO2 and CB NPs. The identified proteins from human serum adsorbed to these NPs were very different. Only apolipoprotein A1 was found to be adsorbed to all NPs.These studies will help to explain the different degree of biological responses observed after in vitro exposure of cells in the absence or presence of serum and might also support the interpretation of in vivo experiments were NPs come directly into contact with blood plasma.  相似文献   

16.
After passage through biological barriers, nanomaterials inevitably end up in contact with the vascular endothelium and can induce cardiovascular damage. In this study the toxicity and sub-lethal effects of six types of nanoparticle, including four of industrial and biomedical importance, on human endothelial cells were investigated using different in vitro assays. The results show that all the particles investigated induce some level of damage to the cells and that silver particles were most toxic, followed by titanium dioxide. Furthermore, endothelial cells were shown to be more susceptible when exposed to silver nanoparticles under flow conditions in a bioreactor. The study underlines that although simple in vitro tests are useful to screen compounds and to identify the type of effect induced on cells, they may not be sufficient to define safe exposure limits. Therefore, once initial toxicity screening has been conducted on nanomaterials, it is necessary to develop more physiologically relevant in vitro models to better understand how nanomaterials can impact on human health.  相似文献   

17.
Fine particles with a characteristic size smaller than 100?nm (i.e. nanoparticlesspread out in nowadays life. Silicon or Si, is one of the most abundant chemical elements found on the Earth. Its oxide forms, such as silicate (SiO4) and silicon dioxide, also known as silica (SiO2), are the main constituents of sand and quartz contributing to 90% of the Earth's crust. In this work, three genotoxicity systems “sister chromatid exchange, cytokinesis block micronucleus test and single cell gel electrophoresis (comet) assay” were employed to provide further insight into the cytotoxic and mutagenic/genotoxic potential of SiO2 nanoparticules (particle size 6?nm, 20?nm, 50?nm) in cultured peripheral blood lymphocytes as in vitro. It was observed that there is a significant decrease in Mitotic index (MI), Cytokinesis block proliferation index (CBPI), proliferation index (PRI) values expressed as Cell Kinetic parameters compared with negative control (p?2 (6?nm, 20?nm, 50?nm) (p?p?p?2 nanoparticles at different size (6, 20, 50?nm) progressively increased the SCE frequency and DNA damage on the basis the AU values compared with negative control (p?2 nanoparticules is dependent to particule size.  相似文献   

18.
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in foods, cosmetics, and medicine. Although the inhalation toxicity of TiO2 NPs has been studied, the potential adverse effects of oral exposure of low-dose TiO2 NPs are largely unclear. Herein, with macrophage cell lines, primary cells, and mouse models, we show that TiO2 NPs prime macrophages into a specific activation state characterized by excessive inflammation and suppressed innate immune function. After a month of dietary exposure in mice or exposure in vitro to TiO2 NPs (10 and 50?nm), the expressions of pro-inflammatory genes in macrophages were increased, and the expressions of anti-inflammatory genes were decreased. In addition, for macrophages exposed to TiO2 NPs in vitro and in vivo, their chemotactic, phagocytic, and bactericidal activities were lower. This imbalance in the immune system could enhance the susceptibility to infections. In mice, after a month of dietary exposure to low doses of TiO2 NPs, an aggravated septic shock occurred in response to lipopolysaccharide challenge, leading to elevated levels of inflammatory cytokines in serum and reduced overall survival. Moreover, TLR4-deficient mice and primary macrophages, or TLR4-independent stimuli, showed less response to TiO2 NPs. These results demonstrate that TiO2 NPs induce an abnormal state of macrophages characterized by excessive inflammation and suppressed innate immune function in a TLR4-dependent manner, which may suggest a potential health risk, particularly for those with additional complications, such as bacterial infections.  相似文献   

19.
The pulmonary delivery of nanoparticles (NPs) is a promising approach in nanomedicine. For the efficient and safe use of inhalable NPs, understanding of NP interference with lung surfactant metabolism is needed. Lung surfactant is predominantly a phospholipid substance, synthesized in alveolar type II cells (ATII), where it is packed in special organelles, lamellar bodies (LBs). In vitro and in vivo studies have reported NPs impact on surfactant homeostasis, but this phenomenon has not yet been sufficiently examined. We showed that in ATII-like A549 human lung cancer cells, silica-coated superparamagnetic iron oxide NPs (SiO2-SPIONs), which have a high potential in medicine, caused an increased cellular amount of acid organelles and phospholipids. In SiO2-SPION treated cells, we observed elevated cellular quantity of multivesicular bodies (MVBs), organelles involved in LB biogenesis. In spite of the results indicating increased surfactant production, the cellular quantity of LBs was surprisingly diminished and the majority of the remaining LBs were filled with SiO2-SPIONs. Additionally, LBs were detected inside abundant autophagic vacuoles (AVs) and obviously destined for degradation. We also observed time- and dose-dependent changes in mRNA expression for proteins involved in lipid metabolism. Our results demonstrate that non-cytotoxic concentrations of SiO2-SPIONs interfere with surfactant metabolism and LB biogenesis, leading to disturbed ability to reduce hypophase surface tension. To ensure the safe use of NPs for pulmonary delivery, we propose that potential NP interference with LB biogenesis is obligatorily taken into account.  相似文献   

20.
It was recently shown that ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress in human umbilical vein endothelial cells (HUVECs). If ER stress is associated the toxicity of ZnO NPs, the presence of ER stress inducer thapsigargin (TG) should alter the response of HUVECs to ZnO NP exposure. In this study, we addressed this issue by assessing cytotoxicity, oxidative stress and inflammatory responses in ZnO NP exposed HUVECs with or without the presence of TG. Moreover, TiO2 NPs were used to compare the effects. Exposure to 32?μg/mL ZnO NPs (p?2 NPs (p?>?0.05), significantly induced cytotoxicity as assessed by WST-1 and neutral red uptake assay, as well as intracellular ROS. ZnO NPs dose-dependently increased the accumulation of intracellular Zn ions, and ZnSO4 induced similar cytotoxic effects as ZnO NPs, which indicated a role of Zn ions. The release of inflammatory proteins tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) or the adhesion of THP-1 monocytes to HUVECs was not significantly affected by ZnO or TiO2 NP exposure (p?>?0.05). The presence of 250?nM TG significantly induced cytotoxicity, release of IL-6 and THP-1 monocyte adhesion (p?p?>?0.05). ANOVA analysis indicated no interaction between exposure to ZnO NPs and the presence of TG on almost all the endpoints (p?>?0.05) except neutral red uptake assay (p?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号