首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neovascularization may contribute to functional recovery after neural injury. Combination treatment of stroke with a nitric oxide donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETA-NONOate) and bone marrow stromal cells promotes functional recovery. However, the mechanisms underlying functional improvement have not been elucidated. In this study, we tested the hypothesis that combination treatment upregulates angiopoietin-1 and its receptor Tie2 in the ischemic brain and bone marrow stromal cells, thereby enhancing cerebral neovascularization after stroke. Adult wild type male C57BL/6 mice were i.v. administered PBS, bone marrow stromal cells 5x10(5), DETA-NONOate 0.4 mg/kg or combination DETA-NONOate with bone marrow stromal cells (n=12/group) after middle cerebral artery occlusion. Combination treatment significantly upregulated angiopoietin-1/Tie2 and tight junction protein (occludin) expression, and increased the number, diameter and perimeter of blood vessels in the ischemic brain compared with vehicle control (mean+/-S.E., P<0.05). In vitro, DETA-NONOate significantly increased angiopoietin-1/Tie2 protein (n=6/group) and Tie2 mRNA (n=3/group) expression in bone marrow stromal cells. DETA-NONOate also significantly increased angiopoietin-1 protein (n=6/group) and mRNA (n=3/group) expression in mouse brain endothelial cells (P<0.05). Angiopoietin-1 mRNA (n=3/group) was significantly increased in mouse brain endothelial cells treated with DETA-NONOate in combination with bone marrow stromal cell-conditioned medium compared with cells treated with bone marrow stromal cell-conditioned medium or DETA-NONOate alone. Mouse brain endothelial cell capillary tube-like formation assays (n=6/group) showed that angiopoietin-1 peptide, the supernatant of bone marrow stromal cells and DETA-NONOate significantly increased capillary tube formation compared with vehicle control. Combination treatment significantly increased capillary tube formation compared with DETA-NONOate treatment alone. Inhibition of angiopoietin-1 significantly attenuated combination treatment-induced tube formation. Our data indicated that combination treatment of stroke with DETA-NONOate and bone marrow stromal cells promotes neovascularization, which is at least partially mediated by upregulation of the angiopoietin-1/Tie2 axis.  相似文献   

2.
Stromal cell-derived factor-1 (SDF1) and its chemokine (CXC motif) receptor 4 (CXCR4), along with matrix metalloproteinases (MMPs), regulate bone marrow stromal cell (BMSC) migration. We tested the hypothesis that a nitric oxide donor, DETA-NONOate, increases endogenous ischemic brain SDF1 and BMSC CXCR4 and MMP9 expression, which promotes BMSC migration into ischemic brain and thereby enhances functional outcome after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo), and 24 hours later, the following were intravenously administered (n = 9 mice per group): (a) phosphate-buffered saline; (b) BMSCs (5 x 10(5)); (c) 0.4 mg/kg DETA-NONOate; (d) combination of CXCR4-inhibition BMSCs with DETA-NONOate; and (e) combination of BMSCs with DETA-NONOate. To elucidate the mechanisms underlying combination-enhanced BMSC migration, transwell cocultures of BMSC with mouse brain endothelial cells (MBECs) or astrocytes were performed. Combination treatment significantly improved functional outcome after stroke compared with BMSC monotherapy and MCAo control, and it increased SDF1 expression in the ischemic brain compared with DETA-NONOate monotherapy and MCAo control. The number of BMSCs in the ischemic brain was significantly increased after combination BMSC with DETA-NONOate treatment compared with monotherapy with BMSCs. The number of engrafted BMSCs was significantly correlated with functional outcome after stroke. DETA-NONOate significantly increased BMSC CXCR4 and MMP9 expression and promoted BMSC adhesion and migration to MBECs and astrocytes compared with nontreatment BMSCs. Inhibition of CXCR4 or MMPs in BMSCs significantly decreased DETA-NONOate-induced BMSC adhesion and migration. Our data demonstrate that DETA-NONOate enhanced the therapeutic potency of BMSCs, possibly via upregulation of SDF1/CXCR4 and MMP pathways, and increased BMSC engraftment into the ischemic brain.  相似文献   

3.
Angiopoietin-1 regulates vascular angiogenesis and stabilization, and is reported to promote bone formation by facilitating angiogenesis. To estimate the role of Ang1 in odontogenesis, we explored the distribution of Ang1 and the receptor, Tie2 in the mouse developing and mature first molar of the mandible. At embryonic day 18, when differentiation of odontoblasts begins, immunosignals for Ang1 were intensely detected in the basement membrane and the distal side, which faced the basement membrane of odontoblasts. In situ hybridization revealed that Ang1 was expressed in odontoblasts and ameloblasts facing the basement membrane. Tie2 was localized in the distal side of odontoblasts. After birth, Ang1 was detected in the predentin, whereas both Ang1 and Tie2 were colocalized in odontoblasts and odontoblast processes. These distributions were retained up to 8 weeks. In contrast to odontoblasts, ameloblasts, cementoblasts and osteoblasts expressed Ang1 but did not express Tie2. Colocalization of Ang1 and Tie2 in odontoblasts and selective expression of Tie2 in odontoblasts among cells responsible for calcified tissue formation suggested the involvement of autocrine signals of Ang1-Tie2 in dentinogenesis.  相似文献   

4.
Angiopoietin-1 (Ang1) and its endothelium-specific receptor, tyrosine kinase with Ig and epidermal growth factor homology domain 2 (Tie2), play critical roles in vascular development. Although the Ang1/Tie2 system has been considered a promising target for therapeutic neovascularization, several imitations of large-scale production have hampered the development of recombinant Ang1 for therapeutics. In this study, we produced a fully human agonistic antibody against Tie2, designated 1–4h, and tested the applicability of 1–4h as an alternative to native Ang1 in therapeutic angiogenesis. 1–4h significantly enhanced the phosphorylation of Tie2 in a dose- and time-dependent manner in human Tie2-expressing HEK293 cells and human umbilical vein endothelial cells. Moreover, 1–4h induced the activation of Tie2-mediated intracellular signaling such as AKT, eNOS, MAPK, and Focal Adhesion Kinase p125FAK. In addition, 1–4h increased the chemotactic motility and capillary-like tube formation of endothelial cells in vitro and enhanced the survival of serum-deprived endothelial cells. Taken together, our data clearly suggest that a human Tie2 agonistic antibody is a potentially useful therapeutic approach for the treatment of several ischemic diseases including delayed-wound healing and ischemic heart and limb diseases.  相似文献   

5.
Recently identified, angiopoietin-1 (Ang1) and -2 (Ang2) bind to the tyrosine kinase receptor Tie2 and contribute to orchestrate blood vessel formation during angiogenesis. Ang1 mediates vessel maturation and integrity by favoring the recruitment of pericytes and smooth muscle cells. Ang2, initially identified as a Tie2 antagonist, may under certain circumstances, induce Tie2 phosphorylation and biological activities. As inflammation exists in a mutually dependent association with angiogenesis, we sought to determine if Ang1 and/or Ang2 could modulate proinflammatory activities, namely P-selectin translocation, in bovine aortic endothelial cells (EC) and dissect the mechanisms implicated. P-selectin, an adhesion molecule found in the Weibel-Palade bodies of EC, is translocated rapidly to the cell surface upon EC activation during inflammatory processes. Herein, we report that Ang1 and Ang2 (1 nM) are capable of mediating a rapid Tie2 phosphorylation as well as a rapid and transient endothelial P-selectin translocation maximal within 7.5 min (125% and 100% increase, respectively, over control values). In addition, we demonstrate for the first time that angiopoietin-mediated endothelial P-selectin translocation is calcium-dependent and regulated through phospholipase C-gamma activation.  相似文献   

6.
Sustained growth of solid tumours can rely on both the formation of new and the co‐option of existing blood vessels. Current models suggest that binding of angiopoietin‐2 (Ang‐2) to its endothelial Tie2 receptor prevents receptor phosphorylation, destabilizes blood vessels, and promotes vascular permeability. In contrast, binding of angiopoietin‐1 (Ang‐1) induces Tie2 receptor activation and supports the formation of mature blood vessels covered by pericytes. Despite the intense research to decipher the role of angiopoietins during physiological neovascularization and tumour angiogenesis, a mechanistic understanding of angiopoietin function on vascular integrity and remodelling is still incomplete. We therefore assessed the vascular morphology of two mouse mammary carcinoma xenotransplants (M6378 and M6363) which differ in their natural angiopoietin expression. M6378 displayed Ang‐1 in tumour cells but no Ang‐2 in tumour endothelial cells in vivo. In contrast, M6363 tumours expressed Ang‐2 in the tumour vasculature, whereas no Ang‐1 expression was present in tumour cells. We stably transfected M6378 mouse mammary carcinoma cells with human Ang‐1 or Ang‐2 and investigated the consequences on the host vasculature, including ultrastructural morphology. Interestingly, M6378/Ang‐2 and M6363 tumours displayed a similar vascular morphology, with intratumoural haemorrhage and non‐functional and abnormal blood vessels. Pericyte loss was prominent in these tumours and was accompanied by increased endothelial cell apoptosis. Thus, overexpression of Ang‐2 converted the vascular phenotype of M6378 tumours into a phenotype similar to M6363 tumours. Our results support the hypothesis that Ang‐1/Tie2 signalling is essential for vessel stabilization and endothelial cell/pericyte interaction, and suggest that Ang‐2 is able to induce a switch of vascular phenotypes within tumours. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

7.
Angiotensin II (Ang II), the main component of renin-angiotensin system, could mediate pathogenic angiogenesis in cardiovascular disorders. Late endothelial progenitor cells (EPCs) possess potent self-renewal and angiogenic potency superior to early EPCs, but few study focused on the cross-talk between Ang II and late EPCs. We observed that Ang II could increase reactive oxygen species (ROS) and promote capillary formation in late EPCs. Ang II-derived ROS could also upregulate heme oxygenase-1 (HO-1) expression, and treating late EPCs with HO-1 small interfering RNA or heme oxygenase inhibitor (HO inhibitor) could inhibit Ang II-induced tube formation and increase ROS level and apoptosis rate. In addition, PD98059 and LY294002 pretreatment attenuated Ang II-induced HO-1 expression. Accordingly, Ang II-derived ROS could promote angiogenesis in late EPCs by inducing HO-1 expression via ERK1/2 and AKT/PI3K pathways, and we believe HO-1 might be a promising intervention target in EPCs due to its potent proangiogenic, antioxidant, and antiapoptosis potentials.  相似文献   

8.
Hypervascularity is a characteristic synovial feature of rheumatoid arthritis (RA). We previously reported that Tie1 and Tie2, endothelium-specific tyrosine kinase receptors essential for angiogenesis, are expressed not only by vascular cells, but also by a subpopulation of synovial lining and stromal cells in the inflamed RA synovium. The present study used immunohistochemistry and in situ hybridization to examine whether angiopoietin-1 and -2 (Ang1 and Ang2), ligands for Tie2, are also expressed in the RA synovium. Ang1 and Ang2 were expressed in all of 15 RA synovial samples, and their distribution pattern was similar to that of Tie2. Intense staining was noted in synovial lining and stromal cells, as well as in small vessels in areas of papillary projection and high cell density. Double immunohistochemistry revealed coexpression of Ang1, Ang2, and Tie2 in synovial components exhibiting proliferating cell nuclear antigen immunoreactivity. In addition, Ang1 and Ang2 were preferentially expressed in vimentin-positive fibroblastic cells. To address the functional role of Ang/Tie signaling in RA pathophysiology, we carried out [(3)H]thymidine incorporation and transwell chemotaxis assays using cultured fibroblastic synoviocytes obtained from 2 RA patients. Incubation with various concentrations of recombinant Ang1 or Ang2 did not alter DNA synthesis, but the ligands enhanced chemotactic migration of RA fibroblastic synoviocytes. Our results suggest that the autocrine/paracrine signaling of the Ang/Tie2 system is important for the up-regulated angiogenesis in the RA synovium, as well as for synoviocyte behavior, by regulating chemotactic cell movement.  相似文献   

9.
Angiogenic factors in normal endometrium and endometrial adenocarcinoma   总被引:12,自引:0,他引:12  
In the endometrium, angiogenesis plays important roles not only in tumor growth but also in the menstrual cycle. The purpose of the present paper was to investigate immunohistochemically the correlation between angiogenic factor expression and angiogenic score in normal and neoplastic endometrium. Immunohistochemical staining for vascular endothelial growth factor (VEGF), angiopoietin (Ang)-1, Ang2, Tie2, CD34 and CD105 was performed on formalin-fixed and paraffin-embedded tissues from 31 normal endometrium and 85 endometrial adenocarcinoma. VEGF, Ang1, Ang2 and Tie2 expression was localized in the cytoplasm of glandular and tumor cells. The levels of each angiogenic factor were different in the phases of the menstrual cycle and each layer of normal endometrium. In general, VEGF and Tie2 expression was higher in adenocarcinoma than in normal epithelial cells. Conversely, Ang1 and Ang2 expression was higher in normal epithelium than in adenocarcinoma. The angiogenic score (CD105/CD34) tended to be higher in the adenocarcinoma than in the normal epithelium. It is suggested that the angiogenic pathway and the role of these factors seem to differ between normal tissue and carcinoma of the endometrium.  相似文献   

10.
Infantile hemangiomas are endothelial tumors that grow rapidly in the first year of life and regress slowly during early childhood. Although hemangiomas are well-known vascular lesions, little is known about the mechanisms that cause the excessive endothelial cell proliferation in these most common tumors of infancy. To investigate the molecular basis of hemangioma, we isolated endothelial cells from several proliferative-phase lesions and showed that these cells are clonal and exhibit abnormal properties in vitro (E. Boye, Y. Yu, G. Paranya, J. B. Mulliken, B. R. Olsen, J. Bischoff: Clonality and altered behavior of endothelial cells from hemangiomas. J Clin Invest 2001, 107:745-752). Here, we analyzed mRNA expression patterns of genes required for angiogenesis, including members of the vascular endothelial growth factor (VEGF)/VEGF receptor family and the angiopoietin/Tie family, in hemangioma-derived and normal endothelial cells. KDR, Flt-1, Tie1, Tie2, and angiopoietin-2 (Ang2) were strongly expressed in cultured hemangioma-derived endothelial cells and in hemangioma tissue. In contrast, there was little expression of angiopoietin-1 (Ang1) or VEGF. We found Tie2 mRNA and protein up-regulated with a concomitant increase in cellular responsiveness to Ang1 in most hemangioma-derived endothelial cells. Ang2 mRNA was down-regulated in response to serum in hemangioma-derived endothelial cells, but not in normal endothelial cells, suggesting altered regulation. These findings implicate Tie2 and its ligands Ang1 and Ang2 in the pathogenesis of hemangioma.  相似文献   

11.
Regulation of tie2 expression by angiopoietin--potential feedback system.   总被引:1,自引:0,他引:1  
To study a potential feedback system in the angiopoietin (Ang)-Tie2 system, the authors examined effects of Ang1 and Ang2 on Tie2 expression on human umbilical vein endothelial cells (HUVECs) with or without stimulation by a potent inflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha). Ang1, but not Ang2, down-regulated Tie2 expression on HUVECs without TNF-alpha stimulation. Both Ang1 and Ang2 attenuated TNF-alpha-induced Tie2 up-regulation. Regulation of Tie2 expression by Ang1 or Ang2 was not dependent on phosphatidylinositol 3-kinase. The Ang-Tie2 system appears to have an autoregulatory feedback system that may be regulating the overall activity of the Tie2 system in both physiological and pathological conditions.  相似文献   

12.
13.
Neural progenitor cells (NPCs) have the potential to survive brain ischemia and participate in neurogenesis after stroke. However, it is not clear how survival responses are initiated in NPCs. Using embryonic mouse NPCs and the in vitro oxygen and glucose deprivation (OGD) model, we found that angiopoietin-1 (Ang1) could prevent NPCs from OGD-induced apoptosis, as evidenced by terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling and annexin V labeling. Ang1 significantly elevated tunica intima endothelial kinase 2 (Tie2) autophosphorylation level, suggesting the existence of functional Tie2 receptors on NPCs. NPCs under OGD conditions exhibited reduction of Akt phosphorylation, decrease of the Bcl-2/Bax ratio, activation of caspase-3, cleavage of PARP, and downregulation of β-catenin and nestin. Ang1 reversed the above changes concomitantly with significant rising of survival rates of NPCs under OGD, but all these effects of Ang1 could be blocked by either soluble extracellular domain of Tie2 Fc fusion protein (sTie2Fc) or the phosphoinositide 3-kinase (PI3K) inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one (LY294002). Our findings suggest the existence of an Ang1–Tie2–PI3K signaling axis that is essential in initiation of survival responses in NPCs against cerebral ischemia and hypoxia.  相似文献   

14.

Objective

To explore the role and mechanism of the two-kidney one-clip (2K1C)-activated Angiotensin II (Ang II) in the development of vascular damage in adjuvant-induced arthritis (AA) rats.

Methods

2K1C rats were established in normal and AA rats for 35 days. Hypertension, endothelial dysfunction, and vascular hypertrophy induced by 2K1C-activated Ang II in systemic inflammation rats were evaluated. The levels of Ang II and TNF-α in serum were observed by ELISA kits. Expressions of Ang II/ATR/ERK1/2 signaling pathway molecules in the aorta were tested by immunohistochemistry or western blot. The migration and capillary tube formation abilities of human umbilical vein endothelial cells (HUVECs) were tested by migration chamber and capillary tube formation assays.

Results

The level of Ang II in serum was significantly increased in 2K1C rats. Compared with AA rats, the high level of Ang II activated by 2K1C reduced the endothelium-dependent vasodilator responses to acetylcholine (ACh) in the thoracic aorta and exacerbated endothelial dysfunction and vascular hypertrophy. Expressions of ATR, GRK2, p-ERK1/2, and p-NF-κB were significantly increased in the aorta of AA combined with 2K1C rats. The migration and capillary tube formation abilities of HUVECs were significantly enhanced by Ang II and TNF-α co-stimulations in vitro through the ATR/ERK1/2 signaling pathway compared to those stimulated with TNF-α.

Conclusions

2K1C-activated Ang II is involved in aggravated vascular injury and endothelial dysfunction through the ATR/ERK1/2 signaling pathway in AA rats.
  相似文献   

15.
It has become evident that a closely regulated presence of vascular endothelial growth factor (VEGF) and angiopoietin (Ang) factors determines the fate of blood vessel formation during angiogenesis. As angiogenesis is central to a normal wound-healing process, we investigated the regulation of Ang-1 and -2 and the related tyrosine kinase with immunoglobulin and epidermal growth factor homology (Tie)-1 and -2 receptors during normal repair in Balb/c mice and diabetes-impaired wound healing conditions in genetically diabetic (db/db) mice. For both normal and impaired healing conditions, we observed a constitutive expression of Ang-1, which was paralleled by an increase of Ang-2 upon injury. Whereas the observed Ang-2 expression declines from Day 7 after injury in control mice, diabetic-impaired healing was characterized by still increasing amounts of Ang-2 at these time points. Furthermore, Tie-1 was strongly induced during repair with a prolonged expression in diabetic mice, whereas Tie-2 expression was constitutive during normal repair but completely absent in diabetes-impaired healing. The overexpression of Ang-2 in the presence of markedly reduced VEGF in wounds of diabetic mice was associated with a dramatic decrease in endothelial cell numbers compared with normal healing as assessed by analysis of the endothelium-specific markers CD31 and von Willebrand factor, whereas the lymphatic endothelium remained stable as determined by expression of VEGF receptor-3 (VEGFR-3/Flt-4).  相似文献   

16.
Vascular remodeling is a feature of chronic inflammation during which capillaries transform into venules that expand the region of the vasculature in which leakage and leukocyte emigration both occur. Recently, we found that angiopoietin/Tie2 receptor signaling drives the transformation of capillaries into venules at an early stage of the sustained inflammatory response in the airways of mice infected with Mycoplasma pulmonis. However, the precise contributions of both angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) are not clear. In this study, we sought to determine the contribution of Ang2 to this vascular remodeling. Ang2 mRNA expression levels increased and phosphorylated Tie2 immunoreactivity in mucosal blood vessels decreased, indicative of diminished receptor signaling after infection. Selective inhibition of Ang2 throughout the infection by administration of either of two distinct function-blocking antibodies reduced the suppression of Tie2 phosphorylation and decreased the remodeling of mucosal capillaries into venules, the amount of leukocyte influx, and disease severity. These findings are consistent with Ang2 acting as an antagonist of Tie2 receptors and the reduction of Tie2 phosphorylation in endothelial cells rendering the vasculature more responsive to cytokines that promote both vascular remodeling and the consequences of inflammation after M. pulmonis infection. By blocking such changes, Ang2 inhibitors may prove beneficial in the treatment of sustained inflammation in which vascular remodeling, leakage, and leukocyte influx contribute to its pathophysiology.  相似文献   

17.
Staton C A, Hoh L, Baldwin A, Shaw L, Globe J, Cross S S, Reed M W & Brown N J
(2011) Histopathology 59 , 256–263 Angiopoietins 1 and 2 and Tie‐2 receptor expression in human ductal breast disease Aims: This study aimed to identify the involvement of the angiopoietin/Tie‐2 receptor system in breast cancer development, progression, metastasis and angiogenesis. Methods and results: We quantified and correlated angiopoietin‐1 (Ang‐1), Ang‐2 and Tie‐2 expression in sections of normal human breast, benign and premalignant hyperplastic tissue, pre‐invasive and invasive cancer, and compared these findings with our previously published data on vascular endothelial growth factor (VEGF) and microvessel density (MVD) in the same samples. A breast cancer tissue microarray was used to evaluate the prognostic value of these factors. Histological analysis revealed a significant decrease in Ang‐1 expression (P = 0.001) and an inverse correlation with MVD (r = ?0.442, P = 0.008) and VEGF (r = ?0.510, P = 0.002) in the non‐invasive lesions. In contrast Ang‐2 expression increased significantly (P = 0.0004) with increasing severity of lesion and correlated with MVD (r = 0.570; P = 0.0002), while Tie‐2 expression remained relatively unchanged. Expression of all three factors was reduced in invasive breast cancer and did not correlate with oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), lymph node status or tumour grade. Conclusions: These data suggest that a change in the angiopoietin balance in favour of Ang‐2 is associated with the angiogenic switch at the onset of hyperplasia in the breast. However, angiopoietins and the Tie‐2 receptor are not related to known prognostic indicators in invasive breast cancer.  相似文献   

18.
AIMS: Both aerobic and resistance exercise training promote skeletal muscle angiogenesis. Acute aerobic exercise increases several pro-angiogenic pathways, the best characterized being increases in vascular endothelial growth factor (VEGF). We hypothesized that acute resistance exercise also increases skeletal muscle angiogenic growth factor [VEGF and angiopoietin (Ang)] expression. METHODS: Seven young, sedentary individuals had vastus lateralis muscle biopsies and blood drawn prior to and at 0, 2 and 4 h post-resistance exercise for the measurement of VEGF; VEGF receptor [KDR, Flt-1 and neuropilin 1 (Nrp1)]; Ang1 and Ang2; and the angiopoietin receptor--Tie2 expression. Resistance exercise consisted of progressive knee extensor (KE) exercise to determine one repetition maximum (1-RM) followed by three sets of 10 repetitions (3 x 10) of KE exercise at 60-80% of 1-RM. RESULTS: Resistance exercise significantly increased skeletal muscle VEGF mRNA and protein and plasma VEGF protein at 2 and 4 h. Resistance exercise increased KDR mRNA and Tie2 mRNA at 4 h and Nrp1 mRNA at 2 and 4 h. Skeletal muscle Flt-1, Ang1, Ang2 and Ang2/Ang1 ratio mRNA were not altered by resistance exercise. CONCLUSIONS: These findings suggest that acute resistance exercise increases skeletal muscle VEGF, VEGF receptor and angiopoietin receptor expression. The increases in muscle angiogenic growth factor expression in response to acute resistance exercise are similar in timing and magnitude with responses to acute aerobic exercise and are consistent with resistance exercise promoting muscle angiogenesis.  相似文献   

19.
The distinct roles of angiopoietin (Ang)-1 and Ang2, counteracting ligands for the endothelium-specific Tie2 receptor, in tumor development and progression have remained poorly understood. We investigated the expression of Ang1 and Ang2 during multistep mouse skin carcinogenesis and in human squamous cell carcinoma (SCC) xenografts. Expression of Ang2, but not of Ang1, was up-regulated in angiogenic tumor vessels already in early stages of skin carcinogenesis and was also strongly increased in SCCs. Stable overexpression of Ang1 in human A431 SCCs resulted in a more than 70% inhibition of tumor growth, associated with enhanced Tie2 phosphorylation levels, as compared with low levels in control transfected tumors. No major changes in the vascular density, vascular endothelial growth factor mRNA and protein expression, and vascular endothelial growth factor receptor-2 phosphorylation levels were observed in Ang1-expressing tumors. However, the fraction of tumor blood vessels with coverage by alpha-smooth muscle actin-positive periendothelial cells was significantly increased, indicative of an increased vascular maturation status. These findings identify an inhibitory role of Ang1/Tie2 receptor-mediated vessel maturation in SCC growth and suggest that up-regulation of its antagonist, Ang2, during early-stage epithelial tumorigenesis contributes to the angiogenic switch by counteracting specific vessel-stabilizing effects of Ang1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号