首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: The purpose of the present study was to elucidate the cytochrome P450 (P450) isoform(s) involved in the metabolism of loperamide (LOP) to N-demethylated LOP (DLOP) in human liver microsomes. Methods: Three established approaches were used to identify the P450 isoforms responsible for LOP N-demethylation using human liver microsomes and cDNA-expressed P450 isoforms: (1) correlation of LOP N-demethylation activity with marker P450 activities in a panel of human liver microsomes, (2) inhibition of enzyme activity by P450-selective inhibitors, and (3) measurement of DLOP formation by cDNA-expressed P450 isoforms. The relative contribution of P450 isoforms involved in LOP N-demethylation in human liver microsomes were estimated by applying relative activity factor (RAF) values. Results: The formation rate of DLOP showed biphasic kinetics, suggesting the involvement of multiple P450 isoforms. Apparent Km and Vmax values were 21.1 M and 122.3 pmol/min per milligram of protein for the high-affinity component and 83.9 M and 412.0 pmol/min per milligram of protein for the low-affinity component, respectively. Of the cDNA-expressed P450 s tested, CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyzed LOP N-demethylation. LOP N-demethylation was significantly inhibited when coincubated with quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4 inhibitor) by 40 and 90%, respectively, but other chemical inhibitors tested showed weak or no significant inhibition. DLOP formation was highly correlated with CYP3A4-catalyzed midazolam 1-hydroxylation (rs=0.829; P<0.01), CYP2B6-catalzyed 7-ethoxy-4-trifluoromethylcoumarin O-deethylation (rs=0.691; P<0.05), and CYP2C8-catalyzed paclitaxel 6-hydroxylation (rs=0.797; P<0.05). Conclusion: CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyze LOP N-demethylation in human liver microsomes, and among them, CYP2C8 and CYP3A4 may play a crucial role in LOP metabolism at the therapeutic concentrations of LOP. Coadministration of these P450 inhibitors may cause drug interactions with LOP. However, the clinical significance of potential interaction of LOP metabolism by CYP2C8 and CYP3A4 inhibitors should be studied further.  相似文献   

2.
体外研究人细胞色素P450在雌二醇代谢中的作用(英文)   总被引:4,自引:0,他引:4  
目的:研究雌二醇在cDNA表达的P450和人肝微粒体中的代谢机制,为在体内研究细胞色素P450活性与肿瘤发生的关系提供依据。方法:用HPLC-ECD法测定雌二醇的代谢产物。通过雌二醇在不同cDNA表达的P450中代谢,13例人肝微粒体中相关性研究,抑制剂对代谢的影响以及微粒体中17β-羟基脱氢化和2-羟基化代谢的催化动力学的研究来推断雌二醇的代谢机理。结果:在cDNA表达的P450中,催化2-羟基化代谢的P450按活性排列依次为CYP1A2、CYP3A4、CYP2C9。CYP2C9、CYP2C19和CYP2C8均具有较高的催化17β-羟基脱氢化活性。抑制CYP1A2与抑制CYP3A4对2-羟基化代谢产物生成的影响相似,可认为CYP1A2和CYP3A4在人肝微粒体中催化2-羟基化代谢的作用相近。雌二醇代谢的途径与底物浓度有关,低浓度时(1,10μmol/L)17β-羟基脱氢化为主要代谢途径;高浓度时(100μmol/L),2-羟基化成为主要代谢途径。结论:高底物浓度时,雌二醇主要由CYP1A2和CYP3A4催化代谢为2-羟基化产物。低底物浓度时,主要由CYP2C9、CYP2C19和CYP2C8催化生成17β-羟基去氢化产物。  相似文献   

3.
1.?Common marmosets (Callithrix jacchus) are potentially useful nonhuman primate models for preclinical drug metabolism studies. However, the roles of marmoset cytochrome P450 (P450) isoforms in the oxidation of endobiotic progesterone have not been fully investigated. In this study, the roles of marmoset P450 isoforms in progesterone hydroxylation were extensively determined.

2.?The activities of liver microsomes from individual marmosets with respect to progesterone 21/17α- and 16α/6β-hydroxylation were significantly correlated with those for flurbiprofen 4-hydroxylation and midazolam 1′-hydroxylation, respectively, as similar correlations have been found in humans. Anti-P450 2?C and 3?A antibodies suppressed progesterone 21/17α- and 16α/6β-hydroxylation, respectively, in marmoset liver microsomes.

3.?Recombinant marmoset P450 2C58 and 2C19 catalyzed progesterone to form 21-hydroxyprogesterone and 16α-hydroxyprogesterone, respectively, as major products with high maximum velocity/Km values of 0.53 and 0.089?mL/min/nmol, respectively. Recombinant marmoset P450 3A4/90 oxidized progesterone to form 6β-hydroxyprogesterone as a major product with homotropic cooperativity (>1 of Hill coefficients).

4.?These results indicate that the overall activities and roles of liver microsomal P450 enzymes in marmoset livers are similar to those in humans, especially for progesterone 21/17α- and 16α/6β-hydroxylation by marmoset P450 2?C and 3?A enzymes, respectively, suggesting important roles for these P450 enzymes in the metabolism of endobiotics in marmosets.  相似文献   

4.

BACKGROUND AND PURPOSE

Patients with diabetes mellitus require pharmacotherapy with numerous medications. However, the effect of diabetes on drug biotransformation is not well understood. Our goal was to investigate the effect of diabetes on liver cytochrome P450 3As, the most abundant phase I drug-metabolizing enzymes in humans.

EXPERIMENTAL APPROACH

Human liver microsomal fractions (HLMs) were prepared from diabetic (n = 12) and demographically matched nondiabetic (n = 12) donors, genotyped for CYP3A4*1B and CYP3A5*3 polymorphisms. Cytochrome P450 3A4, 3A5 and 2E1 mRNA expression, protein level and enzymatic activity were compared between the two groups.

KEY RESULTS

Midazolam 1′- or 4-hydroxylation and testosterone 6β-hydroxylation, catalyzed by P450 3A, were markedly reduced in diabetic HLMs, irrespective of genotype. Significantly lower P450 3A4 protein and comparable mRNA levels were observed in diabetic HLMs. In contrast, neither P450 3A5 protein level nor mRNA expression differed significantly between the two groups. Concurrently, we have observed increased P450 2E1 protein level and higher chlorzoxazone 6-hydroxylation activity in diabetic HLMs.

CONCLUSIONS AND IMPLICATIONS

These studies indicate that diabetes is associated with a significant decrease in hepatic P450 3A4 enzymatic activity and protein level. This finding could be clinically relevant for diabetic patients who have additional comorbidities and are receiving multiple medications. To further characterize the effect of diabetes on P450 3A4 activity, a well-controlled clinical study in diabetic patients is warranted.  相似文献   

5.
1.?1-Chloropyrene, one of the major chlorinated polycyclic aromatic hydrocarbon contaminants, was incubated with human cytochrome P450 (P450 or CYP) enzymes including CYP1A1, 1A2, 1B1, 2A6, 2A13, 2B6, 2C9, 2D6, 2E1, 3A4 and 3A5. Catalytic differences in 1-chloropyrene oxidation by polymorphic two CYP1B1 and five CYP2A13 allelic variants were also examined.

2.?CYP1A1 oxidized 1-chloropyrene at the 6- and 8-positions more actively than at the 3-position, while both CYP1B1.1 and 1B1.3 preferentially catalyzed 6-hydroxylation.

3.?Five CYP2A13 allelic variants oxidized 8-hydroxylation much more than 6- and 3-hydroxylation, and the variant CYP2A13.3 was found to slowly catalyze these reactions with a lower kcat value than other CYP2A13.1 variants.

4.?CYP2A6 catalyzed 1-chloropyrene 6-hydroxylation at a higher rate than the CYP2A13 enzymes, but the rate was lower than the CYP1A1 and 1B1 variants. Other human P450 enzymes had low activities towards 1-chloropyrene.

5.?Molecular docking analysis suggested differences in the interaction of 1-chloropyrene with active sites of CYP1 and 2?A enzymes. In addition, a naturally occurring Thr134 insertion in CYP2A13.3 was found to affect the orientation of Asn297 in the I-helix in interacting with 1-chloropyrene (and also 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK) and caused changes in the active site of CYP2A13.3 as compared with CYP2A13.1.  相似文献   

6.
CYP2C9 is a human microsomal cytochrome P450c (CYP). Much of the variation in CYP2C9 levels and activity can be attributed to polymorphisms of this gene. Wild‐type CYP2C9 and mutants were coexpressed with NADPH‐cytochrome P450 reductase in Escherichia coli . The hydroxylase activities toward 7‐ethoxycoumarin, flavanone and steroids were examined. Six CYP2C9 variants showed Soret peaks (450 nm) typical of P450 in reduced CO‐difference spectra. CYP2C9.38 had the highest 7‐ethoxycoumarin de‐ethylase activity. All the CYP2C9 variants showed lower flavanone 6‐hydroxylation activities than CYP2C9.1 (the wild‐type). CYP2C9.38 showed higher activities in testosterone 6β‐hydroxylation, progesterone 6β−/16α‐hydroxylation, estrone 11α‐hydroxylation and estradiol 6α‐hydroxylation than CYP2C9.1. CYP2C9.40 showed higher testosterone 17‐oxidase activity than CYP2C9.1; CYP2C9.8 showed higher estrone 16α‐hydroxylase activity and CYP2C9.12 showed higher estrone 11α‐hydroxylase activity. CYP2C9.9 and CYP2C9.10 showed similar activities to CYP2C9.1. These results indicate that the substrate specificity of CYP2C9.9 and CYP2C9.10 was not changed, but CYP2C9.8, CYP2C9.12 and CYP2C9.40 showed different substrate specificity toward steroids compared with CYP2C9.1; and especially CYP2C9.38 displayed diverse substrate specificities towards 7‐ethoxycoumarin and steroids.  相似文献   

7.
The in vitro metabolism of (?)-fenchone was examined in human liver microsomes and recombinant enzymes. The biotransformation of (?)-fenchone was investigated by gas chromatography-mass spectrometry. (?)-Fenchone was found to be oxidized to 6-exo-hydroxyfenchone, 6-endo-hydroxyfenchone and 10-hydroxyfenchone by human liver microsomal P450 enzymes. The formation of metabolites was determined by the relative abundance of mass fragments and retention times on gas chromatography (GC). CYP2A6 and CYP2B6 were major enzymes involved in the hydroxylation of (?)-fenchone by human liver microsomes, based on the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 and CYP2B6 catalysed the oxidation of (?)-fenchone. Second, oxidation of (?)-fenchone was inhibited by thioTEPA and (+)-menthofuran. Finally, there was a good correlation between CYP2A6, CYP2B6 contents and (?)-fenchone hydroxylation activities in liver microsomes of 11 human samples. CYP2A6 may be more important than CYP2B6 in human liver microsomes. Kinetic analysis showed that the Vmax/Km values for (?)-fenchone 6-endo-, 6-exo- and 10-hydroxylation catalysed by liver microsomes of human sample HG-03 were 24.3, 44.0 and 1.3?nM?1?min?1, respectively. Human recombinant CYP2A6 and CYP2B6 catalysed (?)-fenchone 6-exo-hydroxylation with Vmax values of 2.7 and 12.9?nmol?min?1?nmol?1 P450 and apparent Km values of 0.18 and 0.15?mM and (?)-fenchone 6-endo-hydroxylation with Vmax values of 1.26 and 5.33?nmol?min?1?nmol?1 P450 with apparent Km values of 0.29 and 0.26?mM. (?)-Fenchone 10-hydroxylation was catalysed by CYP2B6 with Km and Vmax values of 0.2?mM and 10.66?nmol?min?1?nmol?1 P450, respectively.  相似文献   

8.
1. Preliminary studies have identified cytochrome P450 (CYP) 3A4 and CYP1B1 as the human CYPs inhibited by tamoxifen. To quantify the inhibitory potency of tamoxifen and its major metabolites, the metabolism of three substrates of CYP3A, midazolam, diltiazem and testosterone, and 7-ethoxyresorufin as a substrate of CYP1B1 were examined in catalytic assays carried out using human liver microsomes and cDNA-expression systems. 2. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and 3-hydroxytamoxifen reversibly inhibited midazolam 1'-hydroxylation, diltiazem N-demethylation and testosterone 6 β -hydroxylation with Ki ranging from 3 to 37 µM in human liver microsomes. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and 3-hydroxytamoxifen also reversibly inhibited the activity of cDNA-expressed CYP3A4, CYP3A5 and CYP1B1. 3. Tamoxifen and N-desmethyltamoxifen exhibited time-dependent inactivation of testosterone 6 β -hydroxylation by cDNA-expressed CYP3A4 (+cytochrome b5) yielding k inact and K i of 0.04?min -1 and 0.2 µM for tamoxifen and 0.08?min -1 and 2.6 µM for N-desmethyltamoxifen. A metabolic intermediate complex (MIC) was also formed by tamoxifen and N -desmethyltamoxifen with CYP3A4 (+ cytochrome b5) and CYP3A4 but not with CYP3A5 or CYP3A7. Pre-incubation with 4-hydroxytamoxifen and 3-hydroxytamoxifen did not result in any CYP3A inactivation or detectable MIC formation. There was no detectable time-dependent inactivation or MIC formation with tamoxifen or metabolites with CYP1B1. 4. These data indicate that tamoxifen and its three major metabolites are effective inhibitors of CYP3A in vitro and that tamoxifen and N-desmethyltamoxifen are effective mechanism-based inhibitors. Thus, caution should be exercised when tamoxifen is coadministered with other CYP3A substrates.  相似文献   

9.
1.?Hepatic drug-metabolizing activity was investigated in vitro with liver microsomes prepared from rats suffering from hypoxemia with experimentally induced acute lung impairment (ALI).

2.?Male Wistar rats received an intrabronchial administration of dilute hydrochloride solution for ALI induction. Pooled liver microsomes were prepared for the normal and ALI rats, and the hepatic drug metabolism mediated by cytochrome P450 (CYP) 3?A was examined in an incubation study with the microsomes.

3.?The NADPH-dependent metabolism of midazolam significantly increases in ALI rats as compared with that in normal rats. Testosterone 6β-hydroxylation was also observed to significantly increase in ALI rats.

4.?When the hepatic expression of CYP3A proteins was examined, the protein expression of CYP3A1 was shown to significantly increase and that of CYP3A2 remained unaltered in ALI rats. The hepatic expression of NADPH-cytochrome P450 reductase (POR), a protein mediating electron transfer in CYP-mediated drug metabolism, was also revealed to significantly increases in ALI rats.

5.?With the findings regarding the midazolam elimination, the hepatic drug-metabolizing activity seems to increase in response to acute hypoxemia, partly due to an altered expression of the CYP3A enzymes, and an augmented electron transfer with an increased POR expression is probably involved in the increase.  相似文献   

10.
Objective Macrolide antibiotics are mechanism-based inactivators of CYP3A enzymes that exhibit varying degrees of inhibitory potency. Our aim was to predict quantitatively the drug-drug interaction (DDI) potential of five macrolides from in vitro studies using testosterone as the CYP3A substrate, and to compare the predictions generated from human liver microsomal and recombinant CYP3A4 data. Methods The in vitro kinetic constants of CYP3A inactivation (K I and k inact) were estimated by varying the time of pre-incubation and the concentration of troleandomycin, erythromycin, clarithromycin, roxithromycin or azithromycin. CYP3A activity was determined from the measurement of testosterone 6β-hydroxylation with human liver microsomes (HLM) and recombinant CYP3A4 as the enzyme sources. The mechanism-based pharmacokinetic model was fitted with inactivation data to predict the increase in oral area under the plasma concentration-time curve (AUC) for midazolam. Results All five macrolides inactivated testosterone 6β-hydroxylation by HLM and recombinant CYP3A4 with k inact values in the range of 0.023 to 0.058 min−1. The potency of inactivation (K I) was higher using recombinant CYP3A4 as the enzyme source. The oral AUCs for midazolam were predicted from HLM data to increase 16.6, 5.3, 4.6, 1.6 and 1.2-fold due to the inhibition of metabolic clearance by troleandomycin, erythromycin, clarithromycin, roxithromycin and azithromycin, respectively. These results are within the range of the AUC ratios reported for clinical DDI studies. The predicted AUC increases generated using recombinant CYP3A4 overestimated the magnitude of the DDIs. Conclusions The DDI potential of five macrolide antibiotics was quantitatively predicted from in vitro studies using testosterone as the CYP3A substrate with HLM as the enzyme source.  相似文献   

11.
The aim of the present study was to examine the effect of the brain noradrenergic system on the expression of cytochrome P450 in the liver. The experiment was carried out on male Wistar rats. Intracerebroventricular injection of the noradrenergic neurotoxin DSP-4 diminished noradrenaline level in the brain. Simultaneously, significant decreases in the serum concentration of the growth hormone, testosterone and the thyroid hormone thyroxine, as well as an increase in corticosterone level were observed. The concentrations of triiodothyronine and the cytokines interleukine 2 (IL-2) and 6 (IL-6) were not changed by DSP-4. The neurotoxin produced complex changes in the functioning of cytochrome P450. Significant decreases in the activity of liver CYP2C11 (measured as a rate of the 2α- and 16α-hydroxylation of testosterone) and CYP3A (measured as a rate of the 2β- and 6β-hydroxylation of testosterone) were found. In contrast, the activity of CYP1A (measured as a rate of caffeine metabolism) rose, while that of CYP2A (measured as a rate of the 7α-hydroxylation of testosterone), CYP2C6 (measured as a rate of the 7-hydroxylation of warfarin) and CYP2D (the 1′-hydroxylation of bufuralol) remained unchanged. The changes in the activity of CYP1A, CYP2C11 and CYP3A correlated positively with those in CYP protein levels and with the CYP mRNA levels of CYP1A1, CYP2C11 and CYP3A1/2 genes, respectively. The obtained results indicate an important role of the brain noradrenergic system in the neuroendocrine regulation of liver cytochrome P450 expression, which may be of significance in pathological states involving this system, or during pharmacotherapy with drugs affecting noradrenergic transmission.  相似文献   

12.
Purpose. The hepatic and intestinal metabolic activities of P450 were evaluated in rats with surgery- and drug-induced renal dysfunction. Methods. Renal failure was induced by five-sixths nephrectomy (NR), bilateral ureter ligation (BUL), the intramuscular injection of glycerol (GL), and the intraperitoneal injection of cisplatin (CDDP). Phenytoin 4-hydroxylation, debrisoquine 4-hydroxylation, and testosterone 6-hydroxylation were estimated to evaluate the metabolic activities of cytochrome P450 (CYP) 2C, 2D, and 3A, respectively. Results. The hepatic CYP3A metabolic activities were decreased by 65.9% and 60.2% in NR and GL rats, respectively. The hepatic CYP2C metabolic activity was decreased by 48.8% in CDDP rats. No alteration in hepatic drug-metabolizing activities was observed in BUL rats. On the other hand, the intestinal CYP3A metabolic activity was weakly increased in GL rats but not significantly altered in NR, CDDP, and BUL rats. Conclusions. This study suggested (a) that only selected P450 metabolic activity in the liver is decreased in renal failure, (b) that extent of the decrease in hepatic metabolic activities of P450 is dependent on the etiology of renal failure, and (c) that alteration of CYP3A metabolic activity in the intestine is not always correlated with that in the liver.  相似文献   

13.
  1. Ilaprazole is a new proton pump inhibitor, designed for treatment of gastric ulcers, and developed by Il-Yang Pharmaceutical Co (Seoul, Korea). It is extensively metabolised to the major metabolite ilaprazole sulfone.

  2. In the present study, several in vitro approaches were used to identify the cytochrome P450 (CYP) enzymes responsible for ilaprazole sulfone formation. Concentrations of ilaprazole sulfone were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

  3. Incubation of ilaprazole with cDNA-expressed recombinant CYPs indicated that CYP3A was the major enzyme that catalyses ilaprozole to ilaprazole sulfone. This reaction was inhibited significantly by ketoconazole, a CYP3A inhibitor, and azamulin, a mechanism-based inhibitor of CYP3A, while no substantial effect was observed using selective inhibitors for eight other P450s (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP2E1).

  4. In addition, the formation of ilaprazole sulfone correlated well with CYP3A-catalysed testosterone 6β-hydroxylation and midazolam 1′-hydroxylation in 20 different human liver microsome panels. The intrinsic clearance of the formation of ilaprazole sulfone by CYP3A4 was 16-fold higher than that by CYP3A5.

  5. Collectively, these results indicate that the formation of the major metabolite of ilaprazole, ilaprazole sulfone, is predominantly catalysed by CYP3A4/5.

  相似文献   

14.
  1. Cytochromes P450 (P450) involved in letrozole metabolism were investigated. Among 13 recombinant P450 forms examined, only P450 2A6 and 3A4 showed activities in transforming letrozole to its carbinol metabolite with small Km and high Vmax values yielding apparent Vmax/Km values of 0.48 and 0.24 nl min?1 nmol?1 P450, respectively.

  2. The metabolic activities of individual human liver microsomes showed a significant correlation with coumarin 7-hydroxylase activities (P450 2A6 marker) at a letrozole concentration of 0.5 μM, while a good correlation was also seen with testosterone 6β-hydroxylase activities (P450 3A4 marker) at 5 μM substrate concentration with different inhibition by 8-methoxypsolaren.

  3. Significantly low carbinol-forming activities were seen in human liver microsomes from individuals possessing CYP2A6*4/*4 (whole CYP2A6 gene deletion) at a letrozole concentration of 0.5 μM. A Vmax/Km value measured for CYP2A6.7 (amino acid substitution type) in human liver microsomes, in the presence of anti-P450 3A4 antibodies, was approximately seven-fold smaller than that for CYP2A6.1 (wild-type).

  4. These results demonstrate that P450 2A6 and 3A4 catalyse the conversion of letrozole to its carbinol metabolite in vitro at low and high concentrations of letrozole. Polymorphic variation of CYP2A6 is considered to be relevant to inter-subject variation in therapeutic exposure of letrozole.

  相似文献   

15.
The polymorphic expression of CYP3A5 in human livers is well established, but its significance for the entire hepatic CYP3A activity is disputed. We investigated the contribution of CYP3A5 to the CYP3A activity assessed as 6-hydroxylation of testosterone using baculovirus-expressed CYP3A4 and CYP3A5 and microsomes isolated from 47 Caucasian human livers. Under comparable conditions, the specific activities of baculovirus-expressed CYP3A4 and CYP3A5 were nearly identical. Among human livers tested, the Vmax of 6-testosterone hydroxylation varied 28-fold. Of the enzymes that are capable of catalyzing 6-hydroxylation of testosterone (CYP3A and CYP1A1), only CYP3A4 mRNA and protein expression correlated significantly with the Vmax values (r=0.51, p<0.001 and r=0.66, p<0.001, respectively). Neither consideration of the CYP3A5 polymorphism nor combining CYP3A4 mRNA expression with the expression of other CYP3A mRNA species increased the correlation. The five livers heterozygous for the CYP3A5*1 allele had a mean 6-testosterone hydroxylation Vmax value of 2,976 pmol/mg/min, compared with 3,798 pmol/mg/min in the homozygous CYP3A5*3 livers. Together, these data suggest that the specific activities of CYP3A4 and CYP3A5 towards testosterone are comparable. However, the contribution of CYP3A5 to 6-hydroxylation of testosterone in Caucasian livers is limited, due to the much lower expression levels of CYP3A5.  相似文献   

16.
CYP3A4 and CYP3A5 exhibit significant overlap in substrate specificity, but can differ in catalytic activity and regioselectivity. To investigate their characteristics further, the enzymatic reactions of the two CYP3A enzymes were compared using midazolam, nifedipine, testosterone and terfenadine as substrates. Both CYP3A5 and CYP3A4 showed sigmoid and substrate inhibition patterns for testosterone 6β-hydroxylation and terfenadine t-butylhydroxylation (TFDOH), respectively. In the other reactions, the kinetic model for CYP3A5 was not similar to that for CYP3A4. An inhibition study demonstrated that the interactions between α-naphthoflavone (αNF) and CYP3A substrates were different for the two CYP3A enzymes. αNF stimulated nifedipine oxidation catalysed by CYP3A5, but did not stimulate that catalysed by CYP3A4. αNF at less than 32?µM inhibited TFDOH catalysed by CYP3A5, but did not inhibit that catalysed by CYP3A4. These results indicate that CYP3A5 has different enzymatic characteristics from CYP3A4 in some CYP3A catalysed reactions.  相似文献   

17.
The cynomolgus monkey is an animal species widely used to study drug metabolism because of its evolutionary closeness to humans. However, drug-metabolizing enzyme activities have not been compared in various parts of the liver and small intestine in cynomolgus monkeys. In this study, therefore, drug-metabolizing enzyme activities were analyzed in the liver (the five lobes) and small intestine (six sections from the duodenum to the distal ileum). 7-Ethoxyresorufin O-deethylation, coumarin 7-hydroxylation, paclitaxel 6α-hydroxylation, diclofenac 4'-hydroxylation, tolbutamide methylhydroxylation, S-mephenytoin 4'-hydroxylation, bufuralol 1'-hydroxylation, chlorzoxazone 6-hydroxylation, midazolam 1'-hydroxylation, and testosterone 6β-, 16α-, 16β-, and 2α-hydroxylation were used as the probe reactions for this investigation. In liver, all probe reactions were detected and enzyme activity levels were similar in all lobes, whereas, in the small intestine, all enzyme activities were detected (except for coumarin 7-hydroxylase and testosterone 16α-hydroxylase activity), but from jejunum to ileum there was a decrease in the level of enzyme activity. This includes midazolam 1'-hydroxylation and testosterone 6β-hydroxylation, which are catalyzed by cynomolgus monkey cytochrome P450 (CYP) 3A4/5, orthologs of human CYP3A4/5, which are important drug-metabolizing enzymes. The data presented in this study are expected to facilitate the use of cynomolgus monkeys in drug metabolism studies.  相似文献   

18.
  1. This study evaluated the in vitro activation of CYP3A-mediated midazolam 1-hydroxylation and testosterone 6β-hydroxylation by tanshinone I, tanshinone IIA, and cryptotanshinone.

  2. The abilities of tanshinones to activate CYP3A-mediated midazolam 1-hydroxylation and testosterone 6β-hydroxylation in human liver microsomes (HLMs) were tested. Substrate- and effector-dependent activation of CYP3A by tanshinones were both observed.

  3. Cryptotanshinone was shown to activate CYP3A-mediated midazolam 1-hydroxylation in a concentration-dependent manner. In contrast, tanshinone IIA and tanshinone I did not activate this hydroxylation reaction. In addition, tanshinone IIA activated CYP3A-mediated testosterone 6β-hydroxylation, whereas cryptotanshinone and tanshinone I did not.

  4. The results from our study enhance the understanding of CYP3A activation by tanshinone IIA and cryptotanshinone in HLMs. Additionally, these data allow for an accurate prediction of the magnitude and likelihood of Danshen-drug interactions.

  相似文献   

19.
We examined the effect of bisphenol A (BPA) on microsomal cytochrome P450 (P450) enzymes in rats. Rats were treated intraperitoneally with BPA daily for 4 days, at doses of 10, 20, and 40 mg/kg. Among the P450-dependent monooxygenase activities, testosterone 2α-hydroxylase (T2AH) and testosterone 6β-hydroxylase (T6BH) activities, which are associated with CYP2C11 and CYP3A2 respectively, were remarkably decreased by 40 mg/kg BPA. The levels of the control activities were 13 and 50%, respectively. Furthermore, immunoblotting showed that BPA (20 or 40 mg/kg) significantly reduced CYP2C11/6 and CYP3A2/1 protein levels in rat liver microsomes. In addition, estradiol 2-hydroxylase (ED2H) and benzphetamine N-demethylase (BZND) activities were significantly decreased by BPA at 20 and 40 mg/kg (by 19–73%). The K m values for T2AH and T6BH in 20 and 40 mg/kg BPA-treated rats were significantly high compared with that in control rats. The V max for T2AH was dose-dependently decreased by BPA treatment, whereas that of T6BH was only decreased by BPA at 40 mg/kg. On the other hand, lauric acid ω-hydroxylase (LAOH) activity was significantly increased by BPA at 20 and 40 mg/kg (1.5- and 1.7-fold, respectively). Immunoblot analysis showed that 20 and 40 mg/kg BPA induced CYP4A1/2 protein expression. However, the activities 7-ethoxyresorufin O-deethylase (EROD), 7-methoxyresorufin O-demethylase (MROD), 7-ethoxycoumarin O-deethylase (ECOD), 7-benzyloxyresorufin O-debenzylase (BROD), aminopyrine N-demethylase (APND), chlorzoxazone 6-hydroxylase (CZ6H), erythromycin N-demethylase (EMND), and testosterone 7α-hydroxylase (T7AH) were not affected by BPA at any dose. These results suggest that BPA affects male-specific P450 isoforms in rat liver, and that these changes closely relate to the toxicity of BPA. Received: 26 January 1998 / Accepted: 26 February 1998  相似文献   

20.
1. Studies using human liver microsomes and recombinant human cytochrome P450 (P450) enzymes and flavin-containing monooxygenase (FMO) were performed to identify the enzymes responsible for the formation of zotepine metabolites in man. 2. Human liver microsomes produced four metabolites and a tentative order of importance was: norzotepine, 3-hydroxyzotepine, zotepine S-oxide and 2-hydroxyzotepine. Zotepine N-oxide was also detected, but it could not be quantified. 3. The rates of formation of the major metabolite, norzotepine, and zotepine S-oxide (at a substrate concentration of 20 μM) were significantly correlated with the testosterone 6β-hydroxylase activities and CYP3A4 contents of the 12 different human liver microsomal samples. Inhibition studies with P450 enzyme selective inhibitors and anti-rat CYP3A2 antibodies also indicated a predominant role of CYP3A4 in the formation of norzotepine and zotepine S-oxide. Furafylline and sulphaphenazole inhibited the N-demethylation of zotepine by up to ~ 30%. 4. Correlation and inhibition data for the 2- and 3-hydroxylation of zotepine were consistent with the predominant role of CYP1A2 and 2D6 in the formation of these metabolites, respectively. 5. Recombinant CYP1A1, 1A2, 2B6, 2C19, 3A4 and 3A5 efficiently catalysed N-demethylation of zotepine. CYP1A1, 1A2, 2B6 and 3A4 were also active for S-oxidation. CYP1A2 and 2D6*1-Val374 efficiently produced 2-hydroxyzotepine and 3-hyroxyzotepine, respectively. Recombinant human FMO3 did not catalyse zotepine S-oxidation. 6. These results suggest that both the N-demethylation and S-oxidation of zotepine are mediated mainly by CYP3A4, and that CYP1A2 and 2D6 play an important role in the 2- and 3-hydroxylation of zotepine, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号