首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor-associated macrophages infiltrate tumors and facilitate tumor growth. Here, we analyzed M1 and M2 marker expression in the course of co-culture-driven macrophage differentiation and investigated the influence of interferons (IFNs) on this differentiation. To generate monocyte-derived macrophages (MDMs) 1×10? monocytes of healthy volunteers were cultivated either with 25×103 adherent A549/mL or in medium containing 50% A549 conditioned medium (CM) for 72?h in the presence or absence of IFN-α, β or γ, respectively. Supernatants were tested for CCL18 (M2 marker) and CXCL10 (M1 marker) by enzyme-linked immunosorbent assay. CCL18 and CXCL10 release by MDM is increased by the presence of A549 cells, but also when cultured in A549 CM. On stimulation with IFN-γ, we observe an increased release of the M1 marker CXCL10 and a decreased release of CCL18. Type I IFNs also increases CXCL10 release. Thus, A549 releases a soluble factor which enhances CCL18 production and M2 polarization, indicating that a localized specific cytokine milieu, as found in the environment of a tumor or in fibrotic lung tissue, favors alternative activation of macrophages. In the presence of IFN-γ, M2 differentiation is attenuated as shown by the decrease of the M2 chemokine CCL18 and by the increase of the M1 chemokine CXCL10. However, CXCL10 levels were also increased by the co-culture, which indicates a simultaneous classical activation (M1) or the formation of a M1/M2 hybrid.  相似文献   

2.
Monocytes from patients with systemic juvenile idiopathic arthritis (SJIA) have both features of classical activated M1 and alternatively activated M2 macrophages. An increasing number of studies have indicated that microRNAs (miRNAs) are critical regulators of monocyte polarization. Here, we focused on miR-146a expression in SJIA and investigated the function of miR-146a in monocyte polarization. We found that miR-146a expression was highly up-regulated in SJIA monocytes and correlated with the systemic features. miR-146a was expressed at a higher level in monocytes polarized with M2 conditions than those polarized with M1 conditions. miR-146a overexpression significantly decreased the production of M1 phenotype markers such as IL-6, IL-12, TNF-α, CD86 and iNOS in M1 macrophages, but increased the production of M2 marker genes such as Arg1, CCL17, CCL22 and CD206 in M2 macrophages. Conversely, knockdown of miR-146a promoted M1 macrophage polarization but diminished M2 macrophage polarization. We subsequently demonstrated that miR-146a targeted the 3′-untranslated region (UTR) of INHBA to inhibit its expression. Additionally, INHBA overexpression rescued the reduced IL-6, IL-12, and TNF-α levels induced by miR-146a overexpression in M1 macrophages, and rescued the increased Arg1, CCL17, and CCL22 levels induced by miR-146a overexpression in M2 macrophages. Similarly, the effects of miR-146a inhibition in monocyte polarization were all partly reversed by INHBA inhibition. Taken together, the data suggest that miR-146a serves as a molecular regulator in monocyte polarization and might play an important role in monocytes from patients with SJIA.  相似文献   

3.
目的 研究活动性结核患者单核来源巨噬细胞(MDM)趋化因子C-C基序配体5(CCL5)的表达水平.方法 收集309医院的活动性肺结核患者和健康人抗凝血,分离纯化单核细胞并体外培养使其分化为初始型(M0)巨噬细胞.然后分别用细菌脂多糖(LPS)/γ-干扰素(IFN-y)和白细胞介素4刺激24h,使其向促炎症型(M1)巨噬细胞和抗炎症(M2)型巨噬细胞极化,收集细胞并提取总RNA,荧光定量PCR检测CCL5 mRNA的表达.结果 活动性结核患者M0、M1和M2型MDM中CCL5的相对表达量分别为(0.023 ±0.012)、(0.675±0.337)和(0.037 ±0.031),健康人M0、M1和M2型MDM中CCL5的相对表达量分别为(0.051 ±0.026)、(0.727±0.376)和(0.068 ±0.045).与健康人相比,活动性结核患者M0和M2型MDM中CCL5的表达显著降低(U=52.5,P<0.001;t=2.336,P<0.05),而M1型MDM中CCL5的表达没有显著变化(t=0.4307,P>0.05).结论 活动性结核患者MDM细胞中CCL5的表达降低,提示巨噬细胞CCL5参与结核病的感染免疫.  相似文献   

4.
Multinucleate giant cells (MGC) are characteristic of tuberculous granulomas, but their function is not well understood. In a comparative study, we investigated regulation of chemokine secretion by MGC generated using 5 microg/ml ConA and 1000 IU/ml IFN-gamma. After 72-h differentiation of MGC cultures, CXCL8, CCL2 and CCL3 concentrations were 9540+/-110 pg/ml, 11190+/-2210 pg/ml and 19440+/-440 pg/ml respectively all significantly higher than in MDM (P<0.01). There was associated increased chemokine gene expression. M.tb stimulation of MGC, MDM and monocytes increased CXCL8 secretion. M.tb increased monocyte CCL2 secretion, whereas MGC and MDM secreted CCL2 constitutively. CXCL10 secretion was induced in M.tb-stimulated MDM and constitutive in MGC. All cell types responded to M.tb with CCL3 secretion. Monocyte chemokine secretion was associated with increased gene expression, whereas M.tb-stimulated MGC principally upregulated CCL3 gene expression. In summary, differentiating MGC express genes for and secrete chemokines which regulate cell influx to sites of infection. Established MGC will contribute to cell recruitment to granuloma, but this may not depend on exposure to the pathogen.  相似文献   

5.
The observation that human monocytes cultured in the presence of the chemokine CCL18 showed increased survival, led us to profile cytokine expression in CCL18-stimulated versus control cultures. CCL18 caused significantly increased expression of chemokines (CXCL8, CCL2, CCL3 and CCL22), interleukin-10 (IL-10) and platelet-derived growth factor, but no up-regulation of M1 cytokines IL-1β or IL-12. CCL18-stimulated monocytes matured into cells with morphological resemblance to IL-4-stimulated macrophages, and expressed the monocyte marker CD14 as well the M2 macrophage markers CD206 and 15-lipoxygenase, but no mature dendritic cell markers (CD80, CD83 or CD86). Functionally, CCL18-stimulated macrophages showed a high capacity for unspecific phagocytosis and for pinocytosis, which was not associated with an oxidative burst. These findings suggest that CCL18-activated macrophages stand at the cross-roads between inflammation and its resolution. The chemokines that are produced in response to CCL18 are angiogenic and attract various leucocyte populations, which sustain inflammation. However, the capacity of these cells to remove cellular debris without causing oxidative damage and the production of the anti-inflammatory IL-10 will initiate termination of the inflammatory response. In summary, CCL18 induces an M2 spectrum macrophage phenotype in the absence of IL-4.  相似文献   

6.
7.
8.
Macrophages can be polarized into classically (CAM) or alternatively (AAM) activated macrophages with IFN-γ or IL-4, respectively. CAM are associated with type 1 immune responses and are implicated in autoimmunity; AAM are associated with type 2 responses and are implicated in allergic diseases. An impediment in investigating macrophage biology using primary human monocyte derived macrophages is the wide inter-donor heterogeneity and the limited quantity of cells that survive in vitro polarization. To overcome this impediment, we established a protocol to generate CAM and AAM cultures derived from the THP-1 human promonocytic cell line. In this report, we demonstrate that THP-CAM and -AAM express gene and protein markers that define their primary human monocyte derived counterparts, such as IL-1β, CXCL10, and CXCL11 for CAM, and MRC1, IL-4 and CCL22 for AAM. In addition, we demonstrate that STAT6 is selectively activated in THP-AAM which, upon LPS stimulation, have an attenuated or delayed expression of IFN-β, IFN-λ1, and IFN α/β pathway genes compared to their CAM counterparts. Taken together, these findings may help further investigate human diseases associated with the alternatively activated macrophage phenotype using this reproducible in vitro macrophage model.  相似文献   

9.
During microbial infection, macrophages are polarized to classically activated (M1) or alternatively activated (M2) cells in response to microbial components and host immune mediators. Proper polarization of macrophages is critical for bacterial clearance. To study the role of macrophage polarization during Haemophilus ducreyi infection, we analyzed a panel of macrophage surface markers in skin biopsy specimens of pustules obtained from experimentally infected volunteers. Lesional macrophages expressed markers characteristic of both M1 and M2 polarization. Monocyte-derived macrophages (MDM) also expressed a mixed M1 and M2 profile of surface markers and cytokines/chemokines upon infection with H. ducreyi in vitro. Endogenous interleukin 10 (IL-10) produced by infected MDM downregulated and enhanced expression of several M1 and M2 markers, respectively. Bacterial uptake, mediated mainly by class A scavenger receptors, and activation of mitogen-activated protein kinase and phosphoinositide 3-kinase signaling pathways were required for H. ducreyi-induced IL-10 production in MDM. Compared to M1 cells, IL-10-polarized M2 cells displayed enhanced phagocytic activity against H. ducreyi and similar bacterial killing. Thus, IL-10-modulated macrophage polarization may contribute to H. ducreyi clearance during human infection.  相似文献   

10.
Markers of macrophage differentiation in experimental silicosis   总被引:9,自引:0,他引:9  
Macrophages are characterized by a marked phenotypic heterogeneity depending on their microenvironmental stimulation. Beside classical activation (M1), it has been shown that macrophages could follow a different activation pathway after stimulation with interleukin (IL)-4 or IL-13 (M2). Recently, it has been postulated that those "alternatively activated" macrophages may be critical in the control of fibrogenesis. In an experimental model of silicosis, where pulmonary macrophages play a central role, we addressed the question of whether lung fibrosis development would be associated with alternative macrophage activation. As available markers for alternative macrophage activation, type-1 arginase (Arg-1), Fizz1, Ym1/2, and mannose receptor expression were evaluated at the mRNA and/or protein levels at different stages of the disease. Nitric oxide synthase-2 (NOS-2) expression was also examined to investigate the classical counterpart. We found that the expression of Arg-1, Fizz1, and NOS-2 in adherent bronchoalveolar lavage cells was highly up-regulated 3 days after silica administration but returned to control levels during the fibrotic stage of the disease (60 days). By comparing the early response to silica in C57BL/6 and BALB/c mice, we observed that the amplitude of Arg-1 mRNA up-regulation was not associated with the severity of lung fibrosis. Using a model of manganese dioxide particles (resolutive alveolitis), we showed that this early Arg-1 mRNA was not specific to a fibrogenic lung response. Our data indicate that the modifications of M1/M2 marker expression are limited to the early inflammatory stage of silicosis and that the establishment of a fibrotic process is not necessarily associated with M2 polarization.  相似文献   

11.
Studies from a number of laboratories suggest that modulation of cytokine expression plays an integral role in the immunomodulatory activity of opioids. Previously, our laboratory reported that activation of the mu-opioid receptor induced the expression of CCL2, CCL5, and CXCL10, as well as CCR5 and CXCR4. Previous work has also suggested the possibility that TGF-beta may participate in the opioid-induced regulation of immune competence, and in the present study, we set out to determine the role of this cytokine in the control of chemokine and chemokine receptor expression. We found that D-ala(2),N-Me-Phe(4)-Gly-ol(5)enkephalin (DAMGO), a highly selective mu-opioid agonist, induced the expression of TGF-beta1 expression at the protein and mRNA levels. In turn, the addition of TGF-beta1 was found to induce CCL5 and CXCR4 expression but not CCL2, CXCL10, or CCR5. Further analysis showed that pretreatment with neutralizing anti-TGF-beta1 blocked the ability of DAMGO to induce CCL5 or CXCR4. Similarly, pretreatment with cycloheximide prevented CCL5 or CXCR4 mRNA expression, consistent with the observation that DAMGO induction of chemokine and chemokine receptor expression requires newly synthesized TGF-beta1 protein. These results describe a common molecular basis for the activation of chemokine and chemokine receptor expression and may permit the development of strategies to inhibit certain undesirable immunological properties of micro-opioid agonists such as morphine and heroin.  相似文献   

12.
Bone marrow derived macrophages (BM-MΦ) that differentiate from precursor cells can be polarized into classically activated pro-inflammatory (M1) or alternatively activated (M2) states depending upon the cytokine microenvironment. We questioned whether tissue MΦ, such as spleen-derived MΦ (Sp-MΦ), have the ability to differentiate into M1 or M2 cells. We show in response to activation with IFN-gamma (IFN-γ) and lipopolysaccharide (LPS), that the Sp-MΦ readily acquired an M1 status indicated by up-regulation of iNOS mRNA, nitric oxide (NO) production, and the co-stimulatory molecule CD86. Conversely, Sp-MΦ exposed to IL-4 exhibited increased levels of mannose receptor (CD 206), arginase-1 (Arg)-1 mRNA expression, and significant urea production typical of M2 cells. At this stage of differentiation, the M2 Sp-MΦ were more efficient at phagocytosis of cell-associated antigens than their M1 counterparts. This polarization was not indefinite as the cells could revert back to their original state upon the removal of stimuli and exhibited flexibility to convert from M2 to M1. Remarkably, both M1 and M2 Sp-MΦ induced more CD4 expression on their cells surface after stimulation. We also demonstrate that adherent macrophages cultured for a short term in IL-4 enhances ARG-1 and YM-1 mRNA along with increasing urea producing capacity: traits indicative of an M2 phenotype. Moreover, in response to in vivo virus infection, the adherent macrophages obtained from spleens rapidly express iNOS. These results provide new evidence for the polarization capabilities of Sp-MΦ when exposed to pro-inflammatory or anti-inflammatory cytokines.  相似文献   

13.
Macrophages have a central role in innate-immune responses to bacteria. In the present work, we show that infection of human macrophages with Gram-positive pathogenic Streptococcus pyogenes or nonpathogenic Lactobacillus rhamnosus GG enhances mRNA expression of inflammatory chemokine ligands CCL2/monocyte chemoattractant protein-1 (MCP-1), CCL3/macrophage-inflammatory protein-1alpha (MIP-1alpha), CCL5/regulated on activation, normal T expressed and secreted, CCL7/MCP-3, CCL19/MIP-3beta, and CCL20/MIP-3alpha and CXC chemokine ligands CXCL8/interleukin (IL)-8, CXCL9/monokine induced by interferon-gamma (IFN-gamma), and CXCL10/IFN-inducible protein 10. Bacteria-induced CCL2, CCL7, CXCL9, and CXCL10 mRNA expression was partially dependent on ongoing protein synthesis. The expression of these chemokines and of CCL19 was dependent on bacteria-induced IFN-alpha/beta production. CCL19 and CCL20 mRNA expression was up-regulated by IL-1beta or tumor necrosis factor alpha (TNF-alpha), and in addition, IFN-alpha together with TNF-alpha further enhanced CCL19 gene expression. Synergy between IFN-alpha and TNF-alpha was also seen for CXCL9 and CXCL10 mRNA expression. Bacteria-stimulated macrophage supernatants induced the migration of T helper cell type 1 (Th1) cells, suggesting that in human macrophages, these bacteria can stimulate efficient inflammatory chemokine gene expression including those that recruit Th1 cells to the site of inflammation. Furthermore, L. rhamnosus-induced Th1 chemokine production could in part explain the proposed antiallergenic properties of this bacterium.  相似文献   

14.
Murine macrophages are activated by interferon-γ (IFN-γ) and/or Toll-like receptor (TLR) agonists such as bacterial endotoxin (lipopolysaccharide [LPS]) to express an inflammatory (M1) phenotype characterized by the expression of nitric oxide synthase-2 (iNOS) and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-12. In contrast, Th2 cytokines IL-4 and IL-13 activate macrophages by inducing the expression of arginase-1 and the anti-inflammatory cytokine IL-10 in an IL-4 receptor-α (IL-4Rα)-dependent manner. Macrophages activated in this way are designated as “alternatively activated” (M2a) macrophages. We have shown previously that adenosine A2A receptor (A2AR) agonists act synergistically with TLR2, TLR4, TLR7, and TLR9 agonists to switch macrophages into an “M2-like” phenotype that we have termed “M2d.” Adenosine signaling suppresses the TLR-dependent expression of TNF-α, IL-12, IFN-γ, and several other inflammatory cytokines by macrophages and induces the expression of vascular endothelial growth factor (VEGF) and IL-10. We show here using mice lacking a functional IL-4Rα gene (IL-4Rα?/? mice) that this adenosine-mediated switch does not require IL-4Rα-dependent signaling. M2d macrophages express high levels of VEGF, IL-10, and iNOS, low levels of TNF-α and IL-12, and mildly elevated levels of arginase-1. In contrast, M2d macrophages do not express Ym1, Fizz1 (RELM-α), or CD206 at levels greater than those induced by LPS, and dectin-1 expression is suppressed. The use of these markers in vivo to identify “M2” macrophages thus provides an incomplete picture of macrophage functional status and should be viewed with caution.  相似文献   

15.
16.
Plasticity is a hallmark of macrophages, and in response to environmental signals these cells undergo different forms of polarized activation, the extremes of which are called classic (M1) and alternative (M2). Rapamycin (RAPA) is crucial for survival and functions of myeloid phagocytes, but its effects on macrophage polarization are not yet studied. To address this issue, human macrophages obtained from six normal blood donors were polarized to M1 or M2 in vitro by lipopolysaccharide plus interferon-γ or interleukin-4 (IL-4), respectively. The presence of RAPA (10 ng/ml) induced macrophage apoptosis in M2 but not in M1. Beyond the impact on survival in M2, RAPA reduced CXCR4, CD206 and CD209 expression and stem cell growth factor-β, CCL18 and CCL13 release. In contrast, in M1 RAPA increased CD86 and CCR7 expression and IL-6, tumour necrosis factor-α and IL-1β release but reduced CD206 and CD209 expression and IL-10, vascular endothelial growth factor and CCL18 release. In view of the in vitro data, we examined the in vivo effect of RAPA monotherapy (0·1 mg/kg/day) in 12 patients who were treated for at least 1 month before islet transplant. Cytokine release by Toll-like receptor 4-stimulated peripheral blood mononuclear cells showed a clear shift to an M1-like profile. Moreover, macrophage polarization 21 days after treatment showed a significant quantitative shift to M1. These results suggest a role of mammalian target of rapamycin (mTOR) into the molecular mechanisms of macrophage polarization and propose new therapeutic strategies for human M2-related diseases through mTOR inhibitor treatment.  相似文献   

17.
Recent studies have provided evidence that macrophages from Th1-prone mouse strains respond with an M1 profile, and macrophages from Th2-prone mouse strains respond with an M2 profile, characterized by the dominant production of NO or TGF-beta 1, respectively. We have shown that peritoneal macrophages from IL-12p40 gene knockout mice have a bias toward the M2 profile, spontaneously secreting large amounts of TGF-beta 1 and responding to rIFN-gamma with weak NO production. Moreover, IL-12p40KO macrophages are more permissive to Trypanosoma cruzi replication than their wild-type littermate cells. Prolonged incubation with rIL-12 fails to reverse the M2 polarization of IL-12p40KO macrophages. However, TGF-beta 1 is directly implicated in sustaining the M2 profile because its inhibition increases NO release from IL-12p40KO macrophages. IFN-gamma deficiency is apparently not the reason for TGF-beta 1 up-regulation, because rIFN-gamma KO macrophages produce normal amounts of this cytokine. These findings raise the possibility that IL-12 has a central role in driving macrophage polarization, regulating their intrinsic ability to respond against intracellular parasites.  相似文献   

18.
In this study, the early innate cytokine and chemokine response of murine dendritic cells (DCs) and macrophages to Mycobacterium tuberculosis infection was compared. The findings indicate a dissimilar gene expression pattern between the two cell types. The expression of IL-12 and IL-23, important for promoting Th1 and Th17 cells, respectively, was up-regulated only in DCs. In addition, expression of CCL1 and CCL17, which are important in recruitment of T regulatory cells, was DC-specific, as was the expression of the immunosuppressive cytokine IL-10. Macrophages, in contrast, exhibited enhanced expression for CCL2 and CXCL10, chemokines that recruit cells to sites of inflammation, and for mycobactericidal molecules NO synthase 2 and TNF. Together, the findings suggest that a component of the innate DC response is not only programmed toward Th1 priming but is also for controlling the magnitude of the Th1 response, and part of the macrophage response is intended for recruiting cells to the lung and for mycobactericidal functions.  相似文献   

19.
20.
Stromal-derived factor-1 (SDF-1/CXCL12) and its receptor CXCR4 play crucial roles in leukocyte migration and activation, as well as embryogenesis, angiogenesis, cancer and viral pathogenesis. CXCR4 is one of the major human immunodeficiency virus-1 (HIV-1) coreceptors on macrophages. In many tissues macrophages are one of the predominant cell types infected by HIV-1 and act as a reservoir for persistent infection and viral dissemination. In patients infected by HIV-1, blood and tissue levels of transforming growth factor-beta1 (TGF-beta1) are increased. The purpose of this study was to evaluate the effects of TGF-beta1 on CXCR4 expression and function in primary human monocyte-derived macrophages (MDMs) and rat microglia. TGF-beta1 up-regulated CXCR4 and enhanced SDF-1alpha-stimulated ERK1,2 phosphorylation in these cells. The increased CXCR4 expression in human MDMs resulted in increased susceptibility of the cells to entry by dual-tropic CXCR4-using HIV-1 (D-X4). In contrast, TGF-beta1 failed to increase CCR5 expression or infection by a CCR5-using virus in MDMs. Our data demonstrate that TGF-beta1 enhances macrophage responsiveness to SDF-1alpha stimulation and susceptibility to HIV-1 by selectively increasing expression of CXCR4. The results suggest that increased expression of CXCR4 on macrophages may contribute to the emergence of dual-tropic X4 viral variants at later stages of HIV-1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号