首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How does processing of information change the internal representations used in subsequent stages of sensory pathways? To approach this question, we studied the representations of whisker movements in the lemniscal and paralemniscal pathways of the rat vibrissal system. We recently suggested that these two pathways encode movement frequency in different ways. We proposed that paralemniscal thalamocortical circuits, functioning as phase-locked loops (PLLs), translate temporally coded information into a rate code. Here we focus on the two major trigeminal nuclei of the brain stem, nucleus principalis and subnucleus interpolaris, and on their thalamic targets, the ventral posteromedial nucleus (VPM) and the medial division of the posterior nucleus (POm). This is the first study in which these brain stem and thalamic nuclei were explored together in the same animals and using the same stimuli. We studied both single- and multi-unit activity. We moved the whiskers both mechanically and by air puffs; here we present air-puff-induced movements because they are more similar to natural movements than movements induced by mechanical stimulations. We describe the basic properties of the responses in these brain stem and thalamic nuclei. The responses in both brain stem nuclei were similar; responses to air puffs were mostly tonic and followed the trajectory of whisker movement. The responses in the two thalamic nuclei were similar during low-frequency stimulations or during the first pulses of high-frequency stimulations, exhibiting more phasic responses than those of brain stem neurons. However, with frequencies >2 Hz, VPM and POm responses differed, generating different representations of the stimulus frequency. In the VPM, response amplitudes (instantaneous firing rates) and spike counts (total number of spikes per stimulus cycle) decreased as a function of the frequency. In the POm, latencies increased and spike count decreased as a function of the frequency. Having described the basic response properties in the four nuclei, we then focus on a specific test of our PLL hypothesis for coding in the paralemniscal pathway. We used short-duration air puffs, much shorter than whisker movements during natural whisking. The activity in this situation was consistent with the prediction we made on the basis of the PLL hypothesis.  相似文献   

2.
In all sensory systems, information is processed along several parallel streams. In the vibrissa-to-barrel cortex system, these include the lemniscal system and the lesser-known paralemniscal system. The posterior medial nucleus (POm) is the thalamic structure associated with the latter pathway. Previous studies suggested that POm response latencies are positively correlated with stimulation frequency and negatively correlated with response duration, providing a basis for a phase locked loop-temporal decoding of stimulus frequency. We tested this hypothesis by analyzing response latencies of POm neurons, in both awake and anesthetized rats, to vibrissae deflections at frequencies between 0.3 and 11 Hz. We found no significant, systematic correlation between stimulation frequency and the latency or duration of POm responses. We obtained similar findings from recording in awake rats, in rats under different anesthetics, and in anesthetized rats in which the reticular activating system was stimulated. These findings suggest that stimulus frequency is not reliably reflected in response latency of POm neurons. We also tested the hypothesis that POm neurons respond preferentially to sensor motion, that is, they respond to whisking in air, without contacts. We recorded from awake, head-restrained rats while monitoring vibrissae movements. All POm neurons responded to passive whisker deflections, but none responded to noncontact whisking. Thus like their counterparts in the trigeminal ganglion, POm neurons may not reliably encode whisking kinematics. These observations suggest that POm neurons might not faithfully encode vibrissae inputs to provide reliable information on vibrissae movements or contacts.  相似文献   

3.
Part of the information obtained by rodent whiskers is carried by the frequency of their movement. In the thalamus of anesthetized rats, the whisker frequency is represented by two different coding schemes: by amplitude and spike count (i.e., response amplitudes and spike counts decrease as a function of frequency) in the lemniscal thalamus and by latency and spike count (latencies increase and spike counts decrease as a function of frequency) in the paralemniscal thalamus (see accompanying paper). Here we investigated neuronal representations of the whisker frequency in the primary somatosensory ("barrel") cortex of the anesthetized rat, which receives its input from both the lemniscal and paralemniscal thalamic nuclei. Single and multi-units were recorded from layers 2/3, 4 (barrels only), 5a, and 5b during vibrissal stimulation. Typically, the input frequency was represented by amplitude and spike count in the barrels of layer 4 and in layer 5b (the "lemniscal layers") and by latency and spike count in layer 5a (the "paralemniscal layer"). Neurons of layer 2/3 displayed a mixture of the two coding schemes. When the pulse width of the stimulus was reduced from 50 to 20 ms, the latency coding in layers 5a and 2/3 was dramatically reduced, while the spike-count coding was not affected; in contrast, in layers 4 and 5b, the latencies remained constant, but the spike counts were reduced with 20-ms stimuli. The same effects were found in the paralemniscal and lemniscal thalamic nuclei, respectively (see accompanying paper). These results are consistent with the idea that thalamocortical loops of different pathways, although terminating within the same cortical columns, perform different computations in parallel. Furthermore, the mixture of coding schemes in layer 2/3 might reflect an integration of lemniscal and paralemniscal outputs.  相似文献   

4.
The dorsolateral part of the striatum (DLS) represents the initial stage for processing sensorimotor information in the basal ganglia. Although the DLS receives much of its input from the primary somatosensory (SI) cortex, peripheral somesthetic stimulation activates the DLS at latencies that are shorter than the response latencies recorded in the SI cortex. To identify the subcortical regions that transmit somesthetic information directly to the DLS, we deposited small quantities of retrograde tracers at DLS sites that displayed consistent time-locked responses to controlled whisker stimulation. The neurons that were retrogradely labeled by these injections were located mainly in the sensorimotor cortex and, to a lesser degree, in the amygdala and thalamus. Quantitative analysis of neuronal labeling in the thalamus indicated that the strongest thalamic input to the whisker-sensitive part of the DLS originates from the medial posterior nucleus (POm), a somesthetic-related region that receives inputs from the spinal trigeminal nucleus. Anterograde tracer injections in POm confirmed that this thalamic region projects to the DLS neuropil. In subsequent experiments, simultaneous recordings from POm and the DLS during whisker stimulation showed that POm consistently responds before the DLS. These results suggest that POm could transmit somesthetic information to the DLS, and this modality-specific thalamostriatal pathway may cooperate with the thalamostriatal projections that originate from the intralaminar nuclei.  相似文献   

5.
A temporal sensory code occurs in posterior medial (POm) thalamus of the rat vibrissa system, where the latency for the spike rate to peak is observed to increase with increasing frequency of stimulation between 2 and 11 Hz. In contrast, the latency of the spike rate in the ventroposterior medial (VPm) thalamus is constant in this frequency range. We consider the hypothesis that two factors are essential for latency coding in the POm. The first is GABAB-mediated feedback inhibition from the reticular thalamic (Rt) nucleus, which provides delayed and prolonged input to thalamic structures. The second is sensory input that leads to an accelerating spike rate in brain stem nuclei. Essential aspects of the experimental observations are replicated by the analytical solution of a rate-based model with a minimal architecture that includes only the POm and Rt nuclei, i.e., an increase in stimulus frequency will increase the level of inhibitory output from Rt thalamus and lead to a longer latency in the activation of POm thalamus. This architecture, however, admits period-doubling at high levels of GABAB-mediated conductance. A full architecture that incorporates the VPm nucleus suppresses period-doubling. A clear match between the experimentally measured spike rates and the numerically calculated rates for the full model occurs when VPm thalamus receives stronger brain stem input and weaker GABAB-mediated inhibition than POm thalamus. Our analysis leads to the prediction that the latency code will disappear if GABAB-mediated transmission is blocked in POm thalamus or if the onset of sensory input is too abrupt. We suggest that GABAB-mediated inhibition is a substrate of temporal coding in normal brain function.  相似文献   

6.
Rats employ rhythmic whisker movements to sample information in their sensory environment. To study frequency tuning and filtering characteristics of thalamic circuitry, we recorded single-unit responses of ventroposterior medial (VPm) and thalamic reticular (Rt) neurons to 1- to 40-Hz sinusoidal and pulsatile whisker deflection in lightly narcotized rats. Neuronal entrainment was assessed by a measure of the relative modulation (RM) of firing at the stimulus frequency given by the first harmonic (F1) of the cycle time histogram divided by the mean firing rate (F0). VPm signaling of both sinusoidal and periodic pulsatile whisker movements improved gradually over 1-16 and was maximal at 20-40 Hz. By contrast, the RM of Rt responses increased over 1-8 Hz, but deteriorated progressively over the 12- to 40-Hz range. In Rt, response adaptation occurred at lower stimulus frequencies and to a greater extent than in VPm. Within a train of high-frequency stimuli, Rt responses progressively decremented, possibly due to the accumulation of inhibition, whereas those of VPm neurons augmented. Mean firing rates in Rt increased 42 spikes/s over 1-40 Hz, providing tonic (low RM) inhibition during high-frequency stimulation that may enhance VPm signal-to-noise ratios. Consistent with this view, VPm mean firing rates increased only 13 spikes/s over 1-40 Hz, and inter-deflection activity was suppressed to a greater extent than stimulus-evoked responses. Rt inhibition is likely to act in concert with actions of neuromodulators in optimizing thalamic temporal signaling of high-frequency whisker movements.  相似文献   

7.
In order to elucidate the role of cortical input on sensory information processing in different thalamic somatosensory nuclei we recorded potentials evoked (EPs) by whisker deflections of short duration from ventral posteromedial (VPm) and medial posterior (POm) nuclei while manipulating cortico-thalamic activity by means of local cooling, lidocaine application or electrical stimulation. It appeared that only the earliest sub-component of the first negative wave of the EPs resulted from peripheral input, while the rest of the potential's negativity depended on cortical feedback. The latencies and amplitudes of EPs recorded at both nuclei were not significantly different, which might be attributed to urethane anesthesia.  相似文献   

8.
The thalamic reticular nucleus (Rt) is strategically positioned to integrate descending and ascending signals in the control of sensorimotor and other thalamocortical activity. Its prominent role in the generation of sleep spindles notwithstanding, relatively little is known of Rt function in regulating interactions with the sensory environment. We recorded and compared the responses of individual Rt and thalamocortical neurons in the ventroposterior medial (VPm) nucleus of the rat to controlled deflections of mystacial vibrissae. Transient Rt responses to the onset (ON) and offset (OFF) of vibrissa deflection are larger and longer in duration than those of VPm and of all other populations studied in the whisker/barrel pathway. Magnitudes of ON and OFF responses in Rt were negatively correlated with immediately preceding activities, suggesting a contribution of low-threshold T-type Ca(2+) channels. Rt neurons also respond with high tonic firing rates during sustained vibrissa deflections. By comparison, VPm neurons are less likely to respond tonically and are more likely to exhibit tonic suppression. Rt and VPm populations are similar to each other, however, in that they retain properties of directional sensitivity established in primary afferent neurons. In both populations neurons are selective for deflection angle and exhibit directional consistency, responding best to a particular direction of movement regardless of the starting position of the vibrissal hair. These findings suggest a role for Rt in the processing of detailed sensory information. Temporally, Rt may function to limit the duration of stimulus-evoked VPm responses and to focus them on rapid vibrissa perturbations. Moreover, by regulating the baseline activity of VPm neurons, Rt may indirectly enhance the response selectivity of layer IV barrel neurons to synchronous VPm firing.  相似文献   

9.
Sensory inputs from the whiskers reach the primary somatosensory thalamus through the medial lemniscus tract. The main role of the thalamus is to relay these sensory inputs to the neocortex according to the regulations dictated by behavioural state. Intracellular recordings in urethane-anaesthetized rats show that whisker stimulation evokes EPSP-IPSP sequences in thalamic neurons. Both EPSPs and IPSPs depress with repetitive whisker stimulation at frequencies above 2 Hz. Single-unit recordings reveal that during quiescent states thalamic responses to repetitive whisker stimulation are suppressed at frequencies above 2 Hz, so that only low-frequency sensory stimulation is relayed to the neocortex. In contrast, during activated states, induced by stimulation of the brainstem reticular formation or application of acetylcholine in the thalamus, high-frequency whisker stimulation at up to 40 Hz is relayed to the neocortex. Sensory suppression is caused by the depression of lemniscal EPSPs in relatively hyperpolarized thalamocortical neurons. Sensory suppression is abolished during activated states because thalamocortical neurons depolarize and the depressed lemniscal EPSPs are able to reach firing threshold. Strong IPSPs may also contribute to sensory suppression by hyperpolarizing thalamocortical neurons, but during activated states IPSPs are strongly reduced altogether. The results indicate that the synaptic depression of lemniscal EPSPs and the level of depolarization of thalamocortical neurons work together in thalamic primary sensory pathways to suppress high-frequency sensory inputs during non-activated (quiescent) states while permitting the faithful relay of high-frequency sensory information during activated (processing) states.  相似文献   

10.
The organization of the efferent projections from the spinal trigeminal nucleus oralis (Sp5O) to the diencephalon was studied in the rat using the anterograde tracer Phaseolus vulgaris leucoagglutinin. The present study confirms the existence of trigemino-thalamic pathways originating from the Sp5O and details their distribution. The main diencephalic targets of the Sp5O are the ventral posteromedial thalamic nucleus (VPM), the posterior thalamic nuclei (Po) and the ventral part of the zona incerta (ZIv), contralaterally, and the parvicellular part of the ventral posterior thalamic nucleus (VPpc), bilaterally. The distribution of these projections varies according to the dorso-ventral location of the injection sites: the dorsal part of the Sp5O projects to the medial part of the VPM and the Po, and to the caudal part of the ZIv, as well as to the VPpc. The ventral part of the Sp5O projects to the lateral part of the VPM and the Po and to the rostral part of the ZIv. These results suggest that the trigemino-diencephalic pathways originating from the Sp5O are involved in the processing of gustatory and somatosensory information.  相似文献   

11.
In addition to a primary somatosensory cortex (SI), the cerebral cortex of all mammals contains a second somatosensory area (SII); however, the functions of SII are largely unknown. Our aim was to explore the functions of SII by comparing response properties of whisker-related neurons in this area with their counterparts in the SI. We obtained extracellular unit recordings from narcotized rats, in response to whisker deflections evoked by a piezoelectric device, and compared response properties of SI barrel (layer IV) neurons with those of SII (layers II to VI) neurons. Neurons in both cortical areas have similar response latencies and spontaneous activity levels. However, SI and SII neurons differ in several significant properties. The receptive fields of SII neurons are at least five times as large as those of barrel neurons, and they respond equally strongly to several principal whiskers. The response magnitude of SII neurons is significantly smaller than that of neurons in SI, and SII neurons are more selective for the angle of whisker deflection. Furthermore, whereas in SI fast-spiking (inhibitory) and regular-spiking (excitatory) units have different spontaneous and evoked activity levels and differ in their responses to stimulus onset and offset, SII neurons do not show significant differences in these properties. The response properties of SII neurons suggest that they are driven by thalamic inputs that are part of the paralemniscal system. Thus whisker-related inputs are processed in parallel by a lemniscal system involving SI and a paralemniscal system that processes complimentary aspects of somatosensation.  相似文献   

12.
The studies reported here demonstrate that the projection representation of the whiskers in the somatosensory cortex in rats is the area at which afferent streams arriving via the lemniscal and paralemniscal projections interact. The responses of neurons in layers IV, Va, and Vb to mechanical stimulation of single whiskers were studied. Neurons in layers IV and Vb were found to show more frequent phasic responses (typical of the lemniscal system), while those in layer Va produced predominantly tonic responses (typical of the paralemniscal system). These characteristics of adaptive-plastic rearrangements of cortical neuron activity in response to constant stimuli may result from intracortical cooperative interactions between the lemniscal and paralemniscal projection systems, which, overall, produces a precise qualitative assessment of the perceived stimulus in its specific context.  相似文献   

13.
Layer 5 (L5) pyramidal neurones constitute a major sub- and intracortical output of the somatosensory cortex. This layer 5 is segregated into layers 5A and 5B which receive and distribute relatively independent afferent and efferent pathways. We performed in vivo whole-cell recordings from L5 neurones of the somatosensory (barrel) cortex of urethane-anaesthetized rats (aged 27–31 days). By delivering 6 deg single whisker deflections, whisker pad receptive fields were mapped for 16 L5A and 11 L5B neurones located below the layer 4 whisker-barrels. Average resting membrane potentials were −75.6 ± 1.1 mV, and spontaneous action potential (AP) rates were 0.54 ± 0.14 APs s−1. Principal whisker (PW) evoked responses were similar in L5A and L5B neurones, with an average 5.0 ± 0.6 mV postsynaptic potential (PSP) and 0.12 ± 0.03 APs per stimulus. The layer 5A sub- and suprathreshold receptive fields (RFs) were more confined to the principle whisker than those of layer 5B. The basal dendritic arbors of layer 5A and 5B cells were located below both layer 4 barrels and septa, and the cell bodies were biased towards the barrel walls. Responses in both L5A and L5B developed slowly, with onset latencies of 10.1 ± 0.5 ms and peak latencies of 33.9 ± 3.3 ms. Contralateral multi-whisker stimulation evoked PSPs similar in amplitude to those of PW deflections; whereas, ipsilateral stimulation evoked smaller and longer latency PSPs. We conclude that in L5 a whisker deflection is represented in two ways: focally by L5A pyramids and more diffusely by L5B pyramids as a result of combining different inputs from lemniscal and paralemniscal pathways. The relevant output evoked by a whisker deflection could be the ensemble activity in the anatomically defined cortical modules associated with a single or a few barrel-columns.  相似文献   

14.
In layer IV of rat somatosensory cortex, barrel circuitry is highly sensitive to thalamic population firing rates during the first few milliseconds of the whisker-evoked response. This sensitivity of barrel neurons to thalamic firing synchrony was inferred previously from analysis of simulated barrel circuitry and from single-unit recordings performed one at a time. In this study, we investigate stimulus-dependent synchronous activity in the thalamic ventral posteromedial nucleus (VPm) using the more direct approach of local field potential (LFP) recording. We report that thalamic barreloid neurons generate larger magnitude LFP responses to principal versus adjacent whiskers, to preferred versus nonpreferred movement directions, and to high- versus low-velocity/acceleration deflections. Responses were better predicted by acceleration than velocity, and they were insensitive to the final amplitude of whisker deflection. Importantly, reliable and robust stimulus/response relationships were found only for the initial 1.2-7.5 ms of the thalamic LFP response, reflecting arrival of afferent information from the brain stem. Later components of the thalamic response, which are likely to coincide with arrival of inhibitory inputs from the thalamic reticular nucleus and excitatory inputs from the barrel cortex itself, are variable and poorly predicted by stimulus parameters. Together with previous results, these findings underscore a critical role for thalamic firing synchrony in the encoding of small but rapidly changing perturbations of specific whiskers in particular directions.  相似文献   

15.
Oscillatory activity at both the single and multiunit levels has been reported in most central nervous system structures, and is postulated as a key factor in information processing and coding. Rats provide an excellent model for oscillation-based information processing, since tactile perception of the environment is achieved by rhythmic movements of their whiskers and information-related rhythmic activity has been identified in the thalamus and cortex. However, rhythmic activity related to information processing has never been reported in the sensory trigeminal complex (STC), the first brain stem relay station for whisker-related tactile information. In the present work, we demonstrate the existence of neural oscillations in the vibrissae-related neurons of the nuclei principalis (Pr5), oralis (Sp5o), interpolaris (Sp5i) and caudalis (Sp5c). Rhythmic activity was associated with the main task of each nucleus, prominent in nuclei responsible for tactile vibrissae information processing (up to 17% oscillating neurons in Pr5 and 26% in Sp5i) and less conspicuous in those concerned with pain (8% oscillating neurons in Sp5o and in Sp5c). The higher percentage of oscillating neurons and higher frequencies in Sp5i than in Pr5 suggests an active role for rhythmic activity in integrating multivibrissa inputs. Oscillations are generated within the brainstem; data obtained from decorticated animals suggest the existence of a differential cortical control of the rhythmic processes in STC nuclei. Corticofugal activity modifies oscillation frequency and synchronization strength of the rhythmic activity mainly during tactile stimulation of the vibrissae.  相似文献   

16.
To understand how the lemniscal trigeminothalamic circuit (PrV --> VPM) of the rodent whisker-to-barrel pathway transforms afferent signals, we applied ramp-and-hold deflections to individual whiskers of lightly narcotized rats while recording the extracellular responses of neurons in either the ventroposterior medial (VPM) thalamic nucleus or in brain stem nucleus principalis (PrV). In PrV, only those neurons antidromically determined to project to VPM were selected for recording. We found that VPM neurons exhibited smaller response magnitudes and greater spontaneous firing rates than those of their PrV inputs, but that both populations were similarly well tuned for stimulus direction. In addition, fewer VPM (74%) than PrV neurons (93%) responded with sustained, or tonic, discharges during the plateau phase of the stimulus. Neurons in both populations responded most robustly to deflections of a single, "principal whisker" (PW), and the majority of cells in both PrV (90%) and VPM (73%) also responded to deflections of at least one adjacent whisker (AW). AW responses in both nuclei occurred on average at longer latencies and were more temporally dispersed than PW responses. Lateral inhibition, as evidenced by AW-evoked activity suppression, was rare in PrV but prevalent in VPM. In both nuclei, however, suppression was weak, with AW responses being on average excitatory. Our results suggest that the receptive-field structures and response properties of individual VPM neurons can be explained in large part by input from one or a small number of PrV neurons, but that intrathalamic mechanisms act to further transform the afferent signal.  相似文献   

17.
Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation. Rats use their mobile set of whiskers to actively explore their environment. Parameters that play a role to generate movement dynamics of the whisker shaft within the follicle, thus activating primary afferents, are manifold: among them are mechanical properties of the whiskers (curvature, elasticity and taper), active movements (head, body, and whiskers), and finally, object characteristics (surface, geometry, position, and orientation). Hence the whisker system is confronted with forces along all three axes in space. Movements along the two latitudinal axes of the whisker (horizontal and vertical) have been well studied. Here we focus on movement along the whisker's longitudinal axis that has been neglected so far. We employed ramp-and-hold movements that pushed the whisker shaft toward the skin and quantified the resulting activity in trigeminal first-order afferents in anesthetized rats. Virtually all recorded neurons were highly sensitive to longitudinal movement. Neurons could be perfectly segregated into two groups according to their modulation by stimulus amplitude and velocity, respectively. This classification regimen correlated perfectly with the presence or absence of slowly adapting responses in longitudinal stimulation but agreed with classification derived from latitudinal stimulation only if the whisker was engaged in its optimal direction and set point. We conclude that longitudinal stimulation is an extremely effective means to activate the tactile pathway and thus is highly likely to play an important role in tactile coding on the ascending somatosensory pathway. In addition, compared with latitudinal stimulation, it provides a reliable and easy to use method to classify trigeminal first-order afferents.  相似文献   

18.
Primary sensory information from neurons innervating whisker follicles on one side of a rat's face is relayed primarily through two subnuclei of the brainstem trigeminal complex to the contralateral thalamus. The present experiments were undertaken to separate the contribution of the principal trigeminal nucleus (PrV) from that of the spinal trigeminal nucleus (SpV) to whisker evoked responses in the ventral posterior medial (VPM) nucleus in the adult rat thalamus. Extracellular single-unit responses of VPM neurons to controlled stimulation of the contralateral whiskers under urethane anesthesia were quantified in terms of receptive field size, modal latency, response probability and response magnitude. The SpV contribution to VPM cell responses was isolated by making kainic acid lesions of the PrV. The PrV contribution was ascertained by cutting the trigeminothalamic axons arising from SpV just before they cross the midline. After destruction of the PrV, the SpV pathway alone produced large receptive fields (mean: 9.04 whiskers) and long latency (mean: 11.07 ms) responses from VPM neurons. In contrast, PrV input alone (SpV disconnected) generated small receptive fields (mean: 1.06 whiskers) and shorter latency (mean: 6.74 ms) responses. With both pathways intact the average receptive field size was 2.4 whiskers and peak (modal) response latency was 7.33 ms. The responses with both pathways intact were significantly different from either pathway operating in isolation. Response probability and magnitude followed the same trend. We conclude that normal responses of individual VPM neurons represent the integration of input activity transmitted through both PrV and SpV pathways.  相似文献   

19.
 The aim of the present study was to examine the physiological consequences of a unilateral infraorbital nerve lesion and its regeneration at different levels of the somatosensory neuraxis. In animals whose right infraorbital nerve had been crushed, a large unresponsive area was found in the main brainstem trigeminal nucleus (Pr5). Responses evoked by ipsilateral vibrissal deflection in the middle of Pr5 reappeared only on days 22–35 after the nerve had been transected, whereas recovery from the nerve crush took only 7–9 days. However, no sign of short-term neuronal plasticity was observed in Pr5 after peripheral nerve injury. An enlargement of the receptive fields in two-thirds of the units and a lengthening in the delay of the evoked responses were observed as long-term plastic changes in Pr5 neurons after peripheral-nerve regeneration. In the ventral posteromedial nucleus of the thalamus (VPM) of partly denervated animals, however, only minutes or hours after the nerve crush, certain units were found to respond in some cases not only to the vibrissae, but also to mechanical stimulation of the face over the eye (two units), the nose (one unit), and the midline (one unit). Apart from the experiments involving incomplete denervation, the vibrissal representation areas of the VPM were unresponsive to stimulation of both the vibrissae and other parts of the face until nerve regeneration had occurred. In the somatosensory cortex, an infraorbital nerve crush immediately resulted in a large cortical area being unresponsive to vibrissal deflection. It was noteworthy, however, that shortly after the nerve crush, this large unresponsive whisker representation cortical area was invaded from the rostromedial direction by responses evoked by stimulation of the forepaw digits. In spite of the reappearance of vibrissa-evoked responses 7–10 days after the nerve crush, an expanded digital representation could still be observed 3 weeks after the nerve crush, resulting in an overlapping area of digital and vibrissal representations. The withdrawal of the expanded representation of forepaw digits was completed by 60 days after the nerve crush. The results obtained in Pr5, the VPM, and the cortex strongly suggest that the higher the station in the neuraxis, the greater the degree of plasticity after infraorbital nerve injury. Received: 28 May 1998 / Accepted: 5 January 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号