首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The greater potency of morphine-6-glucuronide (M6G) as well as the inactivity of morphine-3-glucuronide (M3G) with respect to the antinociceptive effects of the parent molecule, morphine (MOR), have been well established. It has been suggested that M3G is an antagonist of MOR's antinociceptive and respiratory depressive effects. The present study addressed the central nervous system (CNS) interaction of these opiate metabolites on their metabolic and hormonal effects. Whole body glucose kinetics were assessed on conscious, chronically catheterized, unrestrained rats. M3G (5 μg) or H2O (5 μl) was injected intracerebroventricularly (i.c.v.) 15 min prior to the bolus administration of H2O (5 μl), M6G (1 μg), or MOR (80 μg). i.c.v. M3G (5 μg) resulted in behavioral excitation, hyperglycemia (+50%), stimulation of glucose rate of appearance (Ra; +100%), glucose rate of disappeaance (Rd; +70%), and metabolic clearance rate (MCR; +33%) within 30 min after injection with no alterations in hormone concentrations. i.c.v. M6G and MOR produced progressive hyperglycemia with significantly high catecholamine and corticosterone levels. M3G pretreatment resulted in enhanced elevations in plasma glucose levels (+52% and +18%), plasma lactate (+138% and +108%), norepinephrine (+96% and +30%), and epinephrine (+62% and +67%) in response to both i.c.v. MOR and M6G administration. These findings suggest a non-opiate and non-hormonal mechanism for M3G-induced hyperglycemia. In contrast, the metabolic and hormonal responses to i.c.v. M6G and MOR are associated with elevations in catecholamine and corticosterone levels, which are remarkably enhanced by M3G pretreatment, most likely through accelerated catecholamine release. Our findings suggest a modulatory role for MOR glucuronidation, not only by rendering it inactive, as in the case of M3G, but by an interplay of the metabolic effects of the parent molecule and its metabolite  相似文献   

2.
To assess the contribution of the active metabolite of morphine, morphine-6-glucuronide (M6G), to the analgesic effect of systemically administered morphine, experiments were carried out on rats under urethane anesthesia in which nociceptive activity was evoked by electrical stimulation of afferent C fibers in the sural nerve and recorded from single neurons in the ventrobasal complex of the thalamus. Intravenous (i.v.) injections of morphine completely blocked the activity at doses of 500 and 1000 μg/kg, the ED,, being 44 μg/kg. M6G administered by i.v. injection reduced the evoked nociceptive activity only by about 40% at 80 and 160 μg/kg, the ED50 being 6 μg/kg. After intrathecal (i.t.) injection, morphine produced maximum depression of 55% of the control activity at 20 μg the ED50 is 18 μg. M6G injected i.t. produced maximum depression of 40% at doses ranging from 0.2 to 10 μg. The ED50 of M6G i.t. is below 0.2 μg. The effects of morphine and M6G were reversed by naloxone (200 μg/kg i.v.). The results show that M6G is more potent than morphine, regardless of the route of administration, while morphine is more effective when injected i.v. Due to the low efficacy of M6G, it seems unlikely that this glucuronide contributes substantially to the analgesic effect of morphine when renal function is normal. The results also make evident that the maximum effect of morphine results from an action at spinal and supraspinal sites.  相似文献   

3.
Morphine-6-sulfate (M6S) and codeine-6-sulfate (C6S) are mu-selective opiates which have been isolated from brain. M6S is an effective analgesic, with a 30-fold greater potency than morphine in the mouse radiant heat tailflick assay and similar to the active morphine metabolite morphine-6beta-glucuronide (M6G). M6S analgesia is reversed by 3-methoxynaltrexone at low antagonist doses which are inactive against morphine, suggesting that M6S may be acting through the same mechanisms as M6G. Consistent with this possibility, antisense mapping of the MOR-1 clone revealed that M6S analgesia was lowered by probes targeting exon 2 and not by targeting exon 1, a sensitivity profile similar to that of M6G and not morphine. C6S also has analgesic activity at doses approximately 10-fold greater than M6S. However, its characterization was impeded by the appearance of seizures at doses below full analgesic activity. Thus, M6S is a potent analgesic with pharmacological properties similar to M6G. C6S has limited utility due to its high level of toxicity.  相似文献   

4.
The profound and prolonged effects of morphine in patients with renal dysfunction have been associated with high plasma levels of the opiate metabolites morphine-6-glucuronide (M6G) and morphine-3-glucuronide (M3G) rather than an increased concentration of morphine. We present here electrophysiological evidence to suggest that potent spinal antinociception can be produced by both M6G and normorphine, another metabolite of morphine. Extracellular recordings of Aβ- and C-fibre-evoked responses of convergent dorsal horn neuroneswere made in the halothane anaesthetised rat. M6G elicited dose-dependent, naloxone-reversible inhibitions of C-fibre-evoked responses which were completely suppressed (8% of control) by 2 μg M6G whereas Aβ-fibre-evoked responses were only reduced to 57% of controls. The ED50 for the effects of M6G on C-fibre-evoked activity was calculated to be 0.53 μg. Systematic administration of M6G (2 mg/kg) also profoundly reduced noxious evoked neuronal activity. intrathecal normorphine was less potent than M6G but complete selective inhibitions of C-fibre-evoked responses could be elicited by 25 μg and the ED50 was calculated to be 2.68 μg. No such inhibitions were observed following administration of M3G. A comparison with intrathecal morphine in the same preparation reveals that normorphine is equipotent with morphine whereas M6G is 13-fold more potent. These results therefore confirm that M6g and normorphine might be significant contributers to opiate analgesia after administration of morphine.  相似文献   

5.
We examined the role of central neuroglucopenia, induced by intracerebroventricular (i.c.v.) administration of 2-deoxyglucose (2-DG), on glucose and amino acid kinetics in conscious dogs. Group 1 received i.c.v. 2-DG at 2.5 mg·kg−1·min−1 for 15 min. Group 2 received an equal intravenous (i.v.) amount of 2-DG. In the i.c.v. group, plasma glucose levels rose from 106 ± 4 mg/dl to a peak of 204 ±12 mg/dl by 90 min. Blood lactate increased from 689 ± 1 to 2,812 ± 5 μ mol/1 and blood alanine did not change from basal (256 ± 41 μ mol/1). The rate of hepatic glucose production, determined isotopically, was increased 2-fold over basal (P < 0.01). Significant increases (P < 0.001) over basal were also noted in plasma epinephrine, norepinephrine, insulin, glucagon and cortisol. Leucine rate of appearance (Ra) showed a 30% decrease from basal to2.4 ± 0.05 μmol·kg−1 ·min−1 (P < 0.01). In group 2 plasma glucose levels were not altered but plasma cortisol and glucagon showed a modest transient increase above basal (P < 0.05). No significant changes were noted in amino acid kinetics. These findings suggest that periventricular neuroglucopenia, in the absence of peripheral glucose deprivation, is accompanied by hyperglycemia secondary to enhanced hepatic glucose production with decreased glucose utilization and by increased hepatic uptake of gluconeogenic precursors. These, however, were not accompanied by increased whole body proteolysis as was previously seen with generalized glucopenia resulting from insulin-induced hypoglycemia.  相似文献   

6.
The present study examined whether morphine and morphine-6β-glucuronide (M6G) analgesia on the tail-flick and jump tests differed in potency in the periaqueductal gray, the locus coeruleus or the rostral ventromedial medulla. Morphine and M6G significantly and dose-dependently elicited analgesia on both nociceptive tests from each site. Site-specific differences were observed in the potency of M6G, but not morphine analgesia on both tests. Periaqueductal gray placements displayed analgesic ED50s on the tail-flick (morphine: 2.1 μg, M6G: 0.2 μg) and jump (morphine: 2.2 μg, M6G: 0.4 μg) tests with respective potency ratios of 12.9 and 6.5. Locus coeruleus placements displayed analgesic ED50s on the tail-flick (morphine: 1.7 μg, M6G: 0.1 μg) and jump (morphine: 3.4 μg, M6G: 0.2 μg) tests with respective potency ratios of 15.9 and 15.1. Rostral ventromedial placements displayed analgesic ED50s on the tail-flick (morphine: 1.4 μg, M6G: 0.06 μg) and jump (morphine: 1.9 μg, M6G: 0.08 μg) tests with potency ratios of 21.9 on both tests. The greater analgesic sensitivity of the rostral ventromedial medulla to M6G may be due to either pharmacodynamic (splice variants of the MOR-1 gene) and/or pharmacokinetic (lipid solubility) factors.  相似文献   

7.
The 2-deoxy- -[1-14C]glucose (2-DG) method was used to examine the effects of morphine sulfate (MS) on local cerebral metabolic rates for glucose (LCMRglu) in male F-344 rats required to turn a wheel manipulandum in order to escape from nociceptive footshock. Four groups of rats were studied: control-saline, control-MS, footshock-saline and footshock-MS. All animals were administered MS (4 mg/kg, s.c.) or saline 7 days, 3 days and 10 min prior to the start of the 2-DG experiment. In agreement with its well-known effect on the emotional component of pain, MS administered to rats exposed to footshock caused a significant decrease in LCMRglu compared to footshock-saline rats in limbic structures such as the diagonal band of Broca, lateral septum, bed nucleus of the stria terminalis, horizontal limb of the diagonal band, habenular complex and medial amygdala. Additionally, two components of the midline thalamus with extensive connections with the limbic system, the paraventricular and paratenial thalamic nuclei, were similarly affected by morphine. Footshock caused an overall increase in cerebral metabolism as 52 of 73 measured structures demonstrated increases in activity compared to saline control; however, statistically significant effects in specific structures were limited. These results identify limbic and midline thalamic structures important in morphine-induced analgesia and indicate that footshock tends to have a generalized stimulatory effect on LCMRglu.  相似文献   

8.
Lewis rats are more likely to self-administer various drugs of abuse than Fischer rats. Here these two strains of rats were compared with regard to basal brain opioid peptide levels and the response to chronic morphine treatment and to naloxone-precipitated withdrawal. Lewis rats had lower basal dynorphin peptides in the substantia nogra, striatum (not Leu-enkephalinArg6) and VTA (not dynorphin B) and the pituitary gland. Leu-enkephalinArg6 levels were also lower in these structures (with the exception of striatum which had higher levels) and in the nucleus accumbens. There were also strain differences in the response to chronic morphine treatment; in the nucleus accumbens, morphine treatment increased dynorphin A levels in Fischer rats only, in the ventral tegmental area effects were opposite with increased dynorphin levels in Fischer and decreased levels in Lewis rats, in the hippocampus dynorphin levels were markedly reduced in Lewis rats only. In Fischer rats, chronic morphine strongly affected peptide levels in the substantia nigra and striatum, whereas Lewis rats responded less in these areas. Leu-enkephalin, which derives from both prodynorphin and proenkephalin, and Met-enkephalin, which derives from proenkephalin, were effected by chronic morphine mainly in Fischer rats, increasing levels in most of the brain areas examined. The results in this study show (1) strain differences in basal levels of prodynorphin-derived opioid peptides, (2) the prodynorphin system to be differently influenced by morphine in Lewis rats than in Fischer rats and 3) the proenkephalin system to be influenced by chronic morphine in brain areas related to reward processes only in Fischer rats.  相似文献   

9.
The prevalence of hypertension in middle age correlates with impaired autonomic regulation and as norepinephrinergic neurons decline with increasing age, and this reduction may contribute to this impairment. Central hypocretin-activated norepinephrinergic neurons contribute to sympathetic regulation. In the present study we compared sympathoadrenal effects of intracerebroventricular (i.c.v.) hypocretin-1(5 nmol) between young-adult (12-14 weeks) and middle-aged (12-14 months) rats. Arterial blood pressure, heart rate and plasma catecholamines were assessed under pentobarbital anesthesia. In addition, we compared hypocretin-1 and K(+)-evoked norepinephrine release from the cerebrocortical slices prepared from young-adult and middle-aged rats. We also examined whether the novel hypocretin receptor-1 antagonist (SB-334867) could reverse these hypocretin-1 effects both in vivo and in vitro. I.c.v. hypocretin-1 significantly increased blood pressure by some 7%, heart rate by 9% and plasma norepinephrine concentrations by 100% in young-adult rats. In middle-aged rats these parameters did not change. Plasma epinephrine did not increase in either group. There was a significant correlation between changes in mean arterial pressure and plasma norepinephrine. Similarly, hypocretin-1 evoked norepinephrine release from cerebrocortical slices prepared from young-adult rats was significantly higher than that of middle-aged rats whilst K(+)-evoked release did not differ between the groups. SB-334867 significantly attenuated hypocretin-1-increased blood pressure and both in vivo and in vitro norepinephrine release. The present data suggest that hypocretinergic neurons may contribute to the regulation of central but not adrenal sympathetic activity. Moreover, sympathetic regulation by hypocretinergic neurones may disappear in middle-age in rats.  相似文献   

10.
This study had two primary objectives:
1. (1) to develop a new physiological method for investigating opiate action, based on the effect of morphine on evoked impulse activity in small neuronal populations, and
2. (2) to test the hypothesis that morphine's effects would vary with response site (caudate and central grey), and with stimulation site (sciatic nerve, substantia nigra). Bipolar recordings were made from curarized, artificially respired rats. Morphine increased stimulus thresholds for sciatic evoked responses in both brain areas, with especially marked effects in the central grey. Sciatic stimulation produced phasic (transient) responses in both brain areas to mild stimulation and tonic (sustained) responses to more intense stimulation; the tonic responses were depressed more effectively than phasic responses. Substantia nigra stimulation produced only tonic responses in both areas, and morphine did not alter these stimulation thresholds. Morphine effects were blocked and reversed by naloxone. Thus, clear differential depressive effects of morphine were demonstrated in terms of function (phasic vs. tonic responses), in terms of stimulus site, and in terms of responding site.
Keywords: Morphine; Naloxone Nerve impulses; Caudate Central grey; Evoked responses; Sciatic nerve; Substantia nigra  相似文献   

11.
Preclinical evidence suggests there is a link between the responsiveness to stress and the propensity to self-administer drugs of abuse. Our previous findings, for example, have shown a significant positive correlation between the locomotor response to novelty and the acquisition of morphine self-administration in Lewis (LEW), Fischer 344 (F344) and ACI inbred rat strains. As an extension of this work, we now report on the neuroendocrine responses (i.e., corticosterone and prolactin secretion) evoked by morphine administration in these same inbred strains. Male LEW, F344, and ACI rats were surgically prepared with indwelling jugular catheters 7 days prior to the study. Following a habituation period, rats were treated with i.p. saline or morphine (1, 5 or 10 mg/kg). Repeated blood samples were withdrawn via the catheters immediately before and at 20, 40, 60 and 120 min after injection. Plasma samples were assayed for hormone levels by radioimmunoassay. No differences in baseline corticosterone levels were found across strains. There was a significant effect of genotype on the corticosterone response to saline injection (i.e., mild stress), with F344 rats exhibiting sustained elevations in corticosterone compared to LEW and ACI rats. Morphine-induced stimulation of corticosterone release differed significantly across strains, and in this case LEW rats displayed a reduced sensitivity to morphine. Similar to the corticosterone results, LEW rats also had blunted prolactin responses to morphine when compared to F344 rats. Our data demonstrate that genotype is an important factor modulating the neuroendocrine sensitivity to morphine. It is noteworthy that LEW rats acquire self-administration more rapidly than F344 or ACI rats, yet LEW rats display reduced corticosterone responses to stress and morphine. Taking into account the particular conditions of this study (high i.p. doses used here vs. low i.v. doses in self-administration studies), our results do not suggest that corticosterone response to stress and morphine is related to vulnerability to intravenous opiate self-administration. The data, however, are consistent with the idea of that genetic factors might influence the sensitivity to the morphine-induced effects of glucocorticoids across these inbred strains.  相似文献   

12.
Morphine and morphine-6-glucuronide, a morphine metabolite, have been identified and quantified in Mytilus edulis pedal ganglia at a level of 2.67+/-0.44 and 0.98+/-0.14 ng/ganglia, respectively by high performance liquid chromatography coupled to electrochemical detection. These opiate alkaloids were further identified by both gas-chromatography mass spectrometry and nanoflow electrospray ionization double quadrupole orthogonal acceleration Time of Flight mass spectrometry. In animals that were starved, the morphine level rose to 6.38+/-0.88 ng/ganglion and the morphine 6-glucoronide rose to a level of 23.0+/-3.2 ng/ganglion after 30 days. These studies demonstrate that opiate alkaloids are present as naturally occurring signal molecules whose levels respond to stress, i.e., starvation. Opiate alkaloids were not found in the animal's incubation media or food, demonstrating their synthesis occurred in the respective tissue. These new method of opiate alkaloid detection, conclusively proves that morphine and morphine-6-glucuronide are present in animal tissues.  相似文献   

13.
In rodents, noncompetitive and competitive NMDA receptor antagonists have been shown to attenuate and, in some cases, reverse tolerance to the analgesic effects of morphine. However, the ability of these same excitatory amino acid (EAA) receptor antagonists to modulate morphine dependence is controversial, and very little is known about the role of AMPA receptors in morphine dependence. LY293558, a novel, systemically active, competitive AMPA receptor antagonist and the NMDA receptor antagonists, MK-801 and/or LY235959, were evaluated in tolerant or dependent CD-1 mice. In mice rendered tolerant by morphine injection or pellet implantation, continuous s.c. infusion of LY293558 (60 mg/kg per 24 h) or MK-801 (1 mg/kg per 24 h) attenuated the development of tolerance. Neither LY293558 nor MK-801 produced analgesia or altered the ED50 value of morphine. Continuous s.c. infusion of LY293558 (60 mg/kg per 24 h), MK-801 (1 mg/kg per 24 h) or LY235959 (12 mg/kg per 24 h) attenuated the development of acute (3 h) morphine dependence (i.e., decreased naloxone-precipitated withdrawal jumping). In contrast, continuous s.c. infusion of LY293558 (60 mg/kg per 24 h) or LY235959 (12 mg/kg per 24 h) did not significantly attenuate the development of chronic dependence produced by morphine pellet implantation. These data indicate that the development of morphine tolerance is more sensitive to modulation by EAA receptor antagonists than is the development of morphine dependence as assessed by naloxone-precipitated withdrawal jumping.  相似文献   

14.
The mechanisms of the antinociceptive, depressor and bradycardic responses produced by intravenous (i.v.) administration of morphine were examined in rats lightly anesthetized with pentobarbital sodium. Intravenous administration of 0.1, 0.25, 0.5, 1.0 or 2.5 mg/kg of morphine produced dose-dependent inhibition of the nociceptive tail flick (TF) reflex, hypotension, and bradycardia. Bilateral cervical vagotomy (CVAG) significantly attenuated the antinociception produced by i.v. morphine and the degree of attenuation was inversely related to drug dose. CVAG had no effect on the depressor response produced by lesser doses of morphine (0.1 or 0.5 mg/kg), but at greater doses converted the depressor response into either a pressor response (1.0 mg/kg) or an initial pressor response followed by a depressor response (2.5 mg/kg). Morphine-induced bradycardia was blocked by CVAG at all drug doses tested (0.1, 0.5, 1.0 and 2.5 mg/kg). In selective tests of either 0.5 or 2.5 mg/kg of i.v. morphine, prior administration of the peripherally acting opioid receptor antagonist naloxone methobromide (NMB) attenuated the antinociception to the same degree as CVAG. NMB also completely blocked the depressor and bradycardic responses of these doses of morphine. Bilateral subdiaphragmatic vagotomy (SDVAG) resulted in a marginal attenuation of antinociception at 0.5 mg/kg but not 2.5 mg/kg of morphine, and the attenuation produced by SDVAG was delayed in onset following morphine administration relative to that produced by CVAG. Bilateral sino-aortic deafferentation (SAD) had no significant effect on the antinociception in tests with 0.5 mg/kg of morphine. SDVAG and SAD had little effect on cardiovascular responses produced by these doses of morphine. The spinal antinociceptive systems activated by vagal afferents following i.v. morphine administration were characterized with the 0.5 mg/kg dose. Spinal cold block significantly antagonized the antinociception, hypotension and bradycardia produced by this dose of morphine. Intrathecal administration of naloxone (1.5, 15 or 30 micrograms) significantly antagonized the antinociception compared to saline controls, whereas intrathecal administration of methysergide (30 micrograms), phentolamine (30 micrograms), or the combination of methysergide with phentolamine (30 micrograms each) had no significant effect on the antinociception. These intrathecal doses of naloxone also antagonized the depressor and bradycardic responses produced by morphine. However, the antagonism produced by 1.5 micrograms of intrathecal naloxone was not due to spread to the systemic circulation, since i.v. administration of 1.5 micrograms of naloxone did not significantly affect either the antinociceptive or cardiovascular responses produced by morphine. These findings indicate that vagal afferents play a significant role in the antinociception produced by i.v. administration of morphine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
It is previously reported that the HPA axis plays role in the inhibitory effect of pain on tolerance development to analgesic effect of opioids. The present study was designed to investigate whether the chronic co-administration of dexamethasone as a glucocorticoid is also able to prevent or reverse analgesic tolerance to morphine and to compare the expression of G(alphai/o) and G(beta) subunits of G proteins in the context of chronic dexamethasone, development of morphine tolerance and their combination. Analgesic tolerance to morphine was induced by chronic intraperitoneally (i.p.) administration of morphine 20 mg/kg to male Wistar rats weighing 200-240 g within 4 consecutive days and analgesia was assessed using tail-flick test. Chronic dexamethasone was applied using 4 daily i.p. injections. Lumbar spinal tissues were assayed for the expression of G(alphai/o) and G(beta) proteins using "semiquantitative PCR" normalized to beta-actin gene expression. Results showed that chronic administration of dexamethasone could reduce and reverse the development of tolerance in rats that received chronic i.p. injections of morphine. Chronic administration of dexamethasone significantly increased the expression of G(alphai/o), while chronic administration of morphine did not change its expression. The expression of G(beta), however, was increased after the chronic administration of morphine, but did not change after the administration of chronic dexamethasone. None of these increases were observed when morphine and dexamethasone were co-administered. We conclude that the development of tolerance to analgesic effect of morphine could be prevented and reversed by dexamethasone co-administration. The increase in G(alphai/o) genes expression produced by chronic dexamethasone may facilitate the opioid signaling pathway and compensate for morphine-induced tolerance.  相似文献   

16.
In vivo microdialysis was used to study the effects of systemic, as well as intracerebral administration of morphine and naloxone on dynorphin B release in neostriatum and substantia nigra of rats. The release of dopamine (DA), γ-aminobutyric acid (GABA), glutamate (Glu) and aspartate (Asp) was also investigated. Systemic injection of morphine (1 mg/kg s.c.) induced long-lasting increases in extracellular dynorphin B and GABA levels in the substantia nigra, whereas DA, Glu and Asp levels, measured in the same region, were not significantly affected. No effect on striatal neurotransmitter levels was observed following systemic morphine administration. Local perfusion of the substantia nigra with morphine (100 μM) through the microdialysis probe also increased nigral dynorphin B and GABA levels. Perfusion of the neostriatum with morphine (100 μM) significantly increased GABA and dynorphin B levels in the ipsilateral substantia nigra, but no effect was observed locally. Naloxone blocked the effect of systemic morphine administration on nigral dynorphin B and GABA release, already at a dose of 0.2 mg/kg s.c. Naloxone alone, given either systemically (0.2–4 mg/kg s.c.) or intracerebrally (1–100 μM), did not affect dynorphin B or amino acid levels, either in neostriatum or in substantia nigra. However, naloxone produced a concentration-dependent increase in DA levels. The present results indicate that systemic morphine administration stimulates the release of dynorphin B in the substantia nigra, probably by activating the μ-subtype of opioid receptor, since the effect of morphine on nigral dynorphin B and GABA was antagonized by a low dose of naloxone. The increase in extracellular DA levels produced by high concentrations of naloxone, both in neostriatum and substantia nigra, indicates a disinhibitory effect of this drug on DA release, probably via a non-μ subtype of opioid receptors located on nigro-striatal DA neurones.  相似文献   

17.
Purpose: Parkinson’s disease is a progressive neurodegenerative disease characterized by progressive and selective death of dopaminergic neurons. It has been reported that nicotine and morphine have protective roles during neuronal damage in Parkinson’s disease. In addition, the induction of cross-tolerance between their biological effects has been shown in numerous reports.

Methods: Here, we investigated the effects of nicotine and morphine on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson’s disease. Cell damage was induced by 150?μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular reactive oxygen species, calcium level, and mitochondrial membrane potential were determined by fluorescence spectrophotometer method. Biochemical markers of apoptosis were also evaluated by immunoblotting.

Result: The data showed that morphine and nicotine prevent 6-OHDA- induced cell damage and apoptosis. However, the protective effects of nicotine were not observed in chronic morphine-pretreated cells. Morphine had no protective effects in chronic nicotine-incubated cells.

Conclusion: A cross-tolerance between protective effects of morphine and nicotine was occurred in 6-OHDA-induced SH-SY5Y cell toxicity.  相似文献   


18.
The antinociceptive effect of morphine and methadone was tested in two substrains of Sprague-Dawley (SD) rats, from B&K Universal, Sweden (BK) and Molleg?rd, Denmark (DK). In both sub-strains of SD rats subcutaneous morphine or methadone produced dose-dependent antinociception on the hot plate test. However, the effect of the opioids was less in DK-SD than BK-SD rats, particularly for morphine as it failed to produce maximal antinociception even at high doses. Dextromethorphan, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, potentiated the antinociceptive effect of morphine and methadone in the DK-SD rats. The potentiation of morphine by dextromethorphan was significantly greater than its effect on methadone at equipotent doses. The results showed that there is a sub-strain difference for SD rats in the response to the antinociceptive effect of opioids, which may be due to greater NMDA receptor activity in DK-SD than in BK-SD rats. The higher efficacy of methadone may be derived from its proposed NMDA receptor blocking property and/or high intrinsic activity.  相似文献   

19.
Cahill CM  Dray A  Coderre TJ 《Brain research》2003,960(1-2):209-218
Recently, an animal model of central inflammation characterized by widespread cutaneous hyperalgesia and allodynia following intracerebroventricular (i.c.v.) administration of lipopolysaccharide (LPS) was described. In the present study, we demonstrate that central administration of LPS via intrathecal (i.t.) injection produces bilateral tactile allodynia and thermal hyperalgesia in the rat. Also, the effects of morphine-induced antinociception were determined in this model. Here we demonstrate enhanced thermal antinociceptive potency of i.t. morphine in LPS-treated rats compared to controls. Intrathecal morphine was also effective in alleviating the tactile allodynia induced by LPS. Both the antinociceptive and anti-allodynic effects produced by i.t. morphine were completely antagonized by pretreatment with subcutaneous naloxone (1 mg kg−1). This study demonstrates the presence of both heat hyperalgesia and mechanical allodynia following central administration of LPS, and an increased antinociceptive potency of i.t. morphine in this model.  相似文献   

20.
In halothane-anesthetized rats, we characterized the responses of single neurons in the nuclei of medial thalamus (MT), specifically the mediodorsal thalamic nucleus (MD) and the nucleus submedius (Sm), to a noxious visceral stimulus (colorectal balloon distension, CRD), and studied the effects of intravenous morphine (Mor) on these responses using standard extracellular microelectrode recording techniques. 62 MD and 46 Sm neurons were isolated on the basis of spontaneous activity. 47 of the MD neurons (76%) responded to CRD, of which 70% had excitatory and 30% had inhibitory responses. 38 of the Sm neurons (83%) responded to CRD, of which 89% had excitatory and 11% had inhibitory responses. Responses of MD and Sm neurons excited by CRD were related significantly to distension pressure (20–100 mmHg), with maximum excitation occurring at 60 and 100 mmHg, respectively. MD neurons inhibited by CRD also had graded responses to graded CRD, with maximum inhibition occurring at 80 mmHg. The responses to noxious (pinch, heat) and nonnoxious (tap, brush) cutaneous stimuli were studied in 59 of the MD and 44 of the Sm neurons isolated. 22 of the MD neurons (37%) studied had cutaneous receptive fields, of which 59% were large and bilateral, 41% were small and usually contralateral receptive fields. 55% of these neurons were nociceptive-specific, 45% responded to both noxious and nonnoxious cutaneous stimulation. 29 of the Sm neurons (66%) studied had cutaneous receptive fields, of which 72% were large and usually bilateral, 14% were small and bilateral, 14% were small and contralateral receptive fields. 90% of these neurons were nociceptive-specific, 10% responded to both noxious and nonnoxious stimulation. No MD or Sm neurons responded exclusively to nonnoxious cutaneous stimulation. Mor (0.125, 0.25, 0.5 and 1 mg/kg IV) attenuated MD and Sm neuronal excitatory responses to CRD in a dose-dependent fashion, abolishing evoked activity with a dose of 0.5 mg/kg (p<0.05) and 1 mg/kg (p<0.05), respectively. Naloxone (0.4 mg/kg IV) reversed the effects of Mor. Mor and naloxone had no effects on spontaneous activity. These data support the involvement of MD and Sm neurons in visceral nociception, and are consistent with a role of Sm in affective-motivational, and MD in both sensory-discriminative and affective-motivational aspects of nociception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号