首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Does impairment of cholinergic systems represent an important factor in the development of amnesic mild cognitive impairment (aMCI), as a preclinical stage of Alzheimer's disease (AD)? Here we tested the hypothesis that electroencephalographic (EEG) rhythms, known to be modulated by the cholinergic system, may be particularly affected in aMCI patients with lesions along the cholinergic white‐matter tracts. Eyes‐closed resting EEG data were recorded in 28 healthy elderly (Nold) and 57 aMCI patients. Lesions along the cholinergic white‐matter tracts were detected with fluid‐attenuated inversion recovery sequences on magnetic resonance imaging. The estimation of the cholinergic lesion was performed with a validated semi‐automatic algorithm pipeline after registration to a stereotactic template, image integration with stereotactic masks of the cholinergic tracts, and normalization to intracranial volume. The aMCI patients were divided into two groups of high (MCI Ch+; N = 29; MMSE = 26.2) and low cholinergic damage (MCI Ch?; N = 28; MMSE = 26.6). EEG rhythms of interest were delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20 Hz), and beta 2 (20–30 Hz). Cortical EEG generators were estimated by LORETA software. As main results, (i) power of occipital, parietal, temporal, and limbic alpha 1 sources was maximum in Nold, intermediate in MCI Ch?, and low in MCI Ch+ patients; (ii) the same trend was true in theta sources. These results are consistent with the hypothesis that damage to the cholinergic system is associated with alterations of EEG sources in aMCI subjects. Hum Brain Mapp 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
3.
Cortical gray matter volume and resting state cortical electroencephalographic rhythms are typically abnormal in subjects with amnesic mild cognitive impairment (MCI) and Alzheimer's disease (AD). Here we tested the hypothesis that in amnesic MCI and AD subjects, abnormalities of EEG rhythms are a functional reflection of cortical atrophy across the disease. Eyes‐closed resting state EEG data were recorded in 57 healthy elderly (Nold), 102 amnesic MCI, and 108 AD patients. Cortical gray matter volume was indexed by magnetic resonance imaging recorded in the MCI and AD subjects according to Alzheimer's disease neuroimaging initiative project ( http://www.adni‐info.org/ ). EEG rhythms of interest were delta (2–4 Hz), theta (4–8 Hz), alpha1 (8–10.5 Hz), alpha2 (10.5–13 Hz), beta1 (13–20 Hz), beta2 (20–30 Hz), and gamma (30–40 Hz). These rhythms were indexed by LORETA. Compared with the Nold, the MCI showed a decrease in amplitude of alpha 1 sources. With respect to the Nold and MCI, the AD showed an amplitude increase of delta sources, along with a strong amplitude reduction of alpha 1 sources. In the MCI and AD subjects as a whole group, the lower the cortical gray matter volume, the higher the delta sources, the lower the alpha 1 sources. The better the score to cognitive tests the higher the gray matter volume, the lower the pathological delta sources, and the higher the alpha sources. These results suggest that in amnesic MCI and AD subjects, abnormalities of resting state cortical EEG rhythms are not epiphenomena but are strictly related to neurodegeneration (atrophy of cortical gray matter) and cognition. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Diffusion tensor MRI‐based tractography was used to investigate white matter (WM) changes in the major limbic (i.e., fornix and cingulum) and cortico‐cortical association pathways [i.e., the uncinate fasciculus, the inferior fronto‐occipital fasciculus, the inferior longitudinal fasciculus (ILF), the superior longitudinal fasciculus, and the corpus callosum] in 25 Alzheimer's disease (AD) patients, 19 amnestic mild cognitive impairment (aMCI) patients, and 15 healthy controls (HC). Mean diffusivity (MD), fractional anisotropy (FA), as well as axial (DA) and radial (DR) diffusivities were measured for each tract, using an atlas‐based tractography approach. The association of WM tract integrity with hippocampal volume was also assessed. MD values were significantly different among groups in all WM tracts (P values ranging from 0.002 to 0.03), except in the fornix (P = 0.06) and the inferior fronto‐occipital fasciculus (P = 0.09). Conversely, FA was significantly different among groups in the fornix only (P = 0.02). DA values were significantly different among groups in all WM tracts (P values ranging from 0.001 to 0.01), except in the fornix (P = 0.13) and the cingulum (P = 0.29). Significantly different DR values among groups were found in the fornix (P = 0.02) and the ILF (P = 0.01). In the fornix and cingulum, DR was significantly more increased than DA in both patient groups compared to HC. No difference in DA versus DR was found in cortico‐cortical WM tracts. DA values in the fornix were significantly correlated with the hippocampal volume. This study demonstrates a different pattern of WM involvement in the limbic and cortico‐cortical association pathways in aMCI and AD patients. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Previous evidence has shown that resting eyes-closed cortical alpha rhythms are higher in amplitude in mild cognitive impairment (MCI) than Alzheimer's disease (AD) subjects (Babiloni et al. [2006a]: Human Brain Mapp 27:162-172; [2006b]: Clin Neurophysiol 117:252-268; [2006c]: Neuroimage 29:948-964; [2006d]: Ann Neurol 59:323-334; [2006e]: Clin Neurophysiol 117:1113-1129; [2006f]: Neuroimage 31:1650-1665). This study tested the hypothesis that, in amnesic MCI subjects, high amplitude of baseline cortical alpha rhythms is related to long-term stability of global cognition on clinical follow-up. Resting electroencephalographic (EEG) data were recorded in 100 amnesic MCI subjects during eyes-closed condition. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), and beta2 (20-30 Hz). Cortical EEG sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Global cognition was indexed by mini mental state evaluation (MMSE) score at the time of EEG recordings (baseline) and about after 1 year. Based on the MMSE percentage difference between baseline and 1-year follow-up (MMSEvar), the MCI subjects were retrospectively divided into three arbitrary groups: DECREASED (MMSEvar ≤ -4%; N = 43), STABLE (MMSEvar ≈ 0; N = 27), and INCREASED (MMSEvar ≥ +4%; N = 30). Subjects' age, education, individual alpha frequency, gender, and MMSE scores were used as covariates for statistical analysis. Baseline posterior cortical sources of alpha 1 rhythms were higher in amplitude in the STABLE than in the DECREASED and INCREASED groups. These results suggest that preserved resting cortical neural synchronization at alpha frequency is related to a long-term (1 year) stable cognitive function in MCI subjects. Future studies should use serial MMSE measurements to confirm and refine the present results.  相似文献   

6.
This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5‐T MRI. CSF Aβ42 and total tau were measured (n = 353). Brain and hippocampal loss were quantified from serial MRI using the boundary shift integral (BSI). Multiple linear regression models assessed the relationships between WMHs and hippocampal and brain atrophy rates. Models were refitted adjusting for (a) concurrent brain/hippocampal atrophy rates and (b) CSF Aβ42 and tau in subjects with CSF data. WMH burden was positively associated with hippocampal atrophy rate in controls (P = 0.002) and MCI subjects (P = 0.03), and with brain atrophy rate in controls (P = 0.03). The associations with hippocampal atrophy rate remained following adjustment for concurrent brain atrophy rate in controls and MCIs, and for CSF biomarkers in controls (P = 0.007). These novel results suggest that vascular damage alongside AD pathology is associated with disproportionately greater hippocampal atrophy in nondemented older adults. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

7.
It is an open issue if vascular and Alzheimer's disease (AD) lesions represent additive factors in the development of mild cognitive impairment (MCI), as a preclinical stage of Alzheimer's disease (AD) at group level. In the present study, we tested the hypothesis that electroencephalographic (EEG) alpha rhythms, which are affected (i.e. decreased in amplitude) by AD processes, are relatively preserved in MCI subjects in whom the cognitive decline is mainly explained by white-matter vascular load. Resting EEG was recorded in 40 healthy elderly (Nold), 80 MCI, and 40 AD subjects. In the MCI subjects, white-matter vascular load was quantified based on MRI (0-30 Wahlund visual rating scale). EEG rhythms of interest were delta (2-4Hz), theta (4-8Hz), alpha 1 (8-10.5Hz), alpha 2 (10.5-13Hz), beta 1 (13-20Hz), and beta 2 (20-30Hz). Low resolution electromagnetic source tomography (LORETA) was used for EEG source analysis. As expected, we observed that alpha 1 sources in parietal, occipital, and temporal areas were lower in amplitude in the AD and MCI subjects than in the Nold subjects, whereas the amplitude of wide delta sources was higher in the AD than in the Nold and MCI subjects. As novel results, the amplitude of parietal, occipital, and temporal alpha 1 sources was higher in the MCI V+ (high vascular load; N=42; MMSE=26) than MCI V- group (low vascular load; N=37; MMSE=26.7). Furthermore, a weak but significant (p<0.05) positive statistical correlation was found between the parietal alpha 1 sources and the score of Wahlund scale across all MCI subjects (i.e. the more severe white-matter lesions, the higher parietal alpha source power). The present results are in line with the additive model of cognitive impairment postulating that this arises as the sum of neurodegenerative and cerebrovascular lesions.  相似文献   

8.
White matter abnormalities represent early neuropathological events in neurodegenerative diseases such as Alzheimer''s disease (AD), investigating these white matter alterations would likely provide valuable insights into pathological changes over the course of AD. Using a novel mathematical framework called “Director Field Analysis” (DFA), we investigated the geometric microstructural properties (i.e., splay, bend, twist, and total distortion) in the orientation of white matter fibers in AD, amnestic mild cognitive impairment (aMCI), and cognitively normal (CN) individuals from the Alzheimer''s Disease Neuroimaging Initiative 2 database. Results revealed that AD patients had extensive orientational changes in the bilateral anterior thalamic radiation, corticospinal tract, inferior and superior longitudinal fasciculus, inferior fronto‐occipital fasciculus, and uncinate fasciculus in comparison with CN. We postulate that these orientational changes of white matter fibers may be partially caused by the expansion of lateral ventricle, white matter atrophy, and gray matter atrophy in AD. In contrast, aMCI individuals showed subtle orientational changes in the left inferior longitudinal fasciculus and right uncinate fasciculus, which showed a significant association with the cognitive performance, suggesting that these regions may be preferential vulnerable to breakdown by neurodegenerative brain disorders, thereby resulting in the patients'' cognitive impairment. To our knowledge, this article is the first to examine geometric microstructural changes in the orientation of white matter fibers in AD and aMCI. Our findings demonstrate that the orientational information of white matter fibers could provide novel insight into the underlying biological and pathological changes in AD and aMCI.  相似文献   

9.
目的 探讨脑白质病变(WML)与轻度认知功能障碍(MCI)的关系.方法 71例WML患者根据头颅MRI检查分为轻度组(27例)、中度组(21例)、重度组(23例),39例无WML的对照者为对照组.对入组者进行神经心理学量表检查;比较各组MCI的患病率,分析WML与MCI的相关性.结果 WML轻、中、重度组的MCI患病率明显高于对照组(均P<0.01);WML中、重度组简易精神状态检查(MMSE)及蒙特利尔认知评估量表(MoCA)评分显著低于WML轻度组和对照组(均P<0.01);随着WML程度的加重,除了抽象能力评分,MoCA其他各认知领域的评分均显著降低(均P<0.05).多元线性相关分析显示,WML程度与MMSE、MoCA总分及除抽象思维能力的各认知域评分呈负相关(r=-0.252 ~-0.782,均P<0.01).结论 WML可导致MCI,其对认知功能障碍的影响与WML的程度有关.  相似文献   

10.
BACKGROUND: Many studies have suggested that one possible etiology of mild cognitive impairment is small vessel cerebrovascular disease, which is associated with small subcortical infarcts and white matter abnormalities. These white matter changes have been detected as white matter hyperintensity (WMH) using magnetic resonance imaging. WMH may be associated with frontal lobe dysfunction. OBJECTIVE: To examine white matter changes in mild cognitive impairment patients of different subtypes, and to evaluate the correlation between white matter changes and neuropsychological characteristics, demographic information, vascular risk factors, and mild cognitive impairment subtypes. DESIGN, TIME AND SETTING: The neurophysiological, comparison study was performed at the Department of Neurology Memory Clinic, Ulsan University Hospital, South Korea, between March 2007 and March 2008. PARTICIPANTS: Out of a total of 83 subjects with clinically diagnosed mild cognitive impairment at the out-patient clinic, 3 subjects with severe WMH were excluded. A total of 80 subjects were included in this study. No patients suffered from cognitive impairment induced by neurological diseases, mental disorders, or somatic diseases. In accordance with magnetic resonance imaging results, the patients were assigned to two subtypes: 56 subjects without WMH and 24 subjects with WMH. METHODS: All patients were subjected to a standard neuropsychological battery using the Korean version of the Mini-Mental State Examination, Clinical Dementia Rating, and comprehensive Seoul Neuropsychological Screening Battery. The Clinical Dementia Rating reflected general cognitive function of patients. Results from the Seoul Neuropsychological Screening Battery reflected attention, language function, visuospatial function, verbal memory, nonverbal memory, long-term memory, and frontal/executive function. Magnetic resonance imaging was used to map changes in the brain. MAIN OUTCOME MEASURES: The association between various white matter changes and neuropsychological characteristics, demographic information, vascular risk factors, and mild cognitive impairment subtypes was measured, based primarily on neuropsychological profiles using statistical methods. RESULTS: WMH was significantly associated with neuropsychological characteristics in MCI patients (P 〈 0.05 or P 〈 0.01), in particular with frontal/executive dysfunction. WMH was significantly correlated with age (P = 0.022) and vascular risk factors (P = 0.006), independent of gender and MCI subtypes. CONCLUSION: WMH was significantly associated with frontal/executive dysfunction in mild cognitive impairment.  相似文献   

11.
轻度认知功能障碍(MCI)目前已经成为严重影响老年人健康的疾病,早期具有可逆性。近年来弥散张量成像(DTI)以其定量显示脑白质纤维束的优势,越来越多的应用于临床,成为了研究的热点。目前研究表明,MCI患者海马、穹隆、扣带回和胼胝体的DTI指标变化明显,可用于MCI的早期识别和病情评估及预测,且多个指标联用可能增加其准确性。MCI患者DTI表现与认知功能的下降程度具有相关性,尤其与记忆功能的相关性较为确定。MCI亚型中,遗忘型MCI (aMCI)发展为阿尔茨海默病(AD)的风险更高,其部分各向异性(FA)值越低、平均弥散度(ADC)值越高预示着转化为AD的可能性越大;DTI技术对AD与MCI患者脑白质的差异较为灵敏,AD的脑白质病变范围更广、程度更重。但目前关于DTI在MCI中的应用尚存在诸多问题,尚需进一步研究。  相似文献   

12.
13.
Our aim in this study was to explore the neural substrates of executive function in frontal and nonfrontal white matter using diffusion tensor imaging (DTI). We studied the relationship between executive dysfunction and DTI measurements on 13 subjects with amnesic mild cognitive impairment (aMCI), 11 subjects with early Alzheimer's disease (AD), and 16 control subjects. All participants underwent an examination of their intelligence, memory, and executive function and were subjected to DTI. Both aMCI and early AD subjects showed executive function impairment with differential performance in frontal‐related behaviors. Both aMCI and early AD subjects showed increased mean diffusivity in the genu of the corpus callosum and left frontal periventricular white matter (PVWM), whereas subjects with early AD showed an additional decrease in the fractional anisotropy of bilateral frontal PVWM and in the genu of the corpus callosum. The frontal PVWM was associated with performance on the Verbal Fluency Test, the Wisconsin Card Sorting Test (WCST), and Part B of the Trail Making Test. The parietal PVWM was associated with perseverative errors on the WCST and Part A of the Trail Making Test. In summary, executive function was impaired in subjects with aMCI and early AD and was associated with frontal and parietal PVWM changes. These changes may be due to early AD degeneration of the lateral cholinergic projections or to early change of the superior longitudinal fasciculus. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
This study aimed at elucidating whether (a) brain areas associated with motor function show a change in functional magnetic resonance imaging (fMRI) signal in amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD), (b) such change is linear over the course of the disease, and (c) fMRI changes in aMCI and AD are driven by hippocampal atrophy, or, conversely, reflect a nonspecific neuronal network rewiring generically associated to brain tissue damage. FMRI during the performance of a simple motor task with the dominant right‐hand, and structural MRI (i.e., dual‐echo, 3D T1‐weighted, and diffusion tensor [DT] MRI sequences) were acquired from 10 AD patients, 15 aMCI patients, and 11 healthy controls. During the simple‐motor task, aMCI patients had decreased recruitment of the left (L) inferior frontal gyrus compared to controls, while they showed increased recruitment of L postcentral gyrus and head of L caudate nucleus, and decreased activation of the cingulum compared with AD patients. Effective connectivity was altered between primary sensorimotor cortices (SMC) in aMCI patients vs. controls, and between L SMC, head of L caudate nucleus, and cingulum in AD vs. aMCI patients. Altered fMRI activations and connections were correlated with the hippocampal atrophy in aMCI and with the overall GM microstructural damage in AD. Motor‐associated functional cortical changes in aMCI and AD mirror fMRI changes of the cognitive network, suggesting the occurrence of a widespread brain rewiring with increasing structural damage rather than a specific response of cognitive network. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
The aim of this study was to investigate changes in brain activity associated with mild cognitive impairment (MCI) in a large sample of nondemented Parkinson's disease (PD) patients and its relationship with specific neuropsychological deficits. Electroencephalography (EEG) and neuropsychological assessment were performed in a sample of 135 nondemented PD patients and 44 healthy controls. All patients underwent a neuropsychological battery to assess global cognitive function. Patients were classified according to their cognitive status as PD patients with MCI (n = 61) and without MCI (n = 74). EEG data were used to analyze the relative band power parameters for the following frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz) and beta (13–30 Hz). In addition, relative band power parameters were compared between groups and examined for correlations with neuropsychological performance. The relative theta band powers in three regions (O1, T5 and F4) exhibited statistically significant increases in PD patients with MCI. Beta band powers also exhibited obvious decreases in five regions (T5, T6, P3, P4 and C3) in the PD-MCI group compared with the normal control group. Furthermore, correlation analyses revealed that attention, visuospatial and executive functions were associated with theta power in local regions, mainly in the frontal region (F4). The present study demonstrated that changes in brain activities limited to distinct cognitive domains, especially the theta power in the frontal region, could serve as an electrophysiological marker of cognitive impairment in nondemented PD patients.  相似文献   

17.
18.
Patients with Parkinson''s disease with mild cognitive impairment (PD‐M) progress to dementia more frequently than those with normal cognition (PD‐N), but the underlying neurobiology remains unclear. This study aimed to define the specific morphological brain network alterations in PD‐M, and explore their potential diagnostic value. Twenty‐four PD‐M patients, 17 PD‐N patients, and 29 healthy controls (HC) underwent a structural MRI scan. Similarity between interregional gray matter volume distributions was used to construct individual morphological brain networks. These were analyzed using graph theory and network‐based statistics (NBS), and their relationship to neuropsychological tests was assessed. Support vector machine (SVM) was used to perform individual classification. Globally, compared with HC, PD‐M showed increased local efficiency (p = .001) in their morphological networks, while PD‐N showed decreased normalized path length (p = .008). Locally, similar nodal deficits were found in the rectus and lingual gyrus, and cerebellum of both PD groups relative to HC; additionally in PD‐M nodal deficits involved several frontal and parietal regions, correlated with cognitive scores. NBS found that similar connections were involved in the default mode and cerebellar networks of both PD groups (to a greater extent in PD‐M), while PD‐M, but not PD‐N, showed altered connections involving the frontoparietal network. Using connections identified by NBS, SVM allowed discrimination with high accuracy between PD‐N and HC (90%), PD‐M and HC (85%), and between the two PD groups (65%). These results suggest that default mode and cerebellar disruption characterizes PD, more so in PD‐M, whereas frontoparietal disruption has diagnostic potential.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号