首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
背景:脑部MR图像是一种无纹理的图像,未被噪声污染的脑部MR图像的灰度值具有分片为常数的特点。因此,在聚类过程中灰度值有趋向于在同一个分割区域中相对接近的性质。 目的:寻找一个能够自动分割多发性硬化症病灶的模糊C-均值改进方法,为临床对于多发性硬化症的判断提供更方便的工具。 方法:考虑到脑部MR图像相邻象素属于同一分类的概率相近的特性,在迭代过程中对8邻域数据集进行滤波以降低噪声对聚类精度的影响,提出了一种改进的模糊C-均值聚类算法。就是将模糊C-均值聚类算法迭代过程中得到的灰度值看作一个数据集,用每个象素邻域象素的灰度值修正该象素的模糊隶属度取值,从而达到利用空间信息抑制噪声的目的。 结果与结论:选取了10个多发性硬化症患者的脑部MRI图像进行试验。通过对多发性硬化症患者MR T1脑部图像和T2液体衰减反转回复脑部图像的分割实验,结果显示该算法能够有效分割多发性硬化症病灶,与其他方法所做的多发性硬化症病灶分割相比,本算法更易于实现,运算时间短,同时结果与临床医生的勾画比较重叠率较高,对其临床辅助诊断具有重要作用。  相似文献   

2.
背景:基于马尔科夫随机场的图像分割算法已经成为医学图像分割的重要方法,其中,Gibbs场先验参数的取值对分割精度有很大的影响。目的:根据脑部MR图像的成像特点,探讨Gibbs场先验参数的估计方法,从而提高图像分割的精度。方法:通过对脑部MR图像的统计分析,得到图像高斯噪声的方差与Gibbs场先验参数的对应关系。然后在基于马尔可夫随机场图像分割算法的迭代过程中,根据高斯分布的方差估计值,用插值方法估计Gibbs场先验参数。结果与结论:通过对模拟脑部MR图像和临床脑部MR图像分割实验,表明该方法比传统的设定Gibbs场先验参数为某一常数的方法有更精确的图像分割能力,并且实现了图像的自适应分割,具有方法简单、运算速度快、稳健性好的特点。  相似文献   

3.
多发性硬化症(MS)是一种严重威胁中枢神经功能的疾病,利用磁共振成像技术能够无损伤地检出其病灶。为了自动地对多发性硬化症病灶进行分割,提出了基于模糊连接度的分割算法,实现了种子点的自动选取。作为多发性硬化症分割的预处理,针对脑部MR FLAIR图像的特征,基于区域增长方法,还提出了脑部组织提取算法。通过对临床患者MR图像的分割实验,表明该分割算法能够比较准确地分割多发性硬化症病灶,其分割效果明显好于模糊C-均值聚类算法和基于马尔可夫场模型的分割算法。该算法还具有无监督、运算速度快、稳健性好等优点,能够应用于多发性硬化症的临床辅助诊断。  相似文献   

4.
目的磁共振成像(magnetic resonance imaging,MRI)对脑组织有较好的成像效果,但噪声、偏移场和部分容积效应(partial volume effect,PVE)的存在,使得全自动分割MRI图像面临一定的困难。模糊C均值(fuzzy C-means,FCM)聚类算法在脑组织分割中得到较广泛研究。本文以存在噪声和偏移场影响的脑MRI图像分割为应用背景,研究了大量相关方法,探讨FCM算法分割脑部图像的改进思想。方法本文主要研究了9种FCM算法的理论基础,并通过脑组织分割实验对各种算法进行了分析。结果比较了不同算法的优劣,给出各类算法直观及定量评价结果。结论偏移场和噪声对脑磁共振图像组织分类质量有明显影响。其中几种方法可以减弱这些不利影响,但由于难以选择合适的参数,其分类效果并不理想。如何合理利用空间信息在未来仍有较大研究价值。  相似文献   

5.
磁共振图像经常被含有缓慢变化的灰度不均匀场所破坏,不均匀场会造成同一组织的灰度发生变化,从而影响计算机辅助诊断的准确性.传统的基于灰度信息的分割方法对具有不均匀场的磁共振图像分割效果往往并不理想.文章改进了基于灰度信息的模糊C均值(FCM)算法,将偏移场模型、代表图像空间信息的邻域控制信息和最小二乘曲面拟合方法有机结合,能同时实现图像的校正和聚类,适用于灰度不均匀脑部磁共振图像的分割,分割精度明显优于已有的基于FCM的分割方法.  相似文献   

6.
基于改进空间模糊聚类的DTI图像分割算法   总被引:1,自引:0,他引:1  
针对模糊C均值(FCM)聚类算法初始聚类中心选择的随机性和噪声的敏感性等问题,提出一种基于改进空间模糊聚类的图像分割算法来分割人脑DTI图像。使用局部密度核函数和中心距离函数精确选取初始聚类中心,不仅可以解决因聚类中心随机选取造成的聚类效果不稳定的问题,而且还可以使目标函数迅速收敛,提高分割效率;通过将正态分布空间信息融入模糊隶属度函数,能减小图像噪声以及人为因素对分割结果的影响。用该方法与FCM、SFCM方法对人脑DTI数据进行分割,以评价算法的聚类效果。实验对美国明尼苏达大学生物医学功能成像与神经工程实验室提供的58例DTI数据、3例FA参数图像以及6例迭加过噪声的人脑DTI图像进行分割,结果表明:该算法分割系数最高,可达到0.984 1;在同一图像中,该算法在划分系数上比FCM最高提升20.2%,并且在划分熵上比SFCM最高下降19.8%;该算法目标函数平均迭代次数为32,较FCM的52次与空间FCM的76次有明显降低。实验证明,该算法能够准确、快速地分割出重要目标,且对图像噪声不敏感。  相似文献   

7.
基于模糊Gibbs场和模糊C均值聚类的脑部磁共振图像的分割   总被引:2,自引:0,他引:2  
提出了一种利用模糊Gibbs场和模糊C均值聚类的新算法,用来分割脑部磁共振(Magnetic resonance, MR)图像.本算法引入了像素的空间约束,提出了势团均匀分布的概念,并使用模糊信息定义了势团的Gibbs能量,并在传统的基于灰度的模糊C均值聚类(Fuzzy C-means, FCM)算法中引入Gibbs能量的补偿项,建立包含像素灰度信息和空间约束的新的目标函数,并得到模糊矩阵和聚类中心的迭代公式,克服了基于灰度信息的模糊C均值聚类算法的缺陷,从而改善了原有的分割模型.对合成图像和脑部MR图像的实验表明了本算法的有效性,可以有效地分割被噪声污染的低信噪比的MR图像.  相似文献   

8.
目的从磁共振噪声图像中分割脑组织(脑脊液、灰质、白质)。方法首先利用K均值分类自动计算三类脑组织的初始灰度分布参数,通过期望最大化算法(Expectation maximization,EM)估计高斯混合模型(Gaussian mixture model,GMM)参数。然后按照空间体素的GMM分类信息改变其相应体素的联合概率的能量函数,控制该能量函数中代表灰度信息的分量,并且自适应地调节图像灰度和空间信息的分配。结果实验结果表明该模型能够有效地分割出脑脊液,灰质和白质,并且对噪声不敏感,能消除灰度不均匀的影响。结论与同类算法相比,本算法对含有噪声污染的脑MR-T1图像分割精度较高,也表现出不错的稳定性,且算法运行时间短。  相似文献   

9.
点分布模型约束的主动轮廓及其在脑MR图像分割中的应用   总被引:1,自引:0,他引:1  
针对脑部MR图像结构复杂,使用传统的主动轮廓进行分割时,对初始化位置敏感,且易受非目标轮廓干扰,陷入局部极值等问题,提出了利用点分布模型进行形状约束的梯度矢量流主动轮廓模型。该方法在训练样本集的基础上,建立反映待分割目标轮廓先验形状信息的点分布模型,以模型的均值作为参考初始化主动轮廓,并使用模型提供的参数限制主动轮廓运动过程中的形变范围,有效地解决了使用传统主动轮廓对复杂图像往往不能收敛到期望形状的问题。此方法成功运用于脑MR图像中胼胝体和大脑灰质的分割,取得了满意的效果,验证了此方法的有效性和鲁棒性。  相似文献   

10.
目的快速准确地分割脑部MR图像的海马结构对早期诊断阿尔兹海默氏症(Alzheimer's disease,AD)具有重要价值。该文提出了一种快速和准确分割MRI三维海马结构的方法。该方法基于格子玻尔兹曼(Lattice Boltzmann,LB)模型,利用脑部MR图像的边缘信息和区域信息建立一个三维分割模型(3D-LB),直接在三维空间中通过碰撞和迁移过程提取海马结构。为验证3D-LB分割模型的精度和效率,该文对30组海马结构的测试图像进行分割实验,并与三维CV模型进行比较。实验结果显示,基于3D-LB模型的分割方法能有效地分割海马结构的测试图像,且相较于三维CV模型,精度更高,所耗时间更少,表明LB方法适用于三维海马结构的快速和精确分割。  相似文献   

11.
We present a fully automated cerebrum segmentation algorithm for full three-dimensional sagittal brain MR images. First, cerebrum segmentation from a midsagittal brain MR image is performed utilizing landmarks, anatomical information, and a connectivity-based threshold segmentation algorithm as previously reported. Recognizing that cerebrum in laterally adjacent slices tends to have similar size and shape, we use the cerebrum segmentation result from the midsagittal brain MR image as a mask to guide cerebrum segmentation in adjacent lateral slices in an iterative fashion. This masking operation yields a masked image (preliminary cerebrum segmentation) for the next lateral slice, which may truncate brain region(s). Truncated regions are restored by first finding end points of their boundaries, by comparing the mask image and masked image boundaries, and then applying a connectivity-based algorithm. The resulting final extracted cerebrum image for this slice is then used as a mask for the next lateral slice. The algorithm yielded satisfactory fully automated cerebrum segmentations in three-dimensional sagittal brain MR images, and had performance superior to conventional edge detection algorithms for segmentation of cerebrum from 3D sagittal brain MR images.  相似文献   

12.
多谱MR脑图象的组织分类   总被引:1,自引:0,他引:1  
传统的基于灰 度的 M R I 脑图象分 割很 难达 到临 床应 用的 需要, 因为 受 R F 线圈、 M R 设备 的操 作环境等的影响 ,在同一 幅 图象 中或 各 扫描 图象 间都 存 在灰 度不 均 匀性。 本 文采 用 聚类 分 析法 ,由 单谱图象的灰 度和纹理参数构 成特征向量,进 行初始分 类。在 此基础 上采用 适配 分割算 法,通 过估计有偏场, 对多谱图象的灰 度进行校正,从 而实现对脑组织 的正确分类。  相似文献   

13.
核磁共振图像的自动图像分割和组织分类至今仍是一个有待解决的问题。在理想的情况下,各类组织的灰度呈正态分布;但受RF线圈、MR设备的操作环境等的影响,图像的灰度均匀性变差,相当于在增益场上叠加了一个偏移场,使信号产生混淆。作者采用“适配方割算法”,通过计算有偏场,并对图像进行灰度校正,可以达到全自动地分割脑组织图像。  相似文献   

14.
为收集新生儿缺氧缺血性脑病(HIE)核磁共振图像特征数据,采用基于遗传算法(GA)结合脉冲耦合神经网络(PCNN)的方法,对新生儿HIE磁共振图像进行分割实验和病灶特征提取。结果显示:基于GA的PCNN分割不仅有较好的分割结果,且优于具有固定参数PCNN的分割,可为HIE早期诊断系统建立提供依据,为进一步诊断及研究提供有效的帮助。  相似文献   

15.
改进的遗传模糊聚类算法及其在MR脑组织分割中的应用   总被引:3,自引:0,他引:3  
为提高MR图像中脑组织分割的精度,针对目前遗传模糊聚类算法存在的问题,提出了改进的遗传模糊聚类算法。首先,通过完全改变遗传算法的编码方式、变异方式和交叉方式,对现有遗传算法进行改进,从而使遗传算法能获得最小的适应度函数值;然后,结合模糊聚类算法,最终得到改进的遗传模糊聚类算法。将改进的遗传模糊聚类算法应用于MR脑图像的分割,结果表明,改进的遗传模糊聚类算法的分割质量高于现有的遗传模糊聚类算法和快速模糊聚类算法。改进的遗传模糊聚类算法可以做为一种快速、全自动的MR脑图像分割工具。  相似文献   

16.
The three soft brain tissues white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) identified in a magnetic resonance (MR) image via image segmentation techniques can aid in structural and functional brain analysis, brain’s anatomical structures measurement and visualization, neurodegenerative disorders diagnosis, and surgical planning and image-guided interventions, but only if obtained segmentation results are correct. This paper presents a multiple-classifier-based system for automatic brain tissue segmentation from cerebral MR images. The developed system categorizes each voxel of a given MR image as GM, WM, and CSF. The algorithm consists of preprocessing, feature extraction, and supervised classification steps. In the first step, intensity non-uniformity in a given MR image is corrected and then non-brain tissues such as skull, eyeballs, and skin are removed from the image. For each voxel, statistical features and non-statistical features were computed and used a feature vector representing the voxel. Three multilayer perceptron (MLP) neural networks trained using three different datasets were used as the base classifiers of the multiple-classifier system. The output of the base classifiers was fused using majority voting scheme. Evaluation of the proposed system was performed using Brainweb simulated MR images with different noise and intensity non-uniformity and internet brain segmentation repository (IBSR) real MR images. The quantitative assessment of the proposed method using Dice, Jaccard, and conformity coefficient metrics demonstrates improvement (around 5 % for CSF) in terms of accuracy as compared to single MLP classifier and the existing methods and tools such FSL-FAST and SPM. As accurately segmenting a MR image is of paramount importance for successfully promoting the clinical application of MR image segmentation techniques, the improvement obtained by using multiple-classifier-based system is encouraging.  相似文献   

17.
In this article we describe a statistical model that was developed to segment brain magnetic resonance images. The statistical segmentation algorithm was applied after a pre-processing stage involving the use of a 3D anisotropic filter along with histogram equalization techniques. The segmentation algorithm makes use of prior knowledge and a probability-based multivariate model designed to semi-automate the process of segmentation. The algorithm was applied to images obtained from the Center for Morphometric Analysis at Massachusetts General Hospital as part of the Internet Brain Segmentation Repository (IBSR). The developed algorithm showed improved accuracy over the k-means, adaptive Maximum Apriori Probability (MAP), biased MAP, and other algorithms. Experimental results showing the segmentation and the results of comparisons with other algorithms are provided. Results are based on an overlap criterion against expertly segmented images from the IBSR. The algorithm produced average results of approximately 80% overlap with the expertly segmented images (compared with 85% for manual segmentation and 55% for other algorithms).  相似文献   

18.
结合水平集和区域生长的脑MR图像分割   总被引:3,自引:0,他引:3  
本文提出了结合改进的水平集和区域生长方法实现脑MR图像分割,并根据不同组织成像特征和组织结构特点采用不同算法分割进行了探索.主要步骤:首先用改进的水平集算法实现图像中骨组织和脑脊液(CSF)的提取;然后,依据直方图确定脑灰质(GM)、脑白质(WM)的近似灰度值,自动定位种子点后进行区域生长,实现脑灰质和脑白质的分离.实验结果表明,该方法充分利用了脑MR图像中的区域信息和边界信息,与传统单一算法分割脑MR图像相比,具有更强的鲁棒性和准确性.  相似文献   

19.
The authors have developed an automated algorithm for segmentation of magnetic resonance images (MRI) of the human brain. They investigated the quantitative analysis of tissue-specific human motor response through an approach combining gradient echo functional MRI and automated segmentation analysis. Fifteen healthy volunteers, placed in a 1.5 T clinical MR imager, performed a self-paced finger opposition throughout the activation periods. T1-weighted images (WI), T2WI, and proton density WI were acquired for segmentation analysis. Single-slice axial T2* fast low-angle shot (FLASH) images were obtained during the functional study. Pixelwise cross-correlation analysis was performed to obtain an activation map. A cascaded algorithm, combining Kohonen feature maps and fuzzy C means, was applied for segmentation. After processing, masks for gray matter, white matter, small vessels, and large vessels were generated. Tissue-specific analysis showed a signal change rate of 4.53% in gray matter, 2.98% in white matter, 5.79% in small vessels, and 7.24% in large vessels. Different temporal patterns as well as different levels of activation were identified in the functional response from various types of tissue. High correlation exists between cortical gray matter and subcortical white matter (r = 0.957), while the vessel behaves somewhat different temporally. The cortical gray matter fits best to the assumed input function (r = 0.957) followed by subcortical white matter (r = 0.829) and vessels (r = 0.726). The automated algorithm of tissue-specific analysis thus can assist functional MRI studies with different modalities of response in different brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号