首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ocular gaze is anchored to the target of an ongoing pointing movement   总被引:13,自引:0,他引:13  
It is well known that, typically, saccadic eye movements precede goal-directed hand movements to a visual target stimulus. Also pointing in general is more accurate when the pointing target is gazed at. In this study, it is hypothesized that saccades are not only preceding pointing but that gaze also is stabilized during pointing in humans. Subjects, whose eye and pointing movements were recorded, had to make a hand movement and a saccade to a first target. At arm movement peak velocity, when the eyes are usually already fixating the first target, a new target appeared, and subjects had to make a saccade toward it (dynamical trial type). In the statical trial type, a new target was offered when pointing was just completed. In a control experiment, a sequence of two saccades had to be made, with two different interstimulus intervals (ISI), comparable with the ISIs found in the first experiment for dynamic and static trial types. In a third experiment, ocular fixation position and pointing target were dissociated, subjects pointed at not fixated targets. The results showed that latencies of saccades toward the second target were on average 155 ms longer in the dynamic trial types, compared with the static trial types. Saccades evoked during pointing appeared to be delayed with approximately the remaining deceleration time of the pointing movement, resulting in "normal" residual saccadic reaction times (RTs), measured from pointing movement offset to saccade movement onset. In the control experiment, the latency of the second saccade was on average only 29 ms larger when the two targets appeared with a short ISI compared with trials with long ISIs. Therefore the saccadic refractory period cannot be responsible for the substantially bigger delays that were found in the first experiment. The observed saccadic delay during pointing is modulated by the distance between ocular fixation position and pointing target. The largest delays were found when the targets coincided, the smallest delays when they were dissociated. In sum, our results provide evidence for an active saccadic inhibition process, presumably to keep steady ocular fixation at a pointing target and its surroundings. Possible neurophysiological substrates that might underlie the reported phenomena are discussed.  相似文献   

2.
This study examined two-segment pointing movements with various accuracy constraints to test whether there is segment interdependency in saccadic eye movements that accompany manual actions. The other purpose was to examine how planning of movement accuracy and amplitude for the second pointing influences the timing of gaze shift to the second target at the transition between two segments. Participants performed a rapid two-segment pointing task, in which the first segment had two target sizes, and the second segment had two target sizes and two movement distances. The results showed that duration and peak velocity of the initial pointing were influenced by altered kinematic characteristics of the second pointing due to task manipulations of the second segment, revealing segment interdependency in hand movements. In contrast, saccade duration and velocity did not show such segment interdependency. Thus, unlike hand movements, saccades are planned and organized independently for each segment during sequential manual actions. In terms of the timing of gaze shift to the second target, this was delayed when the initial pointing was made to the smaller first target, indicating that gaze anchoring to the initial target is used to verify the pointing termination. Importantly, the gaze shift was delayed when the second pointing was made to the smaller or farther second target. This suggests that visual information of the hand position at the initial target is important for the planning of movement distance and accuracy of the next pointing. Furthermore, timings of gaze shift and pointing initiation to the second target were highly correlated. Thus, at the transition between two segments, gazes and hand movements are highly coupled in time, which allows the sensorimotor system to process visual and proprioceptive information for the verification of pointing termination and planning of the next pointing.  相似文献   

3.
A moving background alters the perceived direction of target motion (the Duncker illusion). To test whether this illusion also affects pointing movements to remembered/extrapolated target locations, we constructed a display in which a target moved in a straight line and disappeared behind a band of moving random dots. Subjects were required to touch the spot where the target would emerge from the occlusion. The four directions of random-dot motion induced pointing errors that were predictable from the Duncker illusion. Because it has been previously established that saccadic direction is influenced by this illusion, gaze was subsequently recorded in a second series of experiments while subjects performed the pointing task and a similar task with eye-tracking only. In the pointing task, subjects typically saccaded to the lower border of the occlusion zone as soon as the target disappeared and then tried to maintain fixation at that spot. However, it was particularly obvious in the eye-tracking-only condition that horizontally moving random dots generally evoked an appreciable ocular following response, altering the gaze direction. Hand-pointing errors were related to the saccadic gaze error but were more highly correlated with final gaze errors (resulting from the initial saccade and the subsequent ocular following response). The results suggest a model of limb control in which gaze position can provide the target signal for limb movement.  相似文献   

4.
The purpose of this study was to examine the effects of accuracy constraints and termination requirements of hand movement on eye-hand coordination. Healthy adults performed two-segment eye and hand aiming movements to predetermined stationary targets. While two-segment eye movements were made to the first and second targets for all conditions, hand movements were varied across conditions. The first segment had two target sizes to alter accuracy constraints. There were three hand movement types with different termination requirements: (1) stop both at the first and at the second targets, (2) stop at the first target and discontinue, and (3) move through the first target and discontinue. The results showed that the initiation of saccades was moderately correlated with the initiation of hand movements, and both initiations changed in a similar fashion depending on various hand termination requirements. Amplitude of primary saccades and frequency of corrective saccades during the first segment were affected by the combined effects of accuracy constraints and hand termination requirements. These results suggest that the planning and execution of saccades are based in part on global task constraints related to the accuracy and termination demands of hand movements over the two segments. During the transition from the first to the second segment, the gaze was held on the first target until shortly after the pointing to that target was terminated, showing gaze anchoring. The gaze anchoring was prolonged due to the increased accuracy constraint of that target or by including pointing to the second target. However, the gaze anchoring was broken prior to the completion of pointing when the accuracy constraint was reduced and pointing to the second target was excluded. The observed modifications of gaze anchoring imply that the oculomotor system is functionally obligated to fixate a gaze to a pointing target only to the extent that successful completion of a pointing task is ensured by the actual completion or by a predictive assessment of pointing termination.  相似文献   

5.
We have investigated pointing movements toward remembered targets after an intervening self-generated body movement. We tested to what extent visual information about the environment or finger position is used in updating target position relative to the body after a step and whether gaze plays a role in the accuracy of the pointing movement. Subjects were tested in three visual conditions: complete darkness (DARK), complete darkness with visual feedback of the finger (FINGER), and with vision of a well-defined environment and with feedback of the finger (FRAME). Pointing accuracy was rather poor in the FINGER and DARK conditions, which did not provide vision of the environment. Constant pointing errors were mainly in the direction of the step and ranged from about 10 to 20 cm. Differences between binocular fixation and target position were often related to the step size and direction. At the beginning of the trial, when the target was visible, fixation was on target. After target extinction, fixation moved away from the target relative to the subject. The variability in the pointing positions appeared to be related to the variable errors in fixation, and the co-variance increases during the delay period after the step, reaching a highly significant value at the time of pointing. The significant co-variance between fixation position and pointing is not the result of a mutual dependence on the step, since we corrected for any direct contributions of the step in both signals. We conclude that the co-variance between fixation and pointing position reflects 1) a common command signal for gaze and arm movements and 2) an effect of fixation on pointing accuracy at the time of pointing.  相似文献   

6.
This experiment investigated the relative extent to which different signals from the visuo-oculomotor system are used to improve accuracy of arm movements. Different visuo-oculomotor conditions were used to produce various retinal and extraretinal signals leading to a similar target amplitude: (a) fixating a central target while pointing to a peripheral visual target, (b) tracking a target through smooth pursuit movement and then pointing to the target when its excursion ceased, and (c) pointing to a target reached previously by a saccadic eye movement. The experiment was performed with a deafferented subject and control subjects. For the deafferented patient, the absence of proprioception prevented any comparison between internal representations of target and limb (through proprioception) positions during the arm movement. The deafferented patient's endpoint therefore provided a good estimate of the accuracy of the target coordinates used by the arm motor system. The deafferented subject showed relatively good accuracy by producing a saccade prior to the pointing, but large overshooting in the fixation condition and undershooting in the pursuit condition. The results suggest that the deafferented subject does use oculomotor signals to program arm movement and that signals associated with fast movements of the eyes are better for pointing accuracy than slow ramp movements. The inaccuracy of the deafferented subject when no eye movement is allowed (the condition in which the controls were the most accurate) suggests that, in this condition, a proprioceptive map is involved in which both the target and the arm are represented.  相似文献   

7.
The firing behaviour of vestibular nucleus neurons putatively involved in producing the vestibulo-ocular reflex (VOR) was studied during active and passive head movements in squirrel monkeys. Single unit recordings were obtained from 14 position-vestibular (PV) neurons, 30 position-vestibular-pause (PVP) neurons and 9 eye-head-vestibular (EHV) neurons. Neurons were sub-classified as type I or II based on whether they were excited or inhibited during ipsilateral head rotation. Different classes of cell exhibited distinctive responses during active head movements produced during and after gaze saccades. Type I PV cells were nearly as sensitive to active head movements as they were to passive head movements during saccades. Type II PV neurons were insensitive to active head movements both during and after gaze saccades. PVP and EHV neurons were insensitive to active head movements during saccadic gaze shifts, and exhibited asymmetric sensitivity to active head movements following the gaze shift. PVP neurons were less sensitive to ondirection head movements during the VOR after gaze saccades, while EHV neurons exhibited an enhanced sensitivity to head movements in their on direction. Vestibular signals related to the passive head movement were faithfully encoded by vestibular nucleus neurons. We conclude that central VOR pathway neurons are differentially sensitive to active and passive head movements both during and after gaze saccades due primarily to an input related to head movement motor commands. The convergence of motor and sensory reafferent inputs on VOR pathways provides a mechanism for separate control of eye and head movements during and after saccadic gaze shifts.  相似文献   

8.
The existence of a temporal gap between the offset of a fixation target and the onset of a peripheral target generally reduces the saccadic and manual reaction time in response to the peripheral target. Using a double-step paradigm, the present experiment investigated whether a temporal gap between the extinction of the first target and the presentation of the second target can help in reducing the time to trigger the corrective eye movements and to correct the arm trajectory towards the final target position. A gap was introduced between the presentation of the initial target and a new unexpected goal-target during the movement. The results replicated the gap effect for the corrective saccade to the second target, but revealed an opposite effect for the correction of the reaching movements as the arm correction occurred later in the Gap than in the No-Gap conditions. These results suggest that the information available for the arm motor system to correct the trajectory in relation to the second target was different in the Gap and No-Gap conditions. In the No-Gap condition, the correction of reaching movements would be based on retinal errors between the first and the second targets whereas, in the Gap condition, the correction would be based on information derived from the corrective saccade-related signals to the second target.  相似文献   

9.
Accurate information about gaze direction is required to direct the hand towards visual objects in the environment. In the present experiments, we tested whether retinal inputs affect the accuracy with which healthy subjects indicate their gaze direction with the unseen index finger after voluntary saccadic eye movements. In experiment 1, subjects produced a series of back and forth saccades (about eight) of self-selected magnitudes before positioning the eyes in a self-chosen direction to the right. The saccades were produced while facing one of four possible visual scenes: (1) complete darkness, (2) a scene composed of a single light-emitting diode (LED) located at 18 degrees to the right, (3) a visually enriched scene made up of three LEDs located at 0 degrees, 18 degrees and 36 degrees to the right, or (4) a normally illuminated scene where the lights in the experimental room were turned on. Subjects were then asked to indicate their gaze direction with their unseen index finger. In the conditions where the visual scenes were composed of LEDs, subjects were instructed to foveate or not foveate one of the LEDs with their last saccade. It was therefore possible to compare subjects' accuracy when pointing in the direction of their gaze in conditions with and without foveal stimulation. The results showed that the accuracy of the pointing movements decreased when subjects produced their saccades in a dark environment or in the presence of a single LED compared to when the saccades were generated in richer visual environments. Visual stimulation of the fovea did not increase subjects' accuracy when pointing in the direction of their gaze compared to conditions where there was only stimulation of the peripheral retina. Experiment 2 tested how the retinal signals could contribute to the coding of eye position after saccadic eye movements. More specifically, we tested whether the shift in the retinal image of the environment during the saccades provided information about the reached position of the eyes. Subjects produced their series of saccades while facing a visual environment made up of three LEDs. In some trials, the whole visual scene was displaced either 4.5 degrees to the left or 3 degrees to the right during the primary saccade. These displacements created mismatches between the shift of the retinal image of the environment and the extent of gaze deviation. The displacements of the visual scene were not perceived by the subjects because they occurred near the peak velocity of the saccade (saccadic suppression phenomenon). Pointing accuracy was not affected by the unperceived shifts of the visual scene. The results of these experiments suggest that the arm motor system receives more precise information about gaze direction when there is retinal stimulation than when there is none. They also suggest that the most relevant factor in defining gaze direction is not the retinal locus of the visual stimulation (that is peripheral or foveal) but rather the amount of visual information. Finally, the results suggest an enhanced egocentric encoding of gaze direction by the retinal inputs and do not support a retinotopic model for encoding gaze direction.  相似文献   

10.
 The capability of reprogramming movement responses following changes in the visual goal has been studied through the double-step paradigm. These studies have shown that: (a) continuous internal feedback-loops correct unconsciously the dynamic errors throughout the movement; (b) proprioceptive information and/or the efference copy have a privileged status among central processes, insuring on-line regulation of the initial motor commands; and (c) generation of the motor program starts after target presentation, and is continuously updated in the direction of the current internal representation of the target, at least until the onset of hand movement. This main corrective process of the initial program appears to be basically independent of visual reafference from the moving hand. However, the agreement with the possibility of a visuomotor loop, based on the comparison of the new updated representation of the target position and on the information from the moving hand, has not determined whether the correcting process is proprioceptive feedback dependent, or whether internal feedback-loops (efferent copies) are responsible for quick corrections of unfolding motor responses. To answer this question, the present experiment investigated the pointing behavior of a deafferented subject, using a double-step paradigm under various conditions of visual feedback and movement initiation. Overall, the present study (a) clearly showed the capacity of the motor system to modify and correct erroneous trajectories on the mere basis of internal feedback-loops and (b) emphasized the crucial role played by the target jump/arm triggering delay and the importance of the eye efferent copy for providing information about the spatial goal of the movement. Received: 10 July 1998 / Accepted: 23 November 1998  相似文献   

11.
During visually guided manual movements, gaze is usually fixated to a target until a pointing movement is completed to that target, showing gaze anchoring. We previously examined gaze anchoring during a two-segment eye–hand task under a low accuracy constraint. Eye movements were made to predetermined first and second targets, while hand movements were varied across two conditions: (1) stop at the first target and discontinue (HS1) and (2) stop at both the first and the second targets (HS1S2). Young adults previously broke gaze anchoring at the first target only when the second pointing was excluded (HS1). However, older adults did not break gaze anchoring for either condition. The present study further investigated whether young and older adults break gaze anchoring through short-term practice under the same conditions. An HS1 practice proceeded to an HS1S2 practice. The results showed that the timing of terminating gaze anchoring relative to pointing completion oscillated considerably during the HS1 practice until it was stabilized. Conversely, that timing was stable during the HS1S2 practice. Nevertheless, the young adults benefited from the HS1 practice and broke gaze anchoring even when the second pointing was included in HS1S2. This indicates that gaze anchoring to pointing completion is not a prerequisite for the production of subsequent pointing. By contrast, older adults did not improve the timing of gaze anchoring termination for either practice condition, thereby failing to break gaze anchoring. Thus, aging compromises a predictive control of terminating gaze anchoring relative to pointing completion, which is difficult to overcome through short-term practice.  相似文献   

12.
 We investigated whether and how adaptive changes in saccadic amplitudes (short-term saccadic adaptation) modify hand movements when subjects are involved in a pointing task to visual targets without vision of the hand. An experiment consisted of the pre-adaptation test of hand pointing (placing the finger tip on a LED position), a period of adaptation, and a post-adaptation test of hand pointing. In a basic task (transfer paradigm A), the pre- and post-adaptation trials were performed without accompanying eye and head movements: in the double-step gaze adaptation task, subjects had to fixate a single, suddenly displaced visual target by moving eyes and head in a natural way. Two experimental sessions were run with the visual target jumping during the saccades, either backwards (from 30 to 20°, gaze saccade shortening) or onwards (30 to 40°, gaze saccade lengthening). Following gaze-shortening adaptation (level of adaptation 79±10%, mean and s.d.), we found a statistically significant shift (t-test, error level P<0.05) in the final hand-movement points, possibly due to adaptation transfer, representing 15.2% of the respective gaze adaptation. After gaze-lengthening adaptation (level of adaptation 92±17%), a non-significant shift occurred in the opposite direction to that expected from adaptation transfer. The applied computations were also performed on some data of an earlier transfer paradigm (B, three target displacements at a time) with gain shortening. They revealed a significant transfer relative to the amount of adaptation of 18.5±17.5% (P<0.05). In the coupling paradigm (C), we studied the influence of gaze saccade adaptation of hand-pointing movements with concomitant orienting gaze shifts. The adaptation levels achieved were 59±20% (shortening) and 61±27% (lengthening). Shifts in the final fingertip positions were congruent with internal coupling between gaze and hand, representing 53% of the respective gaze-amplitude changes in the shortening session and 6% in the lengthening session. With an adaptation transfer of less than 20% (paradigm A and B), we concluded that saccadic adaptation does not ”automatically” produce a functionally meaningful change in the skeleto-motor system controlling hand-pointing movements. In tasks with concomitant gaze saccades (coupling paradigm C), the modification of hand pointing by the adapted gaze comes out more clearly, but only in the shortening session. Received: 9 February 1998 / Accepted: 18 August 1998  相似文献   

13.
Visually guided arm movements such as reaching or pointing are accompanied by saccadic eye movements that typically begin prior to motion of the arm. In the past, some degree of coupling between the oculomotor and limb motor systems has been demonstrated by assessing the relative onset times of eye and arm movement, and by the demonstration of a gap effect for arm movement reaction times. However, measures of limb movement onset time based on kinematics are affected by factors such as the relatively high inertia of the limb and neuromechanical delays. The goal of the present study was thus to assess the relative timing of rapid eye and arm movements made to visual targets by examining electromyographic (EMG) activity of limb muscles in conjunction with eye and arm position measures. The observation of a positive correlation between eye and limb EMG onset latencies, and the presence of a gap effect for limb EMG onset times (a reduction in reaction time when a temporal gap is introduced between the disappearance of a central fixation point and the appearance of a new target) both support the idea that eye and arm movement initiation are linked. However, limb EMG onset in most cases precedes saccade onset, and the magnitude of EMG activity prior to eye movement is correlated with both the direction and amplitude of the upcoming arm movement. This suggests that, for the rapid movements studied here, arm movement direction and distance are specified prior to the onset of saccades.  相似文献   

14.
The present study examined the effect of timing constraints and advance knowledge on eye–hand coordination strategy in a sequential pointing task. Participants were required to point at two successively appearing targets on a screen while the inter-stimulus interval (ISI) and the trial order were manipulated, such that timing constraints were high (ISI = 300 ms) or low (ISI = 450 ms) and advance knowledge of the target location was present (fixed order) or absent (random order). Analysis of eye and finger onset and completion times per segment of the sequence indicated that oculo-manual behaviour was in general characterized by eye movements preceding the finger, as well as ‘gaze anchoring’ (i.e. eye fixation of the first target until completion of the finger movement towards that target). Advance knowledge of future target locations lead to shorter latency times of eye and hand, and smaller eye–hand lead times, which in combination resulted in shorter total movement times. There was, however, no effect of advance knowledge on the duration of gaze anchoring. In contrast, gaze anchoring did change as a function of the interval between successive stimuli and was shorter with a 300 ms ISI versus 450 ms ISI. Further correlation analysis provided some indication that shorter residual latency is associated with shorter pointing duration, without affecting accuracy. These results are consistent with a neural mechanism governing the coupling of eye and arm movements, which has been suggested to reside in the superior colliculus. The temporal coordination resulting from this coupling is a function of the time pressure on the visuo-manual system resulting from the appearance of external stimuli.  相似文献   

15.
The purposes of this study were to determine whether gaze direction provides a control signal for movement direction for a pointing task requiring a step and to gain insight into why discrepancies previously identified in the literature for endpoint accuracy with gaze directed eccentrically exist. Straight arm pointing movements were performed to real and remembered target locations, either toward or 30° eccentric to gaze direction. Pointing occurred in normal room lighting or darkness while subjects sat, stood still or side-stepped left or right. Trunk rotation contributed 22–65% to gaze orientations when it was not constrained. Error differences for different target locations explained discrepancies among previous experiments. Variable pointing errors were influenced by gaze direction, while mean systematic pointing errors and trunk orientations were influenced by step direction. These data support the use of a control strategy that relies on gaze direction and equilibrium inputs for whole-body goal-directed movements.  相似文献   

16.
Studies exploring reflexive joint attention report that attention is more powerfully captured by interfering social signals (such as others’ gaze or hand orientation) than by non-biological directional cues (such as an arrow). However, what remains unknown is whether these effects are mapped in purely spatial or in body-part specific reference frames. Changes of a central, black fixation point into blue or orange were the imperative instruction signal for the experimental subjects to make a leftward or a rightward movement (saccades in Study 1 and hand pointing in Study 2) while ignoring distracting stimuli (leftward or rightward oriented gaze, hand pointing or arrow). Gaze and pointing hand distracters that were directionally incongruent with the instruction cue impaired the goal-driven saccadic and pointing performance, respectively. This pattern of results indicates that reflexive social attention is mapped not only in spatial but also in body-part specific reference frames.  相似文献   

17.
 Eye-head coordination during saccadic gaze shifts normally relies on vestibular information. A vestibulo-saccadic reflex (VSR) is thought to reduce the eye-in-head saccade to account for current head movement, and the vestibulo-ocular reflex (VOR) stabilizes postsaccadic gaze while the head movement is still going on. Acute bilateral loss of vestibular function is known to cause overshoot of gaze saccades and postsaccadic instability. We asked how patients suffering from chronic vestibular loss adapt to this situation. Eye and head movements were recorded from six patients and six normal control subjects. Subjects tracked a random sequence of horizontal target steps, with their heads (1) fixed in primary position, (2) free to move, or (3) preadjusted to different head-to-target offsets (to provoke head movements of different amplitudes). Patients made later and smaller head movements than normals and accepted correspondingly larger eye eccentricities. Targeting accuracy, in terms of the mean of the signed gaze error, was better in patients than in normals. However, unlike in normals, the errors of patients exhibited a large scatter and included many overshoots. These overshoots cannot be attributed to the loss of VSR because they also occurred when the head was not moving and were diminished when large head movements were provoked. Patients’ postsaccadic stability was, on average, almost as good as that of normals, but the individual responses again showed a large scatter. Also, there were many cases of inappropriate postsaccadic slow eye movements, e.g., in the absence of concurrent head movements, and correction saccades, e.g., although gaze was already on target. Performance in patients was affected only marginally when large head movements were provoked. Except for the larger lag of the head upon the eye, the temporal coupling of eye and head movements in patients was similar to that in normals. Our findings show that patients with chronic vestibular loss regain the ability to make functionally appropriate gaze saccades. We assume, in line with previous work, three main compensatory mechanisms: a head movement efference copy, an active cervico-ocular reflex (COR), and a preprogrammed backsliding of the eyes. However, the large trial-to-trial variability of targeting accuracy and postsaccadic stability indicates that the saccadic gaze system of patients does not regain the high precision that is observed in normals and which appears to require a vestibular head-in-space signal. Moreover, this variability also permeates their gaze performance in the absence of head movements. Received: 23 October 1997 / Accepted: 1 June 1998  相似文献   

18.
This study aimed to investigate the coordination of multiple control actions involved in human horizontal gaze orienting or arm pointing to a common visual target. The subjects performed a visually triggered reaction time task in three conditions: (1) gaze orienting with a combined eye saccade and head rotation (EH), (2) arm pointing with gaze orienting by an eye saccade without head rotation (EA), and (3) arm pointing with gaze orienting by a combined eye saccade and head rotation (EHA). The subjects initiated eye movement first with nearly constant latencies across all tasks, followed by head movement in the EH task, by arm movement in the EA task, and by head and then arm movements in the EHA task. The differences of onset times between eye and head movements in the EH task, and between eye and arm movements in the EA task, were both preserved in the EHA task, leading to an eye-to-head-to-arm sequence. The onset latencies of eye and head in the EH task, eye and arm in the EA task, and eye, head and arm in the EHA task, were all positively correlated on a trial-by-trial basis. In the EHA task, however, the correlation coefficients of eye–head coupling and of eye–arm coupling were reduced and increased, respectively, compared to those estimated in the two-effector conditions (EH, EA). These results suggest that motor commands for different motor effectors are linked differently to achieve coordination in a task-dependent manner.  相似文献   

19.
Studying the transfer of visuomotor adaptation from a given effector (e.g., the eye) to another (e.g., the hand) allows us to question whether sensorimotor processes influenced by adaptation are common to both effector control systems and thus to address the level where adaptation takes place. Previous studies have shown only very weak transfer of the amplitude adaptation of reactive saccades--i.e., produced automatically in response to the sudden appearance of visual targets--to hand pointing movements. Here we compared the amplitude of hand pointing movements recorded before and after adaptation of either reactive or voluntary saccades, produced either in a saccade sequence task or in a single saccade task. No transfer to hand pointing movements was found after adaptation of reactive saccades. In contrast, a substantial transfer to the hand was obtained following adaptation of voluntary saccades produced in sequence. Large amounts of transfer between the two saccade types were also found. These results demonstrate that the visuomotor processes influenced by saccadic adaptation depend on the type of saccades and that, in the case of voluntary saccades, they are shared by hand pointing movements. Implications for the neurophysiological substrates of the adaptation of reactive and voluntary saccades are discussed.  相似文献   

20.
Visual information is vital for fast and accurate hand movements. It has been demonstrated that allowing free eye movements results in greater accuracy than when the eyes maintain centrally fixed. Three explanations as to why free gaze improves accuracy are: shifting gaze to a target allows visual feedback in guiding the hand to the target (feedback loop), shifting gaze generates ocular-proprioception which can be used to update a movement (feedback–feedforward), or efference copy could be used to direct hand movements (feedforward). In this experiment we used a double-step task and manipulated the utility of ocular-proprioceptive feedback from eye to head position by removing the second target during the saccade. We confirm the advantage of free gaze for sequential movements with a double-step pointing task and document eye–hand lead times of approximately 200 ms for both initial movements and secondary movements. The observation that participants move gaze well ahead of the current hand target dismisses foveal feedback as a major contribution. We argue for a feedforward model based on eye movement efference as the major factor in enabling accurate hand movements. The results with the double-step target task also suggest the need for some buffering of efference and ocular-proprioceptive signals to cope with the situation where the eye has moved to a location ahead of the current target for the hand movement. We estimate that this buffer period may range between 120 and 200 ms without significant impact on hand movement accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号