首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, cell origin, and physiologic role of eicosanoids were investigated in a model of mesangial cell immune injury induced by a monoclonal antibody against the rat thymocyte antigen Thy 1.1 also expressed in rat mesangial cells. A single intravenous injection of the antibody resulted in enhanced glomerular synthesis of thromboxane (Tx)B2, leukotriene (LT)B4, and 12-hydroxyeicosatetraenoic acid (HETE), whereas that of PGE2 and PGF2 alpha was either unaltered or impaired. The enhanced eicosanoid synthesis was associated with decrements in glomerular filtration rate (GFR) and renal blood flow (RBF). Complement activation mediated both the increments in TxB2, LTB4, and 12-HETE and the decrements in GFR and RBF. The decrements in GFR were abolished by the TxA2 receptor antagonist SQ-29,548. Although both neutrophiles and Ia (+) leukocytes infiltrated glomeruli, glomerular LTB4 originated mainly from the latter. Platelets entirely accounted for the enhanced 12-HETE synthesis in isolated glomeruli and to a lesser extent for that of LTB4 and TxB2. Glomerular PGE2 and PGF2 alpha originated from mesangial cells as their impaired synthesis coincided with extensive mesangial cell lysis. The observations indicate that in mesangial cell immune injury vasoactive and proinflammatory eicosanoids originate from recruited or activated Ia (+) leukocytes and platelets and may exert paracrine effects on mesangial cells.  相似文献   

2.
Glomerular function and morphology after renal mass reduction in dogs   总被引:1,自引:0,他引:1  
To determine whether the proteinuria, glomerular sclerosis, and decline in glomerular filtration rate (GFR) described in rodents after renal mass reduction develop in another species, 24-hour proteinuria, glomerular structure, and fasting and postfeeding GFR were examined in dogs subjected to seven-eighths reduction in renal mass. All dogs were fed a diet containing 26% protein. Six dogs with a GFR less than 10 ml/min (8% to 17% of control two-kidney GFR) were killed within 6 months after renal mass reduction. Twenty-four-hour urinary protein excretion was modestly although definitely increased (236 +/- 26 mg/24 hr, P less than 0.01). All remnant kidneys demonstrated structural changes of mesangial hyperplasia or focal glomerular sclerosis. Ten dogs with a remnant kidney and early GFRs 16% to 39% of control values were followed for 18 to 39 months. In seven dogs, GFR showed little tendency to decrease with time. In one of them, proteinuria was 106 mg/24 hr with normal-appearing glomeruli at 14 months. In three dogs, proteinuria was progressive, averaging about 1 gm/24 hr at 18 months and 2 gm/24 hr at 24 to 34 months; glomerular pathologic findings progressed from focal mesangial hyperplasia or focal glomerular sclerosis at 8 to 16 months to focal and segmental sclerosis or diffuse glomerular obsolescence at 25 to 34 months; and fasting GFR progressively declined starting at 21 to 24 months after renal mass reduction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
目的研究骨髓间充质干细胞缺氧后细胞死亡情况及促红细胞生成素信号通路成分的表达改变。方法从Wistar大鼠股骨提取骨髓分离培养骨髓间充质干细胞并在体外扩增。取第4至6代接近融合的骨髓间充质干细胞置于氧浓度为0.5%的缺氧箱内培养24、48、72、96h后行台盼蓝染色计数阳性细胞并提取蛋白行Western blot检测促红细胞生成素、促红细胞生成素受体、HIF-1α、ERK、磷酸化ERK表达改变,另取0.5%缺氧培养48h的细胞免疫荧光染色观察EPO表达改变,Hoechst 33342染细胞核。结果常氧浓度培养对照组骨髓间充质细胞组台盼蓝染色阳性率为3.5%±0.4%,缺氧培养24、48、72、96h组分别为3.9%±0.2%、5.0%±0.4%、5.9%±0.5%、7.1%±0.5%。Western blot和免疫荧光染色发现EPO表达在缺氧48h后开始明显上调。F20R表达在缺氧后24h即开始显著上调且倍数更高。总ERK在对照组和不同缺氧时间组表达改变不明显,但HIF-1α和磷酸化ERK缺氧24h后即上调,72h达高峰。结论骨髓间充质干细胞对单纯缺氧损害较耐受,缺氧后促红细胞生成素信号通路的主要成分均显著上调,提示促红细胞生成素信号通路在骨髓间充质干细胞耐缺氧和旁分泌保护能力中起着重要作用。  相似文献   

4.
We found that ROP Os/+ (Os/+) mice had diffuse glomerulosclerosis and glomerular hypertrophy and that their mesangial cells (the vascular smooth muscle cells of the glomerulus) displayed an apparent sclerosing phenotype. Since mesangial cells are the major source of scar tissue in glomerulosclerosis, we postulated that the sclerosis phenotype was carried by mesangial cell progenitors and that this phenotype could be derived from the bone marrow (BM). Therefore, we transplanted BM from Os/+ mice into congenic ROP +/+ mice (+/+ mice), which have normal glomeruli. We found that glomeruli of +/+ recipients of Os/+ marrow contained the Os/+ genotype, were hypertrophied, and contained increased extracellular matrix. Clones of recipient glomerular mesangial cells with the donor genotype were found in all +/+ recipients that developed mesangial sclerosis and glomerular hypertrophy, whereas +/+ recipients of +/+ BM had normal glomeruli. Thus, the sclerotic (Os/+) or normal (+/+) genotype and phenotype were present in, and transmitted by, BM-derived progenitors. These data show that glomerular mesangial cell progenitors are derived from the BM and can deliver a disease phenotype to normal glomeruli. Glomerular lesions may therefore be perpetuated or aggravated, rather than resolved, by newly arriving progenitor cells exhibiting a disease phenotype.  相似文献   

5.
The present study was designed to investigate whether in vivo and in vitro erythropoietin (EPO) production is modulated by nitric oxide (NO) and cyclic guanosine 3',5'-monophosphate (cGMP). Serum levels of EPO in ex-hypoxic polycythemic mice were significantly increased after injections of 200 micrograms/kg sodium nitroprusside for 4 d. One injection of NG-nitro-L-arginine methyl ester (L-NAME) produced a significant dose-related decrease in serum levels of EPO in ex-hypoxic polycythemic mice in response to hypoxia. When EPO producing Hep3B cells were incubated in 1% O2 for 30 min, cGMP levels in the Hep3B cells were significantly elevated, compared with cells incubated in 20% O2. The elevation of cGMP by hypoxia was inhibited by L-NAME (100 microM). Sodium nitroprusside (10 and 100 microM) and NO (2 microM) also significantly increased cGMP levels in Hep3B cells. L-NAME, LY 83583 (6-Anilino-5,8-quinolinedione, a soluble guanylate cyclase inhibitor), and Rp-8-Bromo-cGMPS (Rp-8-Bromo-guanosine 3',5'-cyclic monophosphothioate, a cGMP-dependent protein kinase inhibitor) significantly inhibited the hypoxia-induced increase in medium levels of EPO in Hep3B cells. 8-Bromo-cGMPS produced a dose-dependent decrease in EPO messenger RNA levels in Hep3B cells in response to hypoxia. 8-Bromo-cGMP (10(-3) M) produced significant increases in medium levels of EPO in Hep3B cell cultures incubated under normoxic conditions, which was enhanced by the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (0.2 mM). These results suggest that NO and cGMP may interact in modulating hypoxic stimulation of EPO production.  相似文献   

6.
The autoantigen(s) that we have previously described in human glomeruli, recognized in IgA nephropathy, has (have) been identified as mesangial cell in origin. Cultured mesangial cells expressed 48- and 55-kD components binding IgG isotype autoantibodies (IgG-MESCA) present in sera of patients with both IgA nephropathy and Henoch-Sch?nlein purpura (HSP). IgG-MESCA were not detected in sera of normals, or patients with other autoimmune-mediated glomerulonephritides: anti-glomerular basement membrane disease, Wegener's granulomatosis, or in IgM-mesangial proliferative disease. Binding specificity was proven by F(ab')2 studies in enzyme-linked immunosorbent assay (ELISA) and Western blotting, and there was no significant affinity of IgA or IgM immunoglobulins. Fluorescein isothiocyanate-conjugated IgG from ELISA-positive sera localized to the mesangium and peripheral capillary loops of glomeruli, supporting the belief that the antigen is expressed in normal human renal tissue. However, only about one third of mesangial cells in culture showed affinity for IgG from ELISA-positive sera, suggesting variable expression of the antigen(s) in vitro. The only autoantigen(s) present in glomeruli, and extractable from whole normal glomeruli by the techniques employed, localized on the mesangial cell. In both IgA nephropathy and HSP, autoimmunity was intermittently present, with fluctuating levels of IgG-MESCA detectable in sera. There were positive correlations with the degree of glomerular injury assessed by erythrocyturia and proteinuria in IgA nephropathy, but significance was reached with only the degree of hematuria in HSP. These findings suggest a contributing role in the pathogenesis of the mesangial proliferative lesions and demonstrate autoimmunity common to both IgA nephropathy and HSP.  相似文献   

7.
Isolated rat renal glomeruli and cultured glomerular mesangial and epithelial cells were examined for atrial natriuretic peptide (ANP) receptors, and for ANP-stimulated cyclic guanosine monophosphate (cGMP) generation. In glomeruli from normal rats, human (1-28) 125I-ANP bound to a single population of high affinity receptors with a mean equilibrium dissociation constant of 0.46 nM. Human (1-28) ANP markedly stimulated cGMP generation, but not cAMP generation in normal rat glomeruli. Analogues of ANP that bound to the glomerular ANP receptor with high affinity stimulated cGMP accumulation, whereas the (13-28) ANP fragment, which failed to bind to the receptor, was devoid of functional activity. Cell surface receptors for ANP were expressed on cultured glomerular mesangial but not epithelial cells, and appreciable ANP-stimulated cGMP accumulation was elicited only in mesangial cells. Approximately 12,000 ANP receptor sites were present per mesangial cell, with an average value for the equilibrium dissociation constant of 0.22 nM. Feeding of a low-salt diet to rats for 2 wk resulted in marked up regulation of the glomerular ANP receptor density to a mean of 426 fmol/mg protein, compared with 116 fmol/mg in rats given a high-salt diet. A modest reduction in the affinity of glomerular ANP receptors was also observed in rats fed the low-salt diet. ANP-stimulated cGMP generation in glomeruli did not change with alterations in salt intake. We conclude that high salt feeding in the rat results in reduced glomerular ANP receptor density relative to values in salt restricted rats. Furthermore, the mesangial cell is a principal target for ANP binding in the glomerulus.  相似文献   

8.
Mesangial injury and cell proliferation are frequent findings in various glomerular diseases in man. Previous studies have demonstrated that basic fibroblast growth factor (bFGF) is a potent mesangial cell mitogen in vitro. To further elucidate the role of bFGF in rat mesangial cell (RMC) proliferation, we examined whether RMC synthesize bFGF in vitro and whether bFGF is involved in mesangial proliferation in vivo. Cultured RMC expressed bFGF protein (23, 21.5, and 18 kD forms) and bFGF mRNA, and released biologically active bFGF into the culture medium after antibody- and complement-mediated injury. Normal rat glomeruli in vivo contained no detectable bFGF mRNA, but bFGF protein (23 and 21.5 kD) could be demonstrated, which immunolocalized to the mesangium. Glomerular bFGF decreased markedly during the acute phase of glomerulonephritis induced by anti-Thy 1.1 antibody, compatible with mesangial bFGF release after complement-mediated mesangiolysis. During the subsequent mesangial proliferative phase, glomerular bFGF protein and mRNA increased above normal. Intrarenal infusion of heparin did not affect the bFGF immunostaining of glomeruli at this stage, indicating a predominantly intracellular localization of the bFGF. The capability of bFGF to mediate proliferation in the anti-Thy 1.1 model was further supported by experiments in which intravenous bFGF given 24 h after a subnephritogenic dose of anti-Thy 1.1 antibody led to a 4.9- to 5.1-fold increase in glomerular cell proliferation (with > 60% of the cells identified as mesangial cells by double immunolabeling). No such increase was observed in normal rats injected with bFGF. These data show that mesangial cells produce and release bFGF after injury and that bFGF is mitogenic for injured mesangial cells in vivo. Release of mesangial cell bFGF thus may be an important mechanism involved in the initiation of mesangial cell proliferation in vivo.  相似文献   

9.
Proliferation of resident glomerular cells and the accumulation of mesangial matrix are histologic abnormalities which are observed in the course of many progressive glomerular diseases. We explored the potential regulatory effects of transforming growth factor-beta (TGF-beta) on these processes. We found that cultured mouse glomerular endothelial, mesangial, and epithelial cells as well as isolated intact rat glomeruli possess high-affinity receptors for TGF-beta. We also found that, although TGF-beta consistently inhibited the proliferation of glomerular endothelial and epithelial cells, it acted as a bifunctional regulator of mesangial cell proliferation. TGF-beta significantly increased the production of collagen and fibronectin by glomerular mesangial cells whereas only fibronectin production was augmented in glomerular epithelial cells. The presence of TGF-beta receptors on intact glomeruli and on each glomerular cell type and the demonstrated responsiveness of these cells to TGF-beta combine to suggest that potentially important interactions may occur between resident glomerular cells and TGF-beta in vivo.  相似文献   

10.
To specify the role of mononuclear (MN) leukocytes in the development of mesangial cell proliferation, which is one of the main manifestations of glomerulonephritis, cell cultures of renal glomeruli of rats with nephrotoxic serum (NTS) nephritis were examined for the intensity of mesangial cell proliferation, the MN-leukocyte count, and for IL-1 production. The amount of mesangial cells and the intensity of their proliferation in the cultures of glomerular cells from rats with NTS nephritis were much higher than in intact rat cultures. At the same time the glomerular cultures from rats with NTS nephritis demonstrated an increase in the MN leukocyte count together with enhancement of IL-1 production. The treatment with prednisolone averted accumulation of MN leukocytes by the glomerular cultures and noticeably reduced mesangial cell proliferation. The supernatant liquid of cultures of peripheral blood MN leukocytes from patients with active nephritis suppressed human fibroblast proliferation, exerting no such action on mesangial cell culture. During the treatment with prednisolone, the supernatant liquid produced a reverse effect on fibroblast and mesangial cell cultures, which was associated with the clinical improvement of the health status. It is assumed that mesangial cell proliferation seen in nephritis may be related to infiltration of the glomeruli by MN leukocytes and to elevated production by them of IL-1 and that the therapeutic action of prednisolone may be determined by suppression of these processes.  相似文献   

11.
Nephrotoxic nephritis (NTN) is characterized by a marked increase in glomerular eicosanoid synthesis, which appears to play an important role in the pathophysiology of this disease model. In this study, we investigated the biochemical and cellular basis of this metabolic change. By examining the enzymatic conversion of exogenous substrates by intact glomeruli, we found that cyclooxygenase, TX synthase, and 5-lipoxygenase activities increased 4-, 8-, and 100-fold, respectively, in acute NTN. PGH2-PGE2 isomerase and leukotriene A4 hydrolase activities did not change. The cellular basis of these changes was examined using dissociated glomerular cells in vitro and by depleting platelets in vivo. Dissociated glomerular cells from nephritic glomeruli (largely mesangial cells and leukocytes) exhibited an enhanced arachidonate metabolism similar to intact nephritic glomeruli. Depletion of neutrophils (PMNs) from these cell preparations by 90% commensurately decreased 5-lipoxygenase and cyclooxygenase activity but had little effect on TX synthase activity. The recovered PMN fraction, however, did exhibit TX synthase activity. Immunocytochemical analysis of dissociated cells using an antiplatelet antibody demonstrated the presence of platelets, both adherent to cells and noncell associated. Depletion of platelets in vivo using this antibody substantially attenuated the increase in glomerular eicosanoid synthesis that accompanied NTN. Platelet depletion also decreased the influx of PMNs into the glomerulus by 50%. These data show that PMNs and platelets colocalize to the glomerulus in acute NTN and are coordinately essential to the increase in glomerular arachidonate metabolism.  相似文献   

12.
Glomerular accumulation of extracellular matrix is a prominent feature of progressive glomerulonephritis. Previously, we have shown that transforming growth factor-beta (TGF-beta) is unique among growth factors in regulating the production of the proteoglycans biglycan and decorin by glomerular mesangial cells in vitro. We now provide evidence of an elevated expression of TGF-beta, proteoglycans, and fibronectin in glomerulonephritis induced in rats by injection of anti-thymocyte serum (ATS). Glomeruli were cultured from rat kidneys at 1, 4, 7, 14, and 28 d after ATS administration. Increased proteoglycan synthesis was detected beginning on day 4, which peaked at a 4,900% increase compared with control on day 7, and returned toward control levels by day 28. The increased proteoglycan synthesis by cultured nephritic glomeruli, as well as that of fibronectin, were greatly reduced by addition of antiserum raised against a synthetic peptide from TGF-beta. Conditioned media from ATS glomerular cultures, when added to normal cultured mesangial cells, induced elevated proteoglycan synthesis that also peaked on day 7 and that mimicked the response to added exogenous TGF-beta. The stimulatory activity of the conditioned media was blocked by addition of TGF-beta antiserum. Prior addition of the immunizing peptide to the antiserum abolished the blocking effect. The main induced proteoglycans were identified as biglycan and decorin by immunoprecipitation with antiserum made against synthetic peptides from the proteoglycan core proteins. Glomerular histology showed mesangial matrix expansion in a time course that roughly paralleled both the elevated proteoglycan synthesis by the ATS glomeruli and the ability of the conditioned media from these glomeruli to induce proteoglycan synthesis. At the same time there was an increased expression of TGF-beta mRNA and TGF-beta protein in the glomeruli. These results suggest a central role for TGF-beta in the accumulation of pathological extracellular matrix in glomerulonephritis.  相似文献   

13.
Mesangial cell proliferation is common in glomerulonephritis but it is unclear if proliferation is associated with any in vivo alteration in phenotype. We investigated whether mesangial of mesangial proliferative nephritis induced with antibody to the Thy-1 antigen present on mesangial cells. At day 3 glomeruli displayed de novo immunostaining for alpha-smooth muscle actin in a mesangial pattern, correlating with the onset of proliferation, and persisting until day 14. An increase in desmin and vimentin in mesangial regions was also noted. Immunoelectron microscopy confirmed that the actin-positive cells were mesangial cells, and double immunolabeling demonstrated that the smooth muscle actin-positive cells were actively proliferating. Northern analysis of isolated glomerular RNA confirmed an increase in alpha and beta/gamma actin mRNA at days 3 and 5. Complement depletion or platelet depletion prevented or reduced proliferation, respectively; these maneuvers also prevented smooth muscle actin and actin gene expression. Studies of five other experimental models of nephritis confirmed that smooth muscle actin expression is a marker for mesangial cell injury. Thus, mesangial cell proliferation in glomerulonephritis in the rat is associated with a distinct phenotypic change in which mesangial cell assume smooth muscle cell characteristics.  相似文献   

14.
The nature of Ia antigens which appear on human T cells after activation and the stimuli required for their expression was examined utilizing a monoclonal antibody reactive with the Ia antigen framework. T cells were purified using monoclonal antibodies directed either at the entire T-cell population (OKT3) or the T-cell inducer subset (OKT4). By indirect immunofluorescence, it was shown that the human T-cell population contains no detectable Ia+ cells in the resting state. In contrast, in excess of 60% of the T-cell population expresses Ia antigen after alloactivation in the mixed lymphocyte culture. Moreover, these Ia antigens are expressed within both the OKT4+ and OKT4- subsets. Similarly, phytohemagglutinin and concanavalin A induced approximately 20% of peripheral T cells to express Ia antigen and the expression of these antigens is not restricted to either OKT4 subset. In contrast, only the inducer T-cell population which proliferates maximally to soluble antigen expresses Ia antigens after activation by tetanus toxoid. Thus, the expression of human Ia antigens on unique T-cell subsets depends upon the activation stimuli utilized and ability of the individual subset to respond to a given stimulus. Additional studies indicated that Ia antigens appear on previously Ia- T cells after activation and do not result from clonal expansion of a small subset of Ia+ T cells.  相似文献   

15.
16.
To evaluate the effect of a rabbit anti-rat macrophage serum (AMS) on glomerular cells in vivo, glomeruli were isolated from an accelerated autologous form of nephrotoxic serum nephritis (NTSN) in rats and grown in tissue culture. The prominent feature of the glomerular outgrowth of the glomeruli in the NTSN was the presence of large numbers of type III (macrophages) cells, which were not present in cultured normal glomeruli. In addition, there were significantly greater numbers of type II (mesangial) cells in culture from the NTSN rats as compared with glomeruli from normal rats though the numbers of type I (epithelial) cells were the same. The administration of AMS prevented the outgrowth of macrophages and reduced the number of mesangial cells in the outgrowth of glomeruli from the NTSN rats. The AMS-treated rats showed profound reduction in proteinuria. Light micrographs showed only minor histologic lesion in the AMS-treated rats. These findings suggest that AMS may be applicable to the modulation of the proliferative response seen in NTSN.  相似文献   

17.
These studies were designed to explore the effects of nephrotoxic serum (NTS) in rats on the uptake and processing by the glomerular mesangium of intravenously administered protein macromolecules (radiolabeled aggregated human IgG, [125I]AHIgG). Measurements of [125I]AHIgG levels in preparations of isolated glomeruli correlated well with qualitative estimates of glomerular IgG deposition seen by immunofluorescent microscopy. Rats given 2 ml NTS received 25 mg/100 g body wt [125I]AHIgG 48 h later and were sacrificed at varying time intervals thereafter. NTS-treated animals demonstrated a marked increase in glomerular uptake of [125I]AHIgG as compared with concurrent controls but a normal ability to clear [125I]AHIgG from the mesangium over 72 hr. Animals given 1.0, 0.5, and 0.25 ml NTS had neither proteinuria nor significant light microscopic changes, yet had increased uptake of [125I]AHIgG of 4.4, 3.0, and 2.1 times control values, respectively at 8 h after the infusion of aggregates. Rats given 1 ml NTS and 12.5, 6.25, and 3.125 mg [125I]AHIgG/100 g body wt had increased glomerular uptake at 8 h, but there was, within both NTS and control groups, a disproportionate decrease in uptake at lower [125I]AHIgG doses. Rats given cobra venom factor (CoF) followed by a NTS shown to be complement dependent (proteinuria reduced by prior complement depletion with CoF) had less mesangial [125I]AHIgG uptake than NTS controls but greater uptake compared with normal controls. CoF itself had no effect on mesangial or reticuloendothelial system [125I]AHIgG uptake. These studies demonstrate a striking change in glomerular mesangial activity after fixation of nephrotoxic antibodies to the glomerular basement membrane, even in the absence of proteinuria and suggest that subtle alterations of the filtration surface can influence mesangial function. The effect of NTS on the mesangium is due, in large part, to the glomerular injury and proteinuria which nephrotoxic antibodies produce.  相似文献   

18.
To define the interplay of glomerular hypertension and hypertrophy with mesangial extracellular matrix (ECM) deposition, we examined the effects of glomerular capillary distention and mesangial cell stretching on ECM synthesis. The volume of microdissected rat glomeruli (Vg), perfused ex vivo at increasing flows, was quantified and related to the proximal intraglomerular pressure (PIP). Glomerular compliance, expressed as the slope of the positive linear relationship between PIP and Vg was 7.68 x 10(3) microns 3/mmHg. Total Vg increment (PIP 0-150 mmHg) was 1.162 x 10(6) microns 3 or 61% (n = 13). A 16% increase in Vg was obtained over the PIP range equivalent to the pathophysiological limits of mean transcapillary pressure difference. A similar effect of renal perfusion on Vg was also noted histologically in tissue from kidneys perfused/fixed in vivo. Cultured mesangial cells undergoing cyclic stretching increased their synthesis of protein, total collagen, and key components of ECM (collagen IV, collagen I, laminin, fibronectin). Synthetic rates were stimulated by cell growth and the degree of stretching. These results suggest that capillary expansion and stretching of mesangial cells by glomerular hypertension provokes increased ECM production which is accentuated by cell growth and glomerular hypertrophy. Mesangial expansion and glomerulosclerosis might result from this interplay of mechanical and metabolic forces.  相似文献   

19.
To evaluate the pathophysiological function of specific molecules in the renal glomerulus, selective, sustained, and modifiable expression of such molecules will be required. Towards achieving this end, we devised a gene transfer system using the glomerular mesangial cell as a vector for gene delivery. A reporter gene which encodes bacterial beta-galactosidase was introduced into cultured rat mesangial cells, and the stable transfectants were transferred into the rat kidney via the renal artery, leading to selective entrapment within the glomeruli. In the normal kidney, the reporter cells populated into 57 +/- 13% of glomeruli site specifically, and the expression of beta-galactosidase was sustained for 4 wk and declined thereafter. Within the glomerulus, some of the reporter cells remained in the glomerular capillaries, while others repopulated the mesangial area and, in part, extended their cytoplasmic processes toward the surrounding capillaries. When the cells were transferred into glomeruli subjected to transient mesangiolysis induced by monoclonal antibody 1-22-3, in situ expression of beta-galactosidase was amplified 7-12-fold, and the enhanced level of expression continued for up to 8 wk. The mesangial cell vector system thus achieves site-specific delivery of an exogenous gene into the glomerulus and is amenable to in situ amplification and sustained expression by preconditioning of the target site.  相似文献   

20.
Automatic control over exogenous gene expression in response to the activity of disease is a crucial hurdle for gene transfer-based therapies. Towards achieving this goal, we created a "cytosensor" that perceives local inflammatory states and subsequently regulates foreign gene expression. alpha-Smooth muscle actin is known to be expressed in glomerular mesangial cells exclusively in pathologic situations. CArG box element, the crucial regulatory sequence of the alpha-smooth muscle actin promoter, was used as a sensor for glomerular inflammation. Rat mesangial cells were stably transfected with an expression plasmid that introduces a beta-galactosidase gene under the control of CArG box elements. In vitro, the established cells expressed beta-galactosidase exclusively after stimulation with serum. To examine whether the cells are able to automatically control transgene activity in vivo, serum-stimulated or unstimulated cells were transferred into normal rat glomeruli or glomeruli subjected to anti-Thy 1 glomerulonephritis. When stimulated cells were transferred into the normal glomeruli, beta-galactosidase expression was switched off in vivo within 3 d. In contrast, when unstimulated cells were transferred into the nephritic glomeruli, transgene expression was substantially induced. These data indicate the feasibility of using the CArG box element as a molecular sensor for glomerular injury. In the context of advanced forms of gene therapy, this approach provides a novel concept for automatic regulation of local transgene expression where the transgene is required to be activated during inflammation and deactivated when the inflammation has subsided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号