首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three subtypes of vesicular transporters accumulate glutamate into synaptic vesicles to promote its vesicular release. One of the subtypes, VGLUT3, is expressed in neurons, including cholinergic striatal interneurons, that are known to release other classical transmitters. Here we showed that disruption of the Slc17a8 gene (also known as Vglut3) caused an unexpected hypocholinergic striatal phenotype. Vglut3(-/-) mice were more responsive to cocaine and less prone to haloperidol-induced catalepsy than wild-type littermates, and acetylcholine release was decreased in striatum slices lacking VGLUT3. These phenotypes were associated with a colocalization of VGLUT3 and the vesicular acetylcholine transporter (VAChT) in striatal synaptic vesicles and the loss of a synergistic effect of glutamate on vesicular acetylcholine uptake. We propose that this vesicular synergy between two transmitters is the result of the unbalanced bioenergetics of VAChT, which requires anion co-entry for continuing vesicular filling. Our study reveals a previously unknown effect of glutamate on cholinergic synapses with potential functional and pharmacological implications.  相似文献   

2.
Huntington's disease (HD) is characterized by the atrophy of the striatum due to losses of projection neurons, while interneurons are relatively spared. However, little is known about the fate of the large interneurons that express calretinin (Cr) in HD. We addressed this issue by applying a double immunofluorescent labeling technique to postmortem striatum from HD patients and controls. We compared the distribution and density of Cr-positive (+) interneurons and their degree of choline acetyltransferase (ChAT) coexpression in normal and HD cases. Large interneurons containing only Cr, ChAT, or both occurred in the normal human striatum and a twofold decrease in the density of Cr+/ChAT+ and Cr-/ChAT+ neurons was recorded in HD striatum compared to controls. However, studies undertaken with neurokinin-1 receptor as a marker of large Cr+ and ChAT+ neurons revealed that these neurons are selectively spared in HD. Hence, the apparent decrease in the number of Cr+/ChAT+ and Cr-/ChAT+ neurons in HD is better explained by a diminution in the expression of Cr and ChAT than by the degeneration of these cells. Altogether, our data suggest that neurodegenerative processes at play in HD affect the expression of Cr and ChAT in the large striatal interneurons without causing their death.  相似文献   

3.
4.
Choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) are proteins that are required for cholinergic neurotransmission. Present knowledge concerning the organization of cholinergic structures has been derived primarily from immunohistochemistry for ChAT. In the present study, we investigated the distribution of mRNAs and the corresponding proteins for ChAT and VAChT by in situ hybridization histochemistry and immunohistochemistry. The patterns of distribution of perikarya containing ChAT mRNA, ChAT protein, VAChT mRNA and VAChT protein were similar in most regions, and co-localization in the same neuron of mRNAs for ChAT and VAChT, that of ChAT mRNA and ChAT protein, and that of VAChT mRNA and VAChT protein were demonstrated. However, in the cerebral cortex and hypothalamus, ChAT-immunoreactive perikarya were present, but they did not contain mRNAs for ChAT and VAChT, and VAChT protein. On the other hand, in the cerebellum, Purkinje cell bodies contained VAChT mRNA and VAChT protein, but they did not contain either ChAT mRNA or ChAT protein. Axon bundles were clearly revealed by immunohistochemistry for ChAT, but they were not detected by that for VAChT. Both ChAT and VAChT antibodies revealed preterminal axons and terminal-like structures. In the forebrain, they were present in the olfactory bulb, nucleus of the lateral olfactory tract, olfactory tubercle, lateral septal nucleus, amygdala, hippocampus, neocortex, caudate-putamen, thalamus and median eminence of the hypothalamus. In the brainstem, they were localized in the superior colliculus, interpeduncular nucleus and some cranial nerve motor nuclei, and further in the ventral horn of the spinal cord. These results indicate strongly that ChAT and VAChT are expressed in most of the cholinergic neurons, and that immunohistochemistry for VAChT is as useful to detect cholinergic terminal fields as that for ChAT.  相似文献   

5.
6.
The cholinergic gene locus (CGL), consisting of the vesicular acetylcholine transporter (VAChT)/choline acetyltransferase (ChAT) gene, encodes two specific cholinergic neuronal markers used extensively to study cholinergic transmission. In the present work, we isolated the amphioxus homologs of VAChT and ChAT and examined their expression during development. Analysis of the 5' untranslated region of VAChT and ChAT suggests that the splicing of the VAChT/ChAT mRNA has been evolutionarily conserved in amphioxus and mammals. By double whole-mount in situ hybridization, we demonstrate that VAChT and ChAT are coexpressed in the same cells. They are first expressed in four pairs of differentiating cells in the neural plate. Their later expression is primarily in the anterior nerve cord in several types of motoneurons, some of the interneurons and in the receptor cells of the larval ocellus.  相似文献   

7.
The bilateral olfactory bulbectomy (OBX) mouse exhibits neurodegeneration of cholinergic neurons in the medial septum with concomitant cognitive deficits. Consistent with our previous observations, choline acetyltransferase (ChAT) protein levels in the medial septum decreased by 43.5% 2 weeks after OBX without changes in glutamic acid decarboxylase-65 (GAD65) levels. Interestingly, levels of the vesicular acetylcholine transporter (VAChT), which is localized at cholinergic neuron terminals, decreased both in hippocampal CA1 and CA3 regions following OBX. Confocal microscopy showed that VAChT expression was more severely reduced in CA3 14 days after OBX compared with CA1. Intriguingly, chronic treatment with a vanadium (IV) compound, VO(OPT) [bis(1-N-oxide-pyridine-2-thiolato)oxovanadium(IV)] (0.5-1 mg as vanadium (V)/kg/day, i.p.), significantly rescued cholinergic neurons in the medial septum in a dose-dependent manner. VO(OPT) treatment also prevented decreased VAChT immunoreactivity both in CA1 and CA3 regions in the hippocampus. Consistent with these findings, an impaired hippocampal long-term potentiation (LTP) and memory deficits seen in OBX mice were significantly prevented by VO(OPT) treatment. Taken together, OBX induces neurodegeneration of septo-hippocampal cholinergic neurons and impairment of memory-related behaviors. The neuroprotective effect of VO(OPT) could lead to novel therapeutic strategies to ameliorate cognitive deficits associated with cholinergic neuron degeneration in Alzheimer's disease and other neurodegenerative disorders.  相似文献   

8.
Inheritance of a single copy of the gene encoding huntingtin (HD) with an expanded polyglutamine-encoding CAG repeat leads to neuronal dysfunction, neurodegeneration and the development of the symptoms of Huntington's disease (HD). We have found that the steady-state mRNA levels of two members of the phosphodiesterase (PDE) multi-gene family decrease over time in the striatum of R6 transgenic HD mice relative to age-matched wild-type littermates. Phosphodiesterase 10A (PDE10A) mRNA and protein levels decline in the striatum of R6/1 and R6/2 HD mice prior to motor symptom development. The rate of reduction in PDE10A protein correlates with the rate of decline of the message and the decrease in PDE10A mRNA and protein is more rapid in R6/2 compared with R6/1 mice. Both PDE10A protein and mRNA, therefore, decline to minimum levels prior to the onset of overt physical symptoms in both strains of transgenic mice. Moreover, protein levels of PDE10A are decreased in the caudate-putamen of grade 3 HD patients compared with age-matched neuropathologically normal controls. Striatal PDE1B mRNA levels also decline in R6/1 and R6/2 HD mice; however, the decrease in striatal PDE10A levels (>60%) was greater than that observed for PDE1B and immediately preceded the onset of motor symptoms. In contrast, PDE4A mRNA levels are relatively low in the striatum and do not differ between age-matched wild-type and transgenic HD mice. This suggests that the regulation of PDE10A and PDE1B, but not PDE4A, mRNA levels is dependent on the relative expression of or number of CAG repeats within the human HD transgene. The loss of phosphodiesterase activity may lead to dysregulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels in the striatum, a region of the brain that contributes to the control of movement and cognition.  相似文献   

9.
The ability of MK-801 to protect striatal neurons from the excitotoxic action of quinolinic acid was evaluated by means of apomorphine-induced rotational behavior and by measurement of striatal choline acetyltransferase (ChAT) and glutamic acid decarboxylase (GAD) activity, neurochemical markers for cholinergic and GABAergic neurons, respectively. Animals with a unilateral quinolinic acid lesion of the striatum exhibited a vigorous rotational response when challenged with apomorphine (0.5 mg/kg, s.c.) 6 days later and were found to have an 88 90% depletion of striatal ChAT and GAD activity. Treatment with a high dose of MK-801 (10 mg/kg, i.p.) prior to intrastriatal injection of quinolinic acid eliminated the subsequent rotational response to apomorphine and resulted in complete protection of striatal ChAT and GAD activity. Lower doses of MK-801 (1, 3 and 5 mg/kg, i.p.) failed to significantly reduce the rotational response to apomorphine but provided partial, dose-dependent protection of both ChAT and GAD activity. The rotational response to apomorphine correlated with the percent reduction in both ChAT activity (r = 0.57, P less than 0.0005) and GAD activity (r = 0.49, P less than 0.0005). Rotational behavior may thus provide a means to evaluate the functional integrity of the striatum.  相似文献   

10.
The present study shows a novel administration form of the monoganglioside GM1, which following microencapsulation in human serum albumin was topically applied on cortical regions damaged by devascularization in rats. The effects of microencapsulated GM1 on extracellular levels of acetylcholine, choline and dopamine in the cortex and in the striatum were analyzed using in vivo microdialysis. Cholinergic neurons in the nucleus basalis magnocellularis were studied immunohistochemically using monoclonal antibodies raised against choline acetyltransferase (ChAT). It was found that cortical devascularizing lesions produced a decrease in extracellular levels of cortical acetylcholine and choline, and retrograde morphological changes in cholinergic neurons in the nucleus basalis magnocellularis. GM1 promoted (1) recovery of the retrograde morphological changes produced by the decortication in the nucleus basalis magnocellularis and (2) a parallel increase in cortical acetylcholine release. No changes were observed in the striatum, nor on cortical or striatal dopamine levels simultaneously measured in the same perfusates.  相似文献   

11.
尾壳核功能复杂,生理学及药理学的研究提示:尾壳核在功能上及神经递质的分布上有区域性的差异,但形态学上有无此类差异未见报道。本文以免疫组化ABC技术用乙酰胆碱转移酶单克隆抗体研究了胆碱能神经元在尾亮核头部的分布,结果显示胆碱能神经元在尾壳核头部的分布存在着区域性差异,背外侧区神经元的密度最高,13.47±3.46个/mm~2。利用VIDS—Ⅲ型图像分析仪随机测量尾壳核头部的529个胆碱能神经元,发现组成尾壳核头部的胆碱能神经元有两类:中等神经元和大型神经元。中等神经元的平均球直径为13.82±1.32μm,大神经元的平均球直径17.88±1.95μm。本文从形态学上显示的胆碱能神经元分布密集区与放射免疫测定结果相一致。对神经元大小的表示提出了更精确的参数及相应的分类标准。  相似文献   

12.
《Acta histochemica》2014,116(8):1382-1389
Cholinergic innervation of the rat adrenal gland has been analyzed previously using cholinergic markers including acetylcholinesterase (AChE), choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT). In the present study, we demonstrate putative cholinergic neurons in the rat adrenal gland using an antibody to pChAT, which is the product of a splice variant of ChAT mRNA that is preferentially localized in peripheral cholinergic nerves. Most of the ganglionic neurons as well as small single sporadic neurons in the adrenal gland were stained intensely for pChAT. The density of pChAT-immunoreactive (IR) fibers was distinct in the adrenal cortex and medulla. AChE-, cChAT- and VAChT-immunoreactivities were also observed in some cells and fibers of the adrenal medulla, while the cortex had few positive nerve fibers. These results indicate that ganglionic neurons of the adrenal medulla and nerve fibers heterogeneously express cholinergic markers, especially pChAT. Furthermore, the innervation of the adrenal gland, cortex and medulla, by some cholinergic fibers provides additional morphological evidence for a significant role of cholinergic mechanisms in adrenal gland functions.  相似文献   

13.
Altered glutamate transmission in the striatum has been proposed to play a critical role in the pathophysiology of Huntington's disease (HD), a genetic disorder associated with impaired activity of the mitochondrial complex II (succinate dehydrogenase, SD). In the present study, we recorded spontaneous (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) from striatal neurons of both toxic (systemic administration of 3-nitropropionic acid in rats) and genetic models of HD (R6/2 transgenic mice). In both models, we found a significant down-regulation of glutamate transmission, suggesting that reduced synaptic excitation of the input structure of the basal ganglia represents a physiological correlate of HD.  相似文献   

14.
Huntington's disease (HD) is characterized clinically by chorea, psychiatric disturbances, and dementia, while it is characterized pathologically by neuronal inclusions as well as striatal and cortical neurodegeneration. The neurodegeneration arises from the loss of long projection neurons in the cortex and striatum. In this study, we investigated the role of apoptosis signal-regulating kinase 1 (Ask1) in the pathogenesis of HD. We analyzed the expression of Ask1 and huntingtin (htt) within the striatum and cortex and also examined the interaction of Ask1 with htt fragments in HD (R6/2) mice. Additionally, we inhibited Ask1 and analyzed the resulting changes in brain-derived neurotrophic factor (BDNF) expression, motor function, and striatal atrophy. Ask1 activity was blocked using an Ask1 antibody raised against the C-terminus of the Ask1 protein. The anti-Ask1 antibody was infused into the striatum of the HD mice for four weeks using a micro-osmotic pump. The levels of Ask1 protein and endoplasmic reticulum (ER) stress were increased in HD mice. Binding of inactivated Ask1 to htt fragments was more prevalent in the cytosol than the nucleus of cortical neurons. Binding of inactivated Ask1 to htt fragments prevented translocation of the htt fragments into the nucleus, resulting in an improvement in motor dysfunction and atrophy. In the normal state, active Ask1 may help htt fragments enter the nucleus, while inactivated Ask1 hinders this translocation by binding to but not releasing fragmented htt into the nucleus. We propose that Ask1 may interact with htt fragments and subsequently induce ER stress. BDNF depletion may be prevented by targeting Ask1; this would decrease ER stress and possibly ameliorate behavioral or anatomical abnormalities that accompany HD. Therefore, regulating the amounts and activity of the Ask1 protein is a novel strategy for treatment of HD.  相似文献   

15.
16.
17.
Dextromethorphan (DM, 40 or 80 mg/kg, i.p.) and MK-801 (3 or 10 mg/kg, i.p.) were compared in their ability to prevent the depletion of choline acetyltransferase (ChAT) activity in the rat striatum following intrastriatal injection of quinolinic acid. DM did not reduce striatal ChAT depletion following injection of either 300 or 150 nmol of quinolinic acid. Following injection of 300 nmol of quinolinic acid, MK-801 significantly reduced striatal ChAT depletion at a dose of 3 mg/kg and completely prevented striatal ChAT depletion at a dose of 10 mg/kg. In contrast to the potent neuroprotective action of MK-801, DM does not protect striatal cholinergic neurons from an acute challenge by an NMDA receptor agonist.  相似文献   

18.
The potential neuroprotective effects of IL-6 against the excitotoxic neuronal loss induced by N-methyl-D-aspartate (NMDA) have been studied. Infusion into the rat striatum of excitotoxic amounts (250 nmol) of NMDA resulted in a 45% decrease in striatal choline acetyl transferase activity (ChAT; a marker of cholinergic neurons) and glutamate decarboxylase (GAD, a marker of GABAergic neurons) at 2 days post-injection. Co-infusion of 10 U of IL-6 reduced the loss of ChAT activity to 21% but failed to prevent the loss of GAD activity. IL-6 per se, up to the dose of 500 U, failed to affect ChAT or GAD activities. The in vivo effects of IL-6 are not mediated by a direct antagonism of NMDA toxicity, since IL-6 (up to a concentration of 500 and 5000 U/ml, respectively) did not antagonize either the increase in cyclic GMP levels resulting from NMDA receptor activation in cerebellar slices or the glutamate-induced release of lactate dehydrogenase, an index of neurotoxicity, by cultured cortical neurons. These results suggest that the increase in IL-6 levels observed in experimental brain lesions may play a role in the protection and regeneration of cholinergic neurons.  相似文献   

19.
We examined passive and active membrane properties and synaptic responses of medium-sized spiny striatal neurons in brain slices from presymptomatic (approximately 40 days of age) and symptomatic (approximately 90 days of age) R6/2 transgenics, a mouse model of Huntington's disease (HD) and their age-matched wild-type (WT) controls. This transgenic expresses exon 1 of the human HD gene with approximately 150 CAG repeats and displays a progressive behavioral phenotype associated with numerous neuronal alterations. Intracellular recordings were obtained using standard techniques from R6/2 and age-matched WT mice. Few electrophysiological changes occurred in striatal neurons from presymptomatic R6/2 mice. The changes in this age group were increased neuronal input resistance and lower stimulus intensity to evoke action potentials (rheobase). Symptomatic R6/2 mice exhibited numerous electrophysiological alterations, including depolarized resting membrane potentials, increased input resistances, decreased membrane time constants, and alterations in action potentials. Increased stimulus intensities were required to evoke excitatory postsynaptic potentials (EPSPs) in neurons from symptomatic R6/2 transgenics. These EPSPs had slower rise times and did not decay back to baseline by 45 ms, suggesting a more prominent component mediated by activation of N-methyl-D-aspartate receptors. Neurons from both pre- and symptomatic R6/2 mice exhibited reduced paired-pulse facilitation. Data from biocytin-filled or Golgi-impregnated neurons demonstrated decreased dendritic spine densities, smaller diameters of dendritic shafts, and smaller dendritic fields in symptomatic R6/2 mice. Taken together, these findings indicate that passive and active membrane and synaptic properties of medium-sized spiny neurons are altered in the R6/2 transgenic. These physiological and morphological alterations will affect communication in the basal ganglia circuitry. Furthermore, they suggest areas to target for pharmacotherapies to alleviate and reduce the symptoms of HD.  相似文献   

20.
Kung VW  Hassam R  Morton AJ  Jones S 《Neuroscience》2007,146(4):1571-1580
The striatum is critically important in motor, cognitive and emotional functions, as highlighted in neurological disorders such as Huntington's disease (HD) where these functions are compromised. The R6/2 mouse model of HD shows progressive motor and cognitive impairments and alterations in striatal dopamine and glutamate release. To determine whether or not dopamine-dependent neuronal plasticity is also altered in the dorsolateral striatum of R6/2 mice, we compared long term potentiation (LTP) and long term depression (LTD) in striatal slices from R6/2 mice with that seen in slices from wild type (WT) mice. In adult WT mice (aged 8-19 weeks), frequency-dependent bidirectional plasticity was observed. High frequency stimulation (four 0.5 s trains at 100 Hz, inter-train interval 10 s) induced LTP (134+/-5% of baseline), while low frequency stimulation (4 Hz for 15 min) induced LTD (80+/-5% of baseline). LTP and LTD were significantly blocked by the N-methyl-D-aspartic acid (NMDA) receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) (to 93+/-6% and 103+/-8% of baseline respectively), indicating that they are both dependent on NMDA glutamate receptor activation. LTP was significantly blocked by the dopamine D1 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390) (98+/-8% of baseline), indicating that LTP is dependent on activation of dopamine D(1)-type receptors, whereas LTD was not significantly different (90+/-7%). In adult R6/2 mice (aged 8-19 weeks), LTP was significantly reduced (to 110+/-4% of baseline), while LTD was not significantly different from that seen in WT mice (85+/-6%). These data show that R6/2 mice have impaired dopamine-dependent neuronal plasticity in the striatum. As dopamine-dependent plasticity is a proposed model of striatum-based motor and cognitive functions, this impairment could contribute to deficits seen in R6/2 mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号