共查询到20条相似文献,搜索用时 12 毫秒
1.
Ono K 《Clinical calcium》2002,12(6):797-803
It is well known that T-type Ca(2+) channels differ from L-type Ca(2+) channels on the basis of their low-voltage activation range and rapid inactivation, and therefore can contribute to the pacemaker activity of sinoatrial node cells in the heart. However, proper elucidation of their function on the pacemaker activity has been hampered by the lack of selective pharmacology as well as cell-to-cell difference in the amplitude of T-type Ca(2+) current. In the present study, therefore, we investigated the effects of mibefradil, a selective T-type Ca(2+) channel blocker, on the spontaneous action potential of rabbit sinoatrial node cells. Mibefradil strongly inhibited the spontaneous action potential. In particular, suppression of the slow diastolic depolarization was more marked than that had been expected from a sole inhibition of T-type Ca(2+) channels. T-type Ca(2+) channels may be an important contributor to automaticity in heart cells. Alternatively, mibefradil might have blocked other current system (s) which serves as the main pacemaker current, and thereby inhibited the pacemaker activity. 相似文献
2.
Tatiana M. Vinogradova Edward G. Lakatta 《Journal of molecular and cellular cardiology》2009,47(4):456-474
Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells to generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+ release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cell spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+–Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. 相似文献
3.
Chris P. Palmer Xin-Liang Zhou Junyu Lin Stephen H. Loukin Ching Kung Yoshiro Saimi 《Proceedings of the National Academy of Sciences of the United States of America》2001,98(14):7801-7805
The molecular identification of ion channels in internal membranes has made scant progress compared with the study of plasma membrane ion channels. We investigated a prominent voltage-dependent, cation-selective, and calcium-activated vacuolar ion conductance of 320 pS (yeast vacuolar conductance, YVC1) in Saccharomyces cerevisiae. Here we report on a gene, the deduced product of which possesses significant homology to the ion channel of the transient receptor potential (TRP) family. By using a combination of gene deletion and re-expression with direct patch clamping of the yeast vacuolar membrane, we show that this yeast TRP-like gene is necessary for the YVC1 conductance. In physiological conditions, tens of micromolar cytoplasmic Ca(2+) activates the YVC1 current carried by cations including Ca(2+) across the vacuolar membrane. Immunodetection of a tagged YVC1 gene product indicates that YVC1 is primarily localized in the vacuole and not other intracellular membranes. Thus we have identified the YVC1 vacuolar/lysosomal cation-channel gene. This report has implications for the function of TRP channels in other organisms and the possible molecular identification of vacuolar/lysosomal ion channels in other eukaryotes. 相似文献
4.
Qin N Olcese R Bransby M Lin T Birnbaumer L 《Proceedings of the National Academy of Sciences of the United States of America》1999,96(5):2435-2438
Ca2+-induced inhibition of alpha1C voltage-gated Ca2+ channels is a physiologically important regulatory mechanism that shortens the mean open time of these otherwise long-lasting high-voltage-activated channels. The mechanism of action of Ca2+ has been a matter of some controversy, as previous studies have proposed the involvement of a putative Ca2+-binding EF hand in the C terminus of alpha1C and/or a sequence downstream from this EF-hand motif containing a putative calmodulin (CaM)-binding IQ motif. Previously, using site directed mutagenesis, we have shown that disruption of the EF-hand motif does not remove Ca2+ inhibition. We now show that the IQ motif binds CaM and that disruption of this binding activity prevents Ca2+ inhibition. We propose that Ca2+ entering through the voltage-gated pore binds to CaM and that the Ca/CaM complex is the mediator of Ca2+ inhibition. 相似文献
5.
Action potential prolongation in cardiac myocytes of old rats is an adaptation to sustain youthful intracellular Ca2+ regulation 总被引:4,自引:0,他引:4
Janczewski AM Spurgeon HA Lakatta EG 《Journal of molecular and cellular cardiology》2002,34(6):641-648
Advanced age in rats is accompanied by reduced expression of the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA-2). The amplitudes of intracellular Ca2+ (Ca2+(i)) transients and contractions in ventricular myocytes isolated from old (23-24-months) rats (OR), however, are similar to those of young (4-6-months) rat myocytes (YR). OR myocytes also manifest slowed inactivation of L-type Ca2+ current (I(CaL)) and marked prolongation of action potential (AP) duration. To determine whether and how age-associated AP prolongation preserves the Ca2+(i) transient amplitude in OR myocytes, we employed an AP-clamp technique with simultaneous measurements of I(CaL) (with Na+ current, K+ currents and Ca2+ influx via sarcolemmal Na+-Ca2+ exchanger blocked) and Ca2+(i) transients in OR rat ventricular myocytes dialyzed with the fluorescent Ca2+ probe, indo-1. Myocytes were stimulated with AP-shaped voltage clamp waveforms approximating the configuration of prolonged, i.e. the native, AP of OR cells (AP-L), or with short AP waveforms (AP-S), typical of YR myocytes. Changes in SR Ca2+ load were assessed by rapid, complete SR Ca2+ depletions with caffeine. As expected, during stimulation with AP-S vs AP-L, peak I(CaL) increased, by 21+/-4%, while the I(CaL) integral decreased, by 19+/-3% (P<0.01 for each). Compared to AP-L, stimulation of OR myocytes with AP-S reduced the amplitudes of the Ca2+(i) transient by 31+/-6%, its maximal rate of rise (+dCa2+(i)/dt(max); a sensitive index of SR Ca2+ release flux) by 37+/-4%, and decreased the SR Ca2+ load by 29+/-4% (P<0.01 for each). Intriguingly, AP-S also reduced the maximal rate of the Ca2+(i) transient relaxation and prolonged its time to 50% decline, by 35+/-5% and 33+/-7%, respectively (P<0.01 for each). During stimulation with AP-S, the gain of Ca2+-induced Ca2+ release (CICR), indexed by +dCa2+(i)/dt(max)/I(CaL), was reduced by 46+/-4% vs AP-L (P<0.01). We conclude that the effects of an application of a shorter AP to OR myocytes to reduce +dCa2+(i)/dt(max) and the Ca2+ transient amplitude are attributable to a reduction in SR Ca2+ load, presumably due to a reduced I(CaL) integral and likely also to an increased Ca2+ extrusion via sarcolemmal Na+-Ca2+ exchanger. The decrease in the Ca2+(i) transient relaxation rate in OR cells stimulated with shorter APs may reflect a reduction of Ca2+/calmodulin-kinase II-regulated modulation of Ca2+ uptake via SERCA-2, consequent to a reduced local Ca2+ release in the vicinity of SERCA-2, also attributable to reduced SR Ca2+ load. Thus, the reduction of CICR gain during stimulation with AP-S is the net result of both a diminished SR Ca2+ release and an increased peak I(CaL). These results suggest that ventricular myocytes of old rats utilize AP prolongation to preserve an optimal SR Ca2+ loading, CICR gain and relaxation of Ca2+(i) transients. 相似文献
6.
Sassan Rafizadeh Zheng Zhang Ryan L. Woltz Hyo Jeong Kim Richard E. Myers Ling Lu Dipika Tuteja Anil Singapuri Amir Ali Ziaei Bigdeli Sana Ben Harchache Anne A. Knowlton Vladimir Yarov-Yarovoy Ebenezer N. Yamoah Nipavan Chiamvimonvat 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(27):9989-9994
For an excitable cell to function properly, a precise number of ion channel proteins need to be trafficked to distinct locations on the cell surface membrane, through a network and anchoring activity of cytoskeletal proteins. Not surprisingly, mutations in anchoring proteins have profound effects on membrane excitability. Ca2+-activated K+ channels (KCa2 or SK) have been shown to play critical roles in shaping the cardiac atrial action potential profile. Here, we demonstrate that filamin A, a cytoskeletal protein, augments the trafficking of SK2 channels in cardiac myocytes. The trafficking of SK2 channel is Ca2+-dependent. Further, the Ca2+ dependence relies on another channel-interacting protein, α-actinin2, revealing a tight, yet intriguing, assembly of cytoskeletal proteins that orchestrate membrane expression of SK2 channels in cardiac myocytes. We assert that changes in SK channel trafficking would significantly alter atrial action potential and consequently atrial excitability. Identification of therapeutic targets to manipulate the subcellular localization of SK channels is likely to be clinically efficacious. The findings here may transcend the area of SK2 channel studies and may have implications not only in cardiac myocytes but in other types of excitable cells.Small-conductance Ca2+-activated K+ (SK or KCa2) channels are highly unique in that they are gated solely by changes in intracellular Ca2+ (Ca2+i) concentration. Hence, the channels function to integrate changes in Ca2+ concentration with changes in membrane potentials. SK channels have been shown to be expressed in a wide variety of cells (1–3) and mediate afterhyperpolarizations following action potentials in neurons (1, 4, 5). We have previously documented the expression of several isoforms of SK channels in human and mouse atrial myocytes that mediate the repolarization phase of the atrial action potentials (6, 7). We further demonstrated that SK2 (KCa2.2) channel knockout mice are prone to the development of atrial arrhythmias and atrial fibrillation (AF) (8). Conversely, a recent study by Diness et al. suggests that inhibition of SK channels may prevent AF (9). Together, these studies underpin the importance of the precise control for the expression of these ion channels in atria and their potential to serve as a future therapeutic target for AF.Current antiarrhythmic agents target the permeation and gating properties of ion channel proteins; however, increasing evidence suggests that membrane localization of ion channels may also be pharmacologically altered (10). Furthermore, a number of disorders have been associated with mistrafficking of ion channel proteins (11, 12). We have previously demonstrated the critical role of α-actinin2, a cytoskeletal protein, in the surface membrane localization of cardiac SK2 channels (13, 14). Specifically, we demonstrated that cardiac SK2 channel interacts with α-actinin2 cytoskeletal protein via the EF hand motifs in α-actinin2 protein and the helical core region of the calmodulin (CaM) binding domain (CaMBD) in the C terminus of SK2 channel. Moreover, direct interactions between SK2 channel and α-actinin2 are required for the increase in cell surface localization of SK2 channel.Here, to further define the functional interactome of SK2 channel in the heart, we demonstrate the role of filamin A (FLNA), another cytoskeletal protein, in SK2 channel surface membrane localization. In contrast to α-actinin2 protein, FLNA interacts not with the C terminus, but with the N terminus of the cardiac SK2 channel. FLNA is a scaffolding cytoskeletal protein with two calponin homology domains that has been shown to be critical for the trafficking of a number of membrane proteins (15–19). Our data demonstrate that FLNA functions to enhance membrane localization of SK2 channels. Moreover, using live-cell imaging, we demonstrate the critical roles of Ca2+i on the membrane localization of SK2 channel when the channels are coexpressed with α-actinin2, but not FLNA. A decrease in Ca2+i results in a significant decrease in SK2 channel membrane localization. Our findings may have important clinical implications. A rise in Ca2+i—for example, during rapid pacing or atrial tachyarrhythmias—is predicted to increase the membrane localization of SK2 channel and result in the abbreviation of the atrial action potentials and maintenance of the arrhythmias. 相似文献
7.
Kameda K Fukao M Kobayashi T Tsutsuura M Nagashima M Yamada Y Yamashita T Tohse N 《Journal of molecular and cellular cardiology》2006,40(4):562-569
L-type Ca(2+) channels have a wide tissue distribution and play essential roles in physiological responses. Recent studies have indicated that regulation of L-type Ca(2+) channels involves the assembly of macromolecular signaling complexes such as the beta(2)-adrenergic receptor signaling complex, the small G-protein kir/Gem and the BK channel. Here, we report the previously unidentified role of another protein in binding to the II-III linker of the alpha(1C) subunit of the L-type Ca(2+) channel. This protein is COP9 signalosome subunit 5 (CSN5)/Jun activation domain-binding protein 1 (Jab1). We have demonstrated that CSN5 interacts specifically with the II-III linker of the alpha(1C) subunit in a yeast two-hybrid system. The alpha(1C) subunit and CSN5 were coimmunoprecipitated in rat heart and both proteins were colocalized in sarcolemmal membranes and transverse tubules of cardiac myocytes. Silencing of CSN5 mRNA using siRNA decreased the endogenous protein level of CSN5 and activated L-type Ca(2+) channels expressed in COS7 cells. These data indicate that CSN5 is a protein that plays a newly defined functional role in association with the cardiac L-type Ca(2+) channel. 相似文献
8.
Haase H 《Cardiovascular research》2007,73(1):19-25
Ahnak, originally identified as a giant, tumour-related phosphoprotein, has emerged as an important signalling molecule in a wide range of physiological activities. In this article, current knowledge will be reviewed that places ahnak into the context of cardiac L-type Ca2+ channel function by its interaction with the beta2 subunit. Beginning with an overview on structural and functional properties of ahnak, basic features of beta subunits are highlighted. The review characterizes multiple ahnak/beta2 subunit binding sites and focuses on recent progress in understanding their functional role in Cav1.2 channel conductance (I(CaL)). Three main aspects of ahnak function in I(CaL) of cardiomyocytes emerge from available experimental data. First, ahnak acts as repressor towards I(CaL) by beta2 subunit sequestration. Second, PKA phosphorylation relieves the inhibition imposed by the C-terminal ahnak domain, ahnak-C1. Third, this action is mimicked by ahnak-derived fragments carrying a naturally occurring missense mutation Ile5236Thr. This paradigm introduces ahnak as a player in beta-adrenergic control of I(CaL) and sheds new light upon the molecular mechanism underlying this fundamental process of Cav1.2 channel physiology. 相似文献
9.
10.
《Journal of molecular and cellular cardiology》2012,52(6):902-905
Whether intracellular Ca2+ regulates sinoatrial node cell (SANC) action potential (AP) firing rate on a beat-to-beat basis is controversial. To directly test the hypothesis of beat-to-beat intracellular Ca2+ regulation of the rate and rhythm of SANC we loaded single isolated SANC with a caged Ca2+ buffer, NP-EGTA, and simultaneously recorded membrane potential and intracellular Ca2+. Prior to introduction of the caged Ca2+ buffer, spontaneous local Ca2+ releases (LCRs) during diastolic depolarization were tightly coupled to rhythmic APs (r2 = 0.9). The buffer markedly prolonged the decay time (T50) and moderately reduced the amplitude of the AP-induced Ca2+ transient and partially depleted the SR load, suppressed spontaneous diastolic LCRs and uncoupled them from AP generation, and caused AP firing to become markedly slower and dysrhythmic. When Ca2+ was acutely released from the caged compound by flash photolysis, intracellular Ca2+ dynamics were acutely restored and rhythmic APs resumed immediately at a normal rate. After a few rhythmic cycles, however, these effects of the flash waned as interference with Ca2+ dynamics by the caged buffer was reestablished. Our results directly support the hypothesis that intracellular Ca2+ regulates normal SANC automaticity on a beat-to-beat basis. 相似文献
11.
OBJECTIVE: The role of NAD(P)H oxidase in regulating cellular production of reactive oxygen species (ROS) and the L-type Ca2+ channel during acute hypoxia was examined in adult ventricular myocytes from guinea pig. METHODS: The fluorescent indicator dihydroethidium (DHE) was used to detect superoxide and the response of the L-type Ca2+ channel to beta-adrenergic receptor stimulation was used as a functional reporter since hypoxia increases the sensitivity of the L-type Ca2+ channel (I(Ca-L)) to isoproterenol (Iso). RESULTS: Hypoxia caused a 41.2+/-5.2% decrease in the rate of the DHE signal (n=21; p<0.01). Of the classical NAD(P)H oxidase inhibitors, DPI but not apocynin mimicked the effect of hypoxia on the sensitivity of I(Ca-L) to Iso. However, the potent NAD(P)H oxidase agonist angiotensin II had no effect on cellular superoxide or the sensitivity of I(Ca-L) to Iso. Although DPI inhibits NAD(P)H oxidase, it also decreased superoxide in isolated mitochondria in a concentration-dependent manner. Partial inhibition of mitochondrial function with nanomolar concentrations of FCCP or myxothiazol mimicked the effect of hypoxia on cellular superoxide and the sensitivity of I(Ca-L) to Iso. In addition, hypoxia caused a 69.3+/-0.8% decrease in superoxide in isolated mitochondria (n=4; p<0.01), providing direct evidence for a role for the mitochondria. CONCLUSIONS: Our data suggest that mitochondria appear to be involved in oxygen sensing, regulation of cellular ROS, and the function of I(Ca-L) during acute hypoxia in cardiac myocytes and NAD(P)H oxidase does not appear to contribute substantially. 相似文献
12.
Mangoni ME Couette B Bourinet E Platzer J Reimer D Striessnig J Nargeot J 《Proceedings of the National Academy of Sciences of the United States of America》2003,100(9):5543-5548
The spontaneous activity of pacemaker cells in the sino-atrial node (SAN) controls the heart rhythm and rate under physiological conditions. Pacemaker activity in SAN cells is due to the presence of the diastolic depolarization, a slow depolarization phase that drives the membrane voltage from the end of an action potential to the threshold of a new action potential. SAN cells express a wide array of ionic channels, but we have limited knowledge about their functional role in pacemaker activity and we still do not know which channels play a prominent role in the generation of the diastolic depolarization. It is thus important to provide genetic evidence linking the activity of genes coding for ionic channels to specific alterations of pacemaker activity of SAN cells. Here, we show that target inactivation of the gene coding for alpha(1D) (Ca(v)1.3) Ca(2+) channels in the mouse not only significantly slows pacemaker activity but also promotes spontaneous arrhythmia in SAN pacemaker cells. These alterations of pacemaker activity are linked to abolition of the major component of the L-type current (I(Ca,L)) activating at negative voltages. Pharmacological analysis of I(Ca,L) demonstrates that Ca(v)1.3 gene inactivation specifically abolishes I(Ca,L) in the voltage range corresponding to the diastolic depolarization. Taken together, our data demonstrate that Ca(v)1.3 channels play a major role in the generation of cardiac pacemaker activity by contributing to diastolic depolarization in SAN pacemaker cells. 相似文献
13.
Adachi-Akahane S 《Clinical calcium》2005,15(10):1589-1597
Ca2+ plays multiple roles in muscle E-C coupling, secretion, and neural transmission, in addition to survival, proliferation, and death of cells. The voltage-dependent L-type Ca2+ channel is a transmembrane protein that selectively permeates Ca2+ on activation by membrane depolarization. Ca2+ channel blockers (or Ca2+ antagonists) selectively block this channel. The blocking action is exerted in a tissue-specific manner, which underlies the unique pharmacological properties of Ca2+ channel blockers. The later generation of slowly-acting and long-lasting Ca2+ channel blockers has been designed to overcome the side effects of classical Ca2+ channel blockers. The pharmacological and molecular basis for the unique action of Ca2+ channel blockers will be discussed. 相似文献
14.
Store-operated Ca(2+) channels (SOCCs) were first identified in non-excitable cells by the observation that depletion of Ca(2+) stores caused increased influx of extracellular Ca(2+). Recent studies have suggested that SOCCs might be related to the transient receptor potential (TRPC) gene family. The mechanism of cardiac pacemaking involves voltage-dependent pacemaker current; in addition there is growing evidence that intracellular sarcoplasmic reticulum (SR) Ca(2+) release plays an important role. In the present short review we assess preliminary evidence for Ca(2+) entry related to SR store depletion and expression of TRPCs in pacemaker tissue. These newer findings suggest that Ca(2+) entry and inward current triggered by store depletion might also contribute to the pacemaker current. Many hormones, drugs and interventions such as ischaemia and stretch, which alter Ca(2+) handling, will also modulate pacemaker firing thought their effect on SOCCs. 相似文献
15.
心室颤动期间心脏动作电位和细胞内钙瞬变 总被引:1,自引:0,他引:1
目的 探讨心室颤动(室颤)期间细胞内钙瞬变(CaT)与心脏动作电位(AP)之间的分离是否与室颤时快速的心脏活动频率有关. 方法 使用光学标测系统同步标测9个离体心脏的CaT和AP.Pinacidil用于缩短动作电位时间(APD)以达到快速起搏或诱发室性心动过速(室速)的频率与室颤的频率相近.计算快速起搏、快速室速和室颤时CaT与AP之间的相互关联性(MI). 结果 Pinacidil(40 μmol/L)显著缩短APD.室颤的平均周长为(77±13)ms,而Pinacidil灌注后最快室速的哪周长为76 ms.快速起搏(周长80 ms)的MI(1.13±0.15)bits和快速室速的MI(0.88±0.18)bits均高于基线室颤的MI(0.39 ±0.11)bits、Pinacidil灌注后室颤的MI(0.21±0.07)bits和洗脱Pinacidil后室颤的MI(0.36 ±0.15)bits.快速起搏和快速室速的MI高于相同优势频率室颤的MI. 结论 快速起搏和快速室速时CaT与AP密切关联,室颤时两者MI显著下降.室颤时下降的MI不是继发于快速的心室活动频率. 相似文献
16.
Feedback regulation of cell-substratum adhesion by integrin-mediated intracellular Ca2+ signaling. 总被引:1,自引:0,他引:1 下载免费PDF全文
M D Sjaastad B Angres R S Lewis W J Nelson 《Proceedings of the National Academy of Sciences of the United States of America》1994,91(17):8214-8218
Integrin binding to extracellular matrix (ECM) regulates cell migration and gene expression in embryogenesis, metastasis, would healing, and the inflammatory response. In many cases, binding of integrins to ECM triggers intracellular signaling pathways. The regulatory roles of intracellular signaling mechanisms in these events are poorly understood. Using single-cell analysis, we demonstrate that beads coated with peptide containing Arg-Gly-Asp (RGD), an integrin recognition motif found in many ECM proteins, elicit a rapid transient increase in intracellular calcium in Madin-Darby canine kidney (MDCK) epithelial cells. Also, significantly more beads bind to responding cells than to nonresponders. Several independent methods that inhibit RGD-induced Ca2+ signaling decrease both the number of beads bound and the strength of adhesion to an RGD-coated substratum. These results indicate that intracellular Ca2+ signaling participates in a positive feedback loop that enhances integrin-mediated cell adhesion. 相似文献
17.
A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport 总被引:2,自引:0,他引:2 下载免费PDF全文
Hershfinkel M Moran A Grossman N Sekler I 《Proceedings of the National Academy of Sciences of the United States of America》2001,98(20):11749-11754
Changes in extracellular zinc concentration participate in modulating fundamental cellular processes such as proliferation, secretion, and ion transport in a mechanism that is not well understood. Here, we show that a micromolar concentration of extracellular zinc triggers a massive release of calcium from thapsigargin-sensitive intracellular pools in the colonocytic cell line HT29. Calcium release was blocked by a phospholipase-C inhibitor, indicating that formation of inositol 1,4,5-triphosphate is required for zinc-dependent calcium release. Zinc influx was not observed, indicating that extracellular zinc triggered the release. The Ca(i)2+ release was zinc specific and could not be triggered by other heavy metals. Furthermore, zinc failed to activate the Ca(2+)-sensing receptor heterologously expressed in HEK293 cells. The zinc-induced Ca(i)2+ rise stimulated the activity of the Na(+)/H(+) exchanger in HT29 cells. Our results indicate that a previously uncharacterized extracellular, G protein-coupled, Zn(2+)-sensing receptor is functional in colonocytes. Because Ca(i)2+ rise is known to regulate key cellular and signal-transduction processes, the zinc-sensing receptor may provide the missing link between extracellular zinc concentration changes and the regulation of cellular processes. 相似文献
18.
Kappa and delta opioid receptor stimulation affects cardiac myocyte function and Ca2+ release from an intracellular pool in myocytes and neurons. 总被引:19,自引:0,他引:19
We investigated the effects of mu, delta, and kappa opioid receptor stimulation on the contractile properties and cytosolic Ca2+ (Cai) of adult rat left ventricular myocytes. Cells were field-stimulated at 1 Hz in 1.5 mM bathing Ca2+ at 23 degrees C. The mu-agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (10(-5) M) had no effect on the twitch. The delta-agonists methionine enkephalin and leucine enkephalin (10(-10) to 10(-6) M) and the kappa-agonist (trans-(dl)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclo-hexyl]- benzeneacetamide)methanesulfonate hydrate (U-50,488H; 10(-7) to 2 x 10(-5) M) had a concentration-dependent negative inotropic action. The sustained decrease in twitch amplitude due to U-50,488H was preceded by a transient increase in contraction. The effects of delta- and kappa-receptor stimulation were antagonized by naloxone and (-)-N-(3-furyl-methyl)-alpha-normetazocine methanesulfonate, respectively. In myocytes loaded with the Ca2+ probe indo-1, the effects of leucine enkephalin (10(-8) M) and U-50,488H (10(-5) M) on the twitch were associated with similar directional changes in the Cai transient. Myofilament responsiveness to Ca2+ was assessed by the relation between twitch amplitude and systolic indo-1 transient. Leucine enkephalin (10(-8) M) had no effect, whereas U-50,488H (10(-5) M) increased myofilament responsiveness to Ca2+. We subsequently tested the hypothesis that delta and kappa opioid receptor stimulation may cause sarcoplasmic reticulum Ca2+ depletion. The sarcoplasmic reticulum Ca2+ content in myocytes and in a caffeine-sensitive intracellular Ca2+ store in neurons was probed in the absence of electrical stimulation via the rapid addition of a high concentration of caffeine from a patch pipette above the cell. U-50,488H and leucine enkephalin slowly increased Cai or caused Cai oscillations and eventually abolished the caffeine-triggered Cai transient. These effects occurred in both myocytes and neuroblastoma-2a cells. In cardiac myocyte suspensions U-50,488H and leucine enkephalin both caused a rapid and sustained increase in inositol 1,4,5-trisphosphate. Thus, delta and kappa but not mu opioids have a negative inotropic action due to a decreased Cai transient. The decreased twitch amplitude due to kappa-receptor stimulation is preceded by a transient increase in contractility, and it occurs despite an enhanced myofilament responsiveness to Ca2+. The effects of delta and kappa opioids appear coupled to phosphatidylinositol turnover and, at least in part, may be due to sarcoplasmic reticulum Ca2+ depletion.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
19.
20.
Jose F. Perez-Zoghbi Charlotta Karner Satoru Ito Malcolm Shepherd Yazan Alrashdan Michael J. Sanderson 《Pulmonary pharmacology & therapeutics》2009,22(5):388-397
Airway hyper-responsiveness associated with asthma is mediated by airway smooth muscle cells (SMCs) and has a complicated etiology involving increases in cell contraction and proliferation and the secretion of inflammatory mediators. Although these pathological changes are diverse, a common feature associated with their regulation is a change in intracellular Ca2+ concentration ([Ca2+]i). Because the [Ca2+]i itself is a function of the activity and expression of a variety of ion channels, in both the plasma membrane and sarcoplasmic reticulum of the SMC, the modification of this ion channel activity may predispose airway SMCs to hyper-responsiveness. Our objective is to review how ion channels determine the [Ca2+]i and influence the function of airway SMCs and emphasize the potential of ion channels as sites for therapeutic approaches to asthma. 相似文献