首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this study, the synthesis of a new series of 3,6‐disubstituted‐7H‐1,2,4‐triazolo[3,4‐b][1,3,4]thiadiazine 1a – 4c compounds derived from 4‐amino‐3‐substituted‐1,2,4‐triazole‐5‐thiones 1 – 4 is described. All of the synthesized compounds were screened for their possible analgesic / anti‐inflammatory, antioxidant activities and gastric toxicity. The compound 2c was found to have both significant analgesic and consistent anti‐inflammatory activity without inducing any gastric lesions along with minimal lipid peroxidation. A deep insight into the structures of the active compounds revealed that the compounds carrying an electron withdrawing group (a chloride or fluoride) on the phenyl ring at 6‐position of the condensed heterocyclic derivatives exhibited noticeable higher activity.  相似文献   

2.
Ketoprofen belongs to one of the most common nonsteroidal anti‐inflammatory drugs (NSAIDs) but its clinical usefulness has been restricted due to the high incidence of gastrointestinal complications. The release of reactive oxygen species (ROS) in NSAIDs therapy plays a major role in causing gastric complications. Antioxidants not only prevent gastric ulceration and lipid peroxidation but also preserve glutathione‐type peroxidase (GPO) activity. Therefore, the present study investigates the utility of combining anti‐inflammatory and antioxidant properties of two different compounds in a single molecule to form a series of 16 ketoprofen–antioxidant mutual codrugs. The free carboxylic group, which is believed to be one of the reasons for gastric toxicity of ketoprofen, was masked temporarily by simple and double esterification with alcoholic/phenolic–OH of natural antioxidants. In simple esterification, ketoprofen is directly linked to natural antioxidants ( IIa–h ) in the hope to obtain drugs free of gastric side effects. In an attempt to improve the in vivo lability, as well as gastric side effects, the double ester codrugs, that is, ketoprofen–antioxidant through the glycolic acid spacer (–CH2COO; IIIa–h ), have also been designed and synthesized. The synthesized codrugs were characterized by IR, 1H NMR, 13C NMR, mass spectroscopy and elemental analysis. The in vitro hydrolysis studies showed the lowest hydrolysis (highest stability) in acidic pH 1.2, whereas moderate hydrolysis was seen at pH 7.4 and significant hydrolysis in 80% human blood plasma, as indicated by their t1/2. The pharmacological evaluation results indicate that these ketoprofen–antioxidant mutual codrugs showed the retention of anti‐inflammatory and analgesic activity with a significant reduction in the ulcer index.  相似文献   

3.
A series of novel piperidine derivatives was prepared and their lipophilicity was determined (as RM values). These compounds as well as two intermediate α-keto-esters were tested for antioxidant activity. It was found that the cysteamine derivatives were efficient antioxidants, i.e. they could inhibit lipid peroxidation, act as hydroxyl radical scavengers and interact with 2,2-diphenyl-l-picrylhydrazyl radicals. This interaction could be attributed to the free SH group and this activity seemed to be favoured by increased lipophilicity. Replacement of SH by NH2 or OH resulted in a decreased antioxidant activity of the compounds. However, the described activities seem not to be connected with any O?2· scavenging ability, at least under the experimental conditions applied. Furthermore, cysteamine derivatives seem to induce O?2· generation, a phenomenon often observed with thiol compounds. The antioxidant activity of the intermediate α-keto-esters varied and is probably mediated by different mechanisms.  相似文献   

4.
This theoretical and experimental study describes the design and evaluation of the free‐radical scavenging effect for the molecular association of 4‐aminophenol and salicylate derivatives. For this purpose, we employed theoretical methods for the selection of antioxidant drugs and the rapid methods of evaluation: the 1,1‐diphenyl‐2‐picrylhydrazyl radical and the thiobarbituric acid reactive substances in the lipid peroxidation initiated by Fe2+ and ascorbic acid in human erythrocytes. The associate derivatives exhibited a more potent inhibition than the salicylic acid, while the benzoyl compound exhibited a more potent inhibition than paracetamol. The molecular parameters related to the electron distribution and structure (ionization potential and energy of the highest occupied molecular orbital) correlated very well with the antioxidant action of the compounds studied here in different tests.  相似文献   

5.
In continuation with our research program on the development of novel bioactive molecules, we report herein the design and synthesis of a series of diversified heterocycles ( 4 – 22 ). The synthesized compounds were evaluated for their anti‐inflammatory activity. The chemical structures of the newly synthesized compounds have been confirmed by NMR, FTIR, and microanalysis.  相似文献   

6.
A novel series of 5‐arylidene ‐ 2,4‐thiazolidinediones (TZDs) 2a – p was synthesized from the condensation of 3‐((2‐phenylthiazol‐4‐yl)methyl)thiazolidine‐2,4‐dione with different benzaldehyde derivatives. All the structures were confirmed by their spectral (IR, 1H NMR, 13C NMR and mass) and elemental analytical data. The new molecules were evaluated in vivo as anti‐inflammatory agents in an acute experimental inflammation, evaluating the acute phase bone marrow response and phagocyte activity. All compounds, excepting one, reduced the absolute leukocytes count due to the lower neutrophil percentage. Phagocytary index was decreased by the same molecules, while only half of them reduced the phagocytary activity. The effect was superior to meloxicam, the reference anti‐inflammatory drug, for the majority of the TZD derivatives. The new molecules were also investigated for their antimicrobial properties on Gram‐positive and Gram‐negative bacteria and one fungal strain. Two compounds ( 2e and 2n ) manifested growth inhibition capacity on all the tested strains.  相似文献   

7.
The present study reported the synthesis and biologic evaluation of new pyrazolone derivatives for COX‐2 inhibitory activities and investigated in vivo for their anti‐inflammatory activities using carrageenan‐induced rat paw edema model as well as in vitro using HRBC membrane stabilization and protein denaturation method. Eight derivatives showed pronounced COX‐2 inhibition, and 5a, 5d, and 5f exhibited the highest COX‐2 inhibition. The derivatives were further evaluated for antioxidant activity wherein 5a and 5b showed potent free radical‐scavenging activity against DPPH, nitric oxide, and hydrogen peroxide radicals. Molecular docking study revealed the binding orientations of pyrazolone derivatives into the active sites of COX‐2 and thereby helps to design the potent inhibitors.  相似文献   

8.
Curcumin has shown pharmacological properties against different phenotypes of various disease models. Different synthetic routes have been employed to develop its numerous derivatives for diverse and improved therapeutic roles. In this study, we have synthesized curcumin derivatives containing isoxazole, pyrazoles, and pyrimidines and then the synthesized molecules were evaluated for their anti‐inflammatory and antinociceptive activities in experimental animal models. Acute toxicity of synthesized molecules was evaluated in albino mice by oral administration. Any behavioral and neurological changes were observed at dose of 10 mg/kg body weight. Additionally, cyclooxygenase‐2 (COX‐2) enzyme inhibition studies were performed through in vitro assays. In vivo anti‐inflammatory studies showed that curcumin with pyrimidines was the most potent anti‐inflammatory agent which inhibited induced edema from 74.7% to 75.9%. Compounds 7 , 9 , and 12 exhibited relatively higher prevention of writhing episodes than any other compound with antinociceptive activity of 73.2%, 74.9%, and 71.8%, respectively. This was better than diclofenac sodium (reference drug, 67.1% inhibition). Similarly, COX‐2 in vitro inhibition assays results revealed that compound 12 (75.3% inhibition) was the most potent compound. Molecular docking studies of 10 , 11 , and 12 compounds in human COX‐2 binding site revealed the similar binding modes as that of other COX‐2‐selective inhibitors.  相似文献   

9.
Thymol is a natural product, which has antioxidant activity. 4‐Morpholinomethyl‐2‐isopropyl‐5‐methylphenol (THMO), and 4‐Pyrrolidinomethyl‐2‐isopropyl‐ 5‐methylphenol (THPY) were synthesized by reacting thymol with formaldehyde and, respectively, morpholine or pyrrolidine. Since there is a relationship between the antioxidative status and incidence of human disease, anti‐superoxidation, free radical scavenger activity, and anti‐lipid peroxidation of the thymol analogues were determined by xanthine oxidase inhibition, cytochrome C system with superoxide anion releasing with formyl‐Met‐Leu‐Phe (fMLP)/cytochalasin (CB) or phorbol myristate acetate (PMA) activating pathway in human neutrophils. All compounds studied had antioxidant activity. Mannich bases derived from thymol were generally found to be more potent compounds than thymol. THMO demonstrated the greatest antioxidant activity with IC50 values for xanthine oxidase inhibition and anti‐lipid peroxidation being 21±2.78 and 61.29±5.83 µM, respectively. Moreover, since oxidative stress by free radical regulates the activity of L‐type Ca2+ channel, the whole‐cell configuration of the patch‐clamp technique was used to investigate the effect of THMO upon ionic currents within NG108‐15 cells. THMO (10 µM) suppressed the peak amplitude of L‐type Ca2+ inward current (ICa,L), indicating that the antioxidative potential of the thymol analogues might be related to calcium current inhibition. The present studies suggest that THMO‐dependent antioxidant and calcium ion current inhibition activity may be useful in treating free radical‐related disorders. Drug Dev Res 64:195–202, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

10.
A series of thiazolyl‐N‐substituted amides were synthesized and tested for anti‐inflammatory activity. Their RM values were determined as an expression of their lipophilicity. Theoretical calculation of their lipophilicity, as clog P and log D7.4 was also performed. The effect of the synthesized compounds on inflammation, using the carrageenan‐induced mouse paw edema model was studied. In general, the studied compounds were found to be potent anti‐inflammatory agents (23.2–72.1%). Anti‐inflammatory activity was influenced by some structural characteristics of the synthesized compounds. An attempt was made to correlate their biological activity with some physicochemical parameters using a quantitative structure–activity relationship approach (QSAR). A parabolic dependence of activity from clog D7.4 and a linear dependence from surface tension were found. The anti‐inflammatory activity of the thiazolyl‐amides were found to a great extent to be under pharmacokinetic control. Drug Dev. Res. 48:53–60, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

11.
A focused library of novel benzyl pyrrolones has been synthesized and their in silico molecular docking studies carried out against TNF‐α target. Among all the docked molecules, compound 3f showed best glide score of ?6.89. All the synthesized compounds were evaluated for in vivo anti‐inflammatory activity by carrageenan‐induced paw edema model. Compounds showing significant anti‐inflammatory activity were further tested for their in vitro TNF α expression. Compounds 3b and 2b were found to show significant inhibition of 76.22% and 71.47%, respectively after 5 h in comparison with standard drug indomethacin, which showed 80.98% inhibition of inflammation. Compounds 3b and 2b also suppressed TNF α level by 65.03% and 60.90% as compared indomethacin, which showed 68.84% of inhibition. Compound 3b showed significant analgesic activity of 60.04%, and its activity was comparable with indomethacin (64.04%). Compounds 3b and 2b were also tested for their effect on protein expression of COX‐2 and NF‐κB in the liver tissues. Compounds 3b and 2b were further evaluated for their gastric risk and lipid peroxidation action and showed superior GI safety along with reduction of LPO as compared to indomethacin. Hepatotoxicity study showed that these two compounds did not cause any damage to liver.  相似文献   

12.
Protein kinases constitute attractive therapeutic targets for development of new prototypes to treat different chronic diseases. Several available drugs, like tinibs, are tyrosine kinase inhibitors; meanwhile, inhibitors of serine/threonine kinases, such as mitogen‐activated protein kinase (MAPK), are still trying to overcome some problems in one of the steps of clinical development to become drugs. So, here we reported the synthesis, the in vitro kinase inhibitory profile, docking studies, and the evaluation of anti‐inflammatory profile of new naphthyl‐N‐acylhydrazone derivatives using animal models. Although all tested compounds ( 3a–d ) have been characterized as p38α MAPK inhibitors and have showed in vivo anti‐inflammatory action, LASSBio‐1824 ( 3b ) presented the best performance as p38α MAPK inhibitor, with IC50 = 4.45 μm , and also demonstrated to be the most promising anti‐inflammatory prototype, with good in vivo anti‐TNF‐α profile after oral administration.  相似文献   

13.
A new series of functionalized fused pyridines 4(a–i) and fused pyrido[2,3‐d]pyrimidines 8(a–c) were designed and synthesized through a multi‐component reaction where in pyridine ring formation step plays a key role. All the newly formed compounds were well characterized by spectral techniques such as FTIR, 1HNMR, 13CNMR, HRMS and XRD. The potential therapeutic activities such as anti‐inflammatory activity by protein denaturation and RBC membrane stabilization methods, and anti‐oxidant activity by DPPH scavenging method of the newly synthesized compounds were studied. Interestingly, in‐vitro testing of these compounds reveals that the compounds 4d , 4g , 4i , 8a and 8b showed comparable anti‐inflammatory activity with respect to the standard drug, diclofenac. Similarly, fused pyridine 4f showed excellent anti‐oxidant activity when compared with the standard, ascorbic acid.  相似文献   

14.
Obestatin is a popular endogeneous peptide, known to have an autoimmune regulatory effect on energy metabolism and the gastrointestinal system. Studies regarding the anti‐inflammatory effects of obestatin are scarce. The aim of this study was to show the anti‐inflammatory effect of obestatin in an experimental model of autoimmune myocarditis in rats. Experimental autoimmune myocarditis was induced in Lewis rats by immunization with subcutaneous administration of porcine cardiac myosin, twice at 7‐day intervals. Intraperitoneal pretreatment with obestatin (50 μg/kg) was started before the induction of myocarditis and continued for 3 weeks. The severity of myocarditis was evidenced by clinical, echocardiographic and histological findings. In addition, by‐products of neutrophil activation, lipid peroxidation, inflammatory and anti‐inflammatory cytokines were measured in serum. Obestatin significantly ameliorated the clinical and histopathological severity of autoimmune myocarditis. Therapeutic effects of obestatin in myocarditis were associated with reduced lipid peroxidation, suppression of polymorphonuclear leukocyte infiltration and enhancement of glutathione synthesis, inhibition of serum inflammatory and activation of anti‐inflammatory cytokines. Histopathologically, the left ventricle was significantly dilated, and its wall thickened, along with widespread lymphocytic and histocytic infiltration. The myocardium was severely infiltrated with relatively large mononuclear cells. These histopathological changes were observed in lesser degrees in obestatin‐treated rats. This study demonstrated a novel anti‐inflammatory effect of obestatin in an experimental model of autoimmune myocarditis. Consequently, obestatin administration may represent a promising therapeutic approach for myocarditis and dilated cardiomyopathy in the future.  相似文献   

15.
The beneficial effects of kolaviron, a natural biflavonoid from the seeds of Garcinia kola, have been attributed mainly to its antioxidant and anti‐inflammatory effects. This study investigated these effects on dextran sulphate sodium (DSS)‐induced ulcerative colitis in rats. Sulfasalazine served as standard reference in this study. Kolaviron and sulfasalazine were separately co‐administered orally at 200 mg/kg and 500 mg/kg, respectively, to dextran sulphate sodium‐exposed rats for 5 days. The result indicated that kolaviron or sulfasalazine significantly prevented DSS‐induced body weight loss as well as the incidence of diarrhoea and bleeding in DSS‐exposed rats. Kolaviron suppressed the DSS‐mediated increase in colonic nitric oxide concentration and myeloperoxidase activity and significantly prevented the increase in inflammatory mediators, interleukin‐1β and tumour necrosis factor alpha, in the colon of DSS‐treated rats. The significant depletion in colonic antioxidant status in rats exposed to DSS alone was evident by marked reduction in colonic catalase and glutathione S‐transferase activities as well as glutathione content, leading to elevated hydrogen peroxide and lipid peroxidation levels. Histopathologically, DSS alone resulted in severe epithelial erosion, total absence of goblet cells, destruction of the crypts, necrotic and distorted glands, accompanied by marked cellular mononuclear cells infiltration. However, administration of kolaviron and sulfasalazine ameliorated DSS‐induced colitis by increasing the antioxidant status decreased hydrogen peroxide and lipid peroxidation levels and attenuated the adverse effect of DSS on colon architecture. In conclusion, the anti‐colitis effect of kolaviron is related to its intrinsic anti‐inflammatory and anti‐oxidative properties.  相似文献   

16.
  • 1 Curcumin is a naturally occurring poly‐phenolic compound with a broad range of favourable biological functions, including anti‐cancer, anti‐oxidant and anti‐inflammatory activities. The low bioavailability and in vivo stability of curcumin require the development of suitable carrier vehicles to deliver the molecule in a sustained manner at therapeutic levels.
  • 2 In the present study, we investigated the feasibility and potential of poly(caprolactone) (PCL) nanofibres as a delivery vehicle for curcumin for wound healing applications. By optimizing the electrospinning parameters, bead‐free curcumin‐loaded PCL nanofibres were developed.
  • 3 The fibres showed sustained release of curcumin for 72 h and could be made to deliver a dose much lower than the reported cytotoxic concentration while remaining bioactive. Human foreskin fibroblast cells (HFF‐1) showed more than 70% viability on curcumin‐loaded nanofibres.
  • 4 The anti‐oxidant activity of curcumin‐loaded nanofibres was demonstrated using an oxygen radical absorbance capacity (ORAC) assay and by the ability of the fibres to maintain the viability of HFF‐1 cells under conditions of oxidative stress.
  • 5 The curcumin‐loaded nanofibres also reduced inflammatory induction, as evidenced by low levels of interleukin‐6 release from mouse monocyte–macrophages seeded onto the fibres following stimulation by Escherichia coli‐derived lipopolysaccharide.
  • 6 The in vivo wound healing capability of the curcumin loaded PCL nanofibres was demonstrated by an increased rate of wound closure in a streptozotocin‐induced diabetic mice model.
  • 7 These results demonstrate that the curcumin‐loaded PCL nanofibre matrix is bioactive and has potential as a wound dressing with anti‐oxidant and anti‐inflammatory properties.
  相似文献   

17.
The main aim of this work is to find out novel chemical moieties with potent anti‐inflammatory and vasorelaxant activities with reduced gastric toxicities. For fulfilling the above aim, here we investigated novel chalcones (1, 3‐diphenylprop‐2‐en‐1‐one derivatives) with nitric oxide (NO) and hydrogen sulphide (H2S) donating potency for anti‐inflammatory activity by carrageenan‐induced rat paw oedema. These molecules then further evaluated for in‐vitro NO‐releasing potency and vasorelaxation effect on isolated adult goat aortic tissue. The promising molecules were further screened for ulcerogenic activity in the rat model. The tested compounds produced % inhibition in paw oedema ranging from 29.16% to 79.69% and standard drug Diclofenac sodium produced 85.30% reduction in paw oedema after 5 hours. Out of this dataset, compounds AI1, AI7, Ca1, B2, B10, D2, and E8 showed 73.01%, 79.69%, 75.02%, 75.46%, 74.35%, 73.9% and 74.35% reduction in paw oedema respectively, which is approximately 80%–90% to that of standard Diclofenac sodium. The compound Ca1 was found to release 0.870 ± 0.025 mol/mol of NO and standard Glyceryl trinitrate (GTN) was found to release 0.983 ± 0.063 mol/mol of NO. The compound Ca1 produced 950.2 μmol/L of EC50 whereas standard GTN produced 975.8 μmol/L of EC50 for aortic smooth relaxation. The compounds Ca1 produced 0.1117 of ulcer index which is far less than that of standard Diclofenac sodium (1.148). The potent lead molecules were further evaluated to understand the mechanism of vasorelaxation by using specific antagonists or blockers of NO and H2S.  相似文献   

18.
Various S‐methylphenyl substituted acridine‐1,8‐dione series ( 4a–i ) were synthesized through a one‐pot cascade synthetic approach involving the reaction of 4‐(methylthio)benzaldehyde and dimedone with a variety of amines as nitrogen source under reflux in ethanol. All the synthesized derivatives were characterized by using spectroscopic methods. In vitro evaluations of anti‐inflammatory and antidiabetic efficacies of all the synthesized compounds were investigated. The anti‐inflammatory results infer that the compounds 4c and 4d are showing excellent activity with an inhibition percentage of 80.58 ± 0.42, 81.72 ± 1.72 by membrane stabilization and 77.72 ± 0.76, 78.76 ± 0.81 by albumin denaturation methods, which is comparable with the standard diclofenac at a concentration of 100 μg/ml. Further, the antidiabetic assay revealed the moderate activity for the synthesized compounds at a concentration of 100 μg/ml with respect to their standard drug, acarbose.  相似文献   

19.
Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide, especially in developed countries. The most serious problem after myocardial infarction is reperfusion injury that manifests as functional impairment, arrhythmia, and accelerated progression of cell death in certain critically injured myocytes. Subsequently the infarcted myocardium develops features of necrosis and reactive inflammation. To reduce lethal reperfusion injury in patient with AMI antioxidants, anti‐inflammatory agents, adenosine, opioids, metabolic modulators (glucose, insulin, and potassium, nicorandil and agents which reduce intracellular Ca2+ overload and inhibit Na+‐H+ exchange) are used. In this study a novel compound (compound 9) 1‐(1 h‐indol‐4‐yloxy)‐3‐{[2‐(2‐methoxyphenoxy) ethyl]amino}propan‐2‐ol and its enantiomers are examined in arrhythmia associated with coronary artery occlusion and reperfusion in a rat model. Antioxidant properties are also determined for test compounds using the malondialdehyde (MDA) lipid peroxidation and ferric reducing antioxidant power (FRAP) tests. In summary, the tested compounds, especially the S enantiomer has a strong antiarrhythmic activity in a model of occlusion and reperfusion of the left coronary artery which is probably related to their adrenolytic action. In contrast to carvedilol, none of the test compound reduced the lipid peroxidation but increased ferric reducing antioxidant power. In the antioxidant effect, there was no difference between the optical forms of compound 9.  相似文献   

20.
Objectives The aim of this work was to investigate the anti‐inflammatory activity of C‐phycocyanin (C‐PC) on skin inflammation after topical administration and the influence of liposomal delivery on its pharmacokinetic properties. Methods Liposomes of different size and structure were prepared with different techniques using soy phosphatidylcholine and cholesterol. Vesicular dispersions were characterised by transmission electron microscopy, optical and fluorescence microscopy for vesicle formation and morphology, dynamic laser light scattering for size distribution, and Zetasizer for zeta‐potential. C‐PC skin penetration and permeation experiments were performed in vitro using vertical diffusion Franz cells and human skin treated with either free or liposomal drug dispersed in a Carbopol gel. Key findings The protein was mainly localised in the stratum corneum, while no permeation of C‐PC through the whole skin thickness was detected. Two percent C‐PC‐encapsulating liposomes showed the best drug accumulation in the stratum corneum and the whole skin, higher than that of the corresponding free 2% C‐PC gel. Moreover, skin deposition of liposomal C‐PC was dose dependent since skin accumulation values increased as the C‐PC concentration in liposomes increased. The topical anti‐inflammatory activity of samples was evaluated in vivo as inhibition of croton oil‐induced or arachidonic acid‐induced ear oedema in rats. Conclusions The results showed that C‐PC can be successfully used as an anti‐inflammatory drug and that liposomal encapsulation is effective in improving its anti‐inflammatory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号