首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rationale: Analysis of the preclinical behavioral effects of atypical antipsychotic agents will provide a better understanding of how they differ from typical antipsychotics and aid in the development of future atypical antipsychotic drugs. Objectives: The present study was designed to provide information about the discriminative stimulus properties of the atypical antipsychotic olanzapine. Methods: Rats were trained to discriminate the atypical antipsychotic olanzapine (either 0.5 mg/kg OLZ or 0.25 mg/kg OLZ, i.p.) from vehicle in a two- lever drug discrimination procedure. The atypical antipsychotic clozapine fully substituted for olanzapine in both the 0.5-mg/kg OLZ group (99.3% drug lever responding [DLR]) and the 0.25-mg/kg OLZ group (99.9% DLR). The typical antipsychotic chlorpromazine also substituted for olanzapine in both the 0.5-mg/kg OLZ group (87.5% DLR) and in the 0.25-mg/kg OLZ group (98.9% DLR); whereas, haloperidol displayed partial substitution for olanzapine in the 0.5-mg/kg OLZ group (56.1% DLR) and in the 0.25-mg/kg OLZ group (76.4% DLR). The 5.0-mg/kg dose of thioridazine produced olanzapine-appropriate responding in the 0.5-mg/kg OLZ group (99.6% DLR), but only partial substitution was seen with the 0.25-mg/kg OLZ training dose (64.0% DLR). The atypical antipsychotics raclopride (53.9% DLR) and risperidone (60.1% DLR) displayed only partial substitution in the 0.5-mg/kg OLZ group. Both the muscarinic cholinergic antagonist scopolamine (90.0% DLR) and the 5-HT2A/2C serotonergic antagonist ritanserin (86.0% DLR) fully substituted for olanzapine in the 0.5-mg/kg OLZ group. Conclusions: In contrast to previous discrimination studies with clozapine-trained rats, the typical antipsychotic agents chlorpromazine and thioridazine and the serotonin antagonist ritanserin substituted for olanzapine. These results demonstrate that there are differences in the mechanisms underlying the discriminative stimulus properties of clozapine and olanzapine. Specifically, olanzapine’s discriminative stimulus properties appear to be meditated in part by both cholinergic and serotonergic mechanisms. Received: 1 March 1999 / Final version: 6 September 1999  相似文献   

2.
 The present study was conducted to determine if the putative atypical antipsychotic olanzapine could be established as a discriminative stimulus in rats. Seven rats were successfully trained to discriminate olanzapine (0.5 mg/kg, IP) from vehicle in a two-lever drug discrimination procedure (mean number of acquisition sessions=39.3). Generalization testing with olanzapine (0.0625–2.0 mg/kg) yielded an ED50 of 0.170 mg/kg (95% confidence interval=0.118–0.246 mg/kg). The atypical antipsychotic clozapine (0.156–10.0 mg/kg) fully substituted for olanzapine in all rats at the 2.5 mg/kg dose with 99.0% drug-lever responding, in six rats at the 0.625 mg/kg dose, and in five rats at the 1.25 and 5.0 mg/kg doses (ED50=0.259 mg/kg, 95% confidence interval=0.089–0.755 mg/kg). This study is the first demonstration that rats can be trained to discriminate olanzapine from vehicle in a two-lever drug discrimination procedure and that the olanzapine discrimination cue generalizes to clozapine. Received: 11 June 1996 / Final version: 19 July 1996  相似文献   

3.
Rationale The atypical antipsychotic drug (APD) clozapine elicits a robust discriminative cue that is generally selective for other atypical APDS in two-choice drug discrimination (DD) procedures.Objectives The present study determined whether a three-choice DD procedure with the atypical APD clozapine (CLZ) versus the typical APD chlorpromazine (CPZ) versus vehicle (VEH) could provide greater selectivity between atypical and typical APDs.Methods Sprague-Dawley rats were trained to discriminate 5.0 mg/kg CLZ from 1.0 mg/kg CPZ from VEH in a three-lever DD task with an FR30 food reinforcement schedule.Results Generalization testing with CLZ produced CPZ-appropriate responding at lower doses (ED50=0.103 mg/kg) and CLZ-appropriate responding at higher doses (ED50=1.69 mg/kg). Generalization testing with the atypical APD olanzapine produced similar results. In contrast, the atypical APD risperidone and the typical APDs CPZ and haloperidol produced only CPZ-appropriate responding. The muscarinic antagonist scopolamine produced CPZ-appropriate responding at lower doses and CLZ-appropriate responding at higher doses in a manner similar to CLZ and olanzapine. The co-administration of haloperidol (0.00625 mg/kg) with scopolamine shifted the dose–response curve for CLZ-appropriate responding to the left. The 5-HT2A/2C antagonist ritanserin and the H1 histamine antagonist pyrilamine did not substitute for either CLZ or CPZ. The 1 adrenergic antagonist prazosin did not substitute for CLZ, but produced full substitution for CPZ.Conclusions The three-choice DD procedure clearly distinguished the atypical APDs CLZ and olanzapine from the typical APDs CPZ and haloperidol; however, the stimulus properties of the atypical APD risperidone were similar to CPZ, but not to CLZ. These findings further suggest that CLZ, as well as CPZ, elicits a compound cue.  相似文献   

4.
The purpose of the present study was to assess the role of dopamine D1 and D2 receptors in the discriminative stimulus properties of the atypical antipsychotic clozapine (CLZ). Two groups of rats were trained to discriminate either a moderate dose of clozapine (5.0 mg/kg) from vehicle or a high dose of clozapine (10.0 mg/kg) from vehicle in a two‐lever drug discrimination paradigm. Generalization testing with clozapine yielded an ED50 of 0.9 mg/kg (95% confidence limits = 0.5–2.0 mg/kg) for the 5.0 CLZ group and 2.0 mg/kg (95% confidence limits = 1.4–2.8 mg/kg) for the 10.0 CLZ group. Substitution testing with the D1 antagonist SCH 23390 and the D2 dopamine antagonist haloperidol failed to produce clozapine‐appropriate responding for either of the clozapine training doses. The antipsychotic drug thioridazine (which binds to a number of neurotransmitters in addition to dopamine) produced partial substitution (64.5% drug lever responding) in the 5.0 CLZ group at the 5.0 mg/kg dose. These results suggest that antagonism of D1 and D2 dopamine receptors alone is not sufficient to produce clozapine‐appropriate responding, even with the higher training dose of 10.0 mg/kg. Drug Dev. Res. 46:139–147, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
Background  Drug discrimination is an increasingly valuable behavioral assay for the preclinical development of antipsychotic drugs. The majority of studies have used the atypical antipsychotic clozapine because it displays robust discriminative stimulus properties and is the “prototypical” or “gold standard” atypical antipsychotic against which other antipsychotics will undoubtedly be compared for many years. Objectives  Pharmacological mechanisms mediating the discriminative stimulus properties of antipsychotics used as training drugs and the usefulness of drug discrimination for distinguishing typical and atypical antipsychotics were reviewed. Results  Clozapine appears to have a compound cue involving antagonism of two or more receptors. While muscarinic receptor antagonism is a prominent factor for mediation of clozapine’s cue in rats with a 5.0-mg/kg training dose, there are differences in clozapine’s cue with a low training dose and in pigeons and mice. With a low training dose, clozapine has consistently produced full or partial generalization to atypical but not to typical antipsychotics. Although not evaluated as extensively, the atypical antipsychotics quetiapine and ziprasidone also appear to generalize to atypical but not typical antipsychotics. This has not been the case for other antipsychotic drugs (olanzapine, chlorpromazine, haloperidol) used as training drugs. Conclusions  There are important differences in discriminative stimulus properties both between and within atypical and typical antipsychotics and across species. While low-dose clozapine discrimination in rats appears to provide a more sensitive behavioral assay for distinguishing atypical from typical antipsychotics, the extent to which clozapine’s discriminative stimulus properties are predictive of its antipsychotic effects remains to be determined.  相似文献   

6.
Rationale The atypical antipsychotic drug (APD) clozapine (CLZ) has been shown to have a robust discriminative cue in rats, pigeons, and monkeys in two-choice drug discrimination procedures.Objectives The present study determined whether a two-choice drug discrimination procedure with CLZ could be established in C57BL/6 mice and whether this procedure could distinguish between atypical and typical APDs.Methods C57BL/6 male mice were trained to discriminate 2.5 mg/kg CLZ from vehicle in a two-lever drug discrimination procedure.Results Generalization testing with CLZ produced full substitution at the 2.5- and 5.0-mg/kg doses with an ED50 of 1.14 mg/kg. The atypical APDs olanzapine (ED50=0.24 mg/kg), risperidone (ED50=0.072 mg/kg), and ziprasidone (ED50=0.33 mg/kg) fully substituted for CLZs discriminative cue, while the typical APD haloperidol failed to substitute for CLZ. Generalization testing with selective ligands showed that the serotonin (5-HT)2A/2B/2C antagonist ritanserin fully substituted for CLZ (ED50=2.08 mg/kg) and that the 5-HT receptor agonist quipazine significantly attenuated CLZs discriminative cue without disrupting response rates. The muscarinic receptor antagonist scopolamine, the dopamine agonist amphetamine, and the 5-HT agonist quipazine failed to substitute for CLZ.Conclusions These results demonstrated that antagonism of 5-HT receptors plays an important role in mediating the discriminative stimulus properties of the atypical APD CLZ in C57BL/6 mice. The atypical APDs olanzapine, risperidone, and ziprasidone fully substituted for CLZ, while the typical APD haloperidol did not. These results suggest that CLZ drug discrimination in C57BL/6 mice may be an effective preclinical behavioral assay for screening atypical from typical antipsychotic drugs.  相似文献   

7.
Rats discriminated the novel antipsychotic quetiapine (Seroquel). Full generalization was seen with the novel ("atypical") antipsychotics, clozapine, olanzapine, and risperidone. Generalization was not seen with the older "typical" antipsychotics, haloperidol, chlorpromazine, and loxapine, or with the novel atypical antipsychotic, amisulpride. The pattern of generalization resembled that seen in rats trained to discriminate a low dose (1.25 mg/kg) of clozapine, which dissociates most novel antipsychotics from typical antipsychotics. However, the failure of the novel antipsychotic amisulpride to generalize demonstrates that this bioassay does not detect all novel antipsychotics. These data suggest that the discrimination of antipsychotics such as quetiapine may be of value in the development of novel antipsychotics, although the relationship between the discriminative properties of such drugs and their clinical actions is unclear.  相似文献   

8.
Rationale: Previous drug discrimination studies with clozapine have not reliably distinguished between atypical and typical antipsychotics. Objectives: The present study was conducted to determine whether low-dose clozapine drug discrimination could distinguish atypical from typical antipsychotics. Methods: Rats were trained to discriminate 1.25 mg/kg clozapine from vehicle in a two-lever drug discrimination procedure. Results: Generalization testing revealed full substitution with the atypical antipsychotics olanzapine (90.3% maximum generalization), sertindole (99.8%), and risperidone (87.1%) and partial substitution for quetiapine (seroquel, 66.4%) and the typical antipsychotics haloperidol (56.8%) and thioridazine (74.3%). Remoxipride (23.1%) and the typical antipsychotics chlorpromazine (27.9%) and fluphenazine (29.5%) did not reliably substitute for clozapine. Conclusions: In contrast to previous clozapine drug discrimination studies with higher training doses, the atypical antipsychotics olanzapine, sertindole, and risperidone reliably substituted for clozapine while typical antipsychotics did not. These results suggest that low-dose clozapine drug discrimination may be a more sensitive assay for distinguishing atypical from typical antipsychotic drugs. Received: 3 August 1999 / Final version: 9 December 1999  相似文献   

9.
Clozapine (CLZ) drug discrimination is used as a preclinical model to evaluate compounds for putative atypical antipsychotic properties. In rats, a 1.25 mg/kg CLZ training dose appears to have greater pharmacological specificity for atypical antipsychotic drugs than the traditional 5.0 mg/kg CLZ training dose; however, methodological differences among studies have precluded a direct comparison between these training doses. In the present study, rats were trained to discriminate a 5.0 mg/kg CLZ dose from vehicle in a two‐choice drug discrimination task using methods similar to those in a previous study from our laboratory that used a 1.25 mg/kg CLZ training dose. Clozapine produced full substitution (≥80% CLZ‐lever responding) for itself at the training dose (5.0 mg/kg). The atypical antipsychotics olanzapine, quetiapine, and ziprasidone also produced full substitution for 5.0 mg/kg CLZ, whereas the atypical antipsychotics risperidone and sertindole produced partial substitution (≥60% CLZ‐lever responding). The typical antipsychotic, thioridazine, produced full substitution for the 5.0 mg/kg CLZ training dose, but the typical antipsychotics chlorpromazine, fluphenazine, and haloperidol failed to substitute for clozapine. In a subgroup of 1.25 mg/kg CLZ‐trained rats, ziprasidone produced strong partial substitution (73.0 % CLZ‐lever responding) for the 1.25 mg/kg CLZ training dose. Based on these findings, some atypical antipsychotic drugs (i.e., quetiapine and ziprasidone) produce full substitution only for the 5.0 mg/kg CLZ training dose, whereas other atypical antipsychotic drugs (i.e., sertindole and risperidone) produce full substitution only for the 1.25 mg/kg CLZ training dose. Thus, both of these training doses are important for the screening of putative atypical antipsychotic drugs with the clozapine drug discrimination assay. Drug Dev. Res. 64:55–65, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

10.
 The effects of conventional and novel atypical antipsychotic drugs were compared to clozapine in squirrel monkeys that discriminated IM injections of clozapine (1.0 mg/kg) from saline in a two-lever drug discrimination procedure. Clozapine (0.03–3.0 mg/kg) produced dose-related increases in responding on the clozapine-associated lever with full substitution at the training dose in all monkeys. Dose-related increases in responding on the clozapine-associated lever and full substitution also were observed with structural analogues of clozapine including perlapine and fluperlapine (0.1–3.0 mg/kg), seroquel (0.1–5.6 mg/kg), and JL 5, JL 8 and JL 18 (0.1–3.0 mg/kg). Other clozapine analogues, including olanzapine, amoxapine, loxapine and clothiapine, and conventional antipsychotic drugs, including phenothiazines such as chlorpromazine and thioridazine, produced some clozapine-associated responding up to the highest doses that could be studied, but did not substitute for clozapine. Olanzapine did produce full clozapine-lever responding following pretreatment with the dopamine D2-receptor agonist (+)-PHNO (0.003–0.01 mg/kg). Putatively atypical antipsychotics that are structurally unrelated to clozapine including risperidone (0.003–0.1 mg/kg), sertindole (0.03–1.0 mg/kg) and remoxipride (0.1–5.6 mg/kg) similarly failed to substitute for clozapine up to the highest doses. The present results indicate that some, but not all, structural analogs of clozapine have clozapine-like discriminative-stimulus effects and that novel antipsychotic drugs which purportedly have clozapine-like clinical efficacy may not produce its interoceptive stimulus effects. Received: 2 November 1996 / Final version: 13 January 1997  相似文献   

11.
The alpha1A- and alpha1B-adrenoceptor affinity of the typical (chlorpromazine, haloperidol, pimozide, thioridazine and trifluoperazine) and atypical (clozapine, olanzapine, quetiapine, risperidone and sertindole) antipsychotics was determined by competition binding at alpha1A- and alpha1B-adrenoceptors in rat submaxillary gland and liver. Although all antipsychotics bound to both subtypes with relatively high affinity (K(i)s<74 nM), none were selective (>10-fold). Comparison with published dopamine D2 receptor affinities suggests that antipsychotic blockade of alpha1A- and/or alpha1B-adrenoceptors may contribute to the antipsychotic activity of all the atypical and several of the typical antipsychotics examined.  相似文献   

12.
The prototypical atypical antipsychotic drug (APD) clozapine (CLZ) elicits a discriminative cue that appears to be similar to the stimulus properties elicited by atypical, but not typical, antipsychotic drugs in two-choice drug discrimination procedures. However, the ability of CLZ to generalize to atypical APDs depends on the training dose, since several atypical APDs (e.g. sertindole, risperidone) do not substitute for a 5.0 mg/kg CLZ training dose in rats, but do so for a 1.25 mg/kg CLZ training dose. Yet, a 1.25 mg/kg CLZ discriminative stimulus has not generalized to all atypical APDs either (e.g. quetiapine); thus, both 1.25 mg/kg and 5.0 mg/kg CLZ discriminative stimuli may be necessary to provide a better screen for atypical APDs. The present study sought to determine whether a three-choice 1.25 mg/kg CLZ versus 5.0 mg/kg CLZ versus vehicle drug discrimination task in rats might better distinguish atypical from typical APDs. Adult male Sprague-Dawley rats were trained in this three-choice drug discrimination task with a fixed ratio 30 reinforcement schedule for food. Clozapine produced full substitution (>or=80% condition-appropriate responding) for both the 1.25 mg/kg CLZ dose (ED50=0.09 mg/kg) and the 5.0 mg/kg CLZ dose (ED50=2.71 mg/kg). The atypical APD olanzapine produced full substitution for the 5.0 mg/kg CLZ dose, but not for the 1.25 mg/kg CLZ dose (ED50=1.55 mg/kg). In contrast, the atypical APD quetiapine produced full substitution for the 1.25 mg/kg CLZ dose (ED50=0.13 mg/kg), but not for the 5.0 mg/kg CLZ dose. Similarly, the atypical APD sertindole produced full substitution for only the 1.25 mg/kg CLZ dose (ED50=0.94 mg/kg). Risperidone, another atypical APD, produced partial substitution (>or=60% and 相似文献   

13.
Rats (N = 9) were trained to discriminate the antipsychotic drug haloperidol (0.05 mg/kg i.p.) from drug vehicle (0.25% acetic acid in 0.9% saline) using a water-reinforced, fixed-ratio 10 response operant procedure. Acquisition of discrimination required a mean of 45 trainingsessions (median value of 38 sessions). The discriminative stimulus was dose-dependent with an ED50 value of 0.008 mg/kg. The total number of responses per 10-min test session was significantly reduced at all doses of haloperidol that produced haloperidol lever selection. The antipsychotic drug chlorpromazine substituted for the haloperidol discriminative stimulus (ED50 = 0.38 mg/kg). The indirect dopaminergic agonists amphetamine (1.0 mg/kg) and cocaine (10 mg/kg) fully blocked the haloperidol discriminative stimulus. Taken together, these initial results suggest that the discriminative stimulus produced by haloperidol is mediated, at least in part, by an interaction with dopamine receptors.  相似文献   

14.
Rationale: Previous work has shown that clozapine suppressed tacrine-induced jaw movements at lower doses than those required for suppression of lever pressing. Objective: The novel atypical antipsychotic olanzapine was assessed in these behavioral tests. Methods: The effect of acute olanzapine on the suppression of tacrine-induced tremulous jaw movements was examined. In order to determine the relative potency of this effect compared with other behavioral effects of olanzapine, suppression of lever pressing also was studied. In a second series of experiments, rats received olanzapine for 14 consecutive days to study the effects of repeated injections of this drug on jaw movements and lever pressing. Results: Acute olanzapine administration decreased tacrine-induced jaw movements (ED50: 0.4 mg/kg), and also reduced lever pressing (ED50: 1.12 mg/kg). The ratio of the ED50 for suppression of jaw movements to that for suppression of lever pressing was used as an index of liability to produce extrapyramidal side effects, and the present results demonstrate that olanzapine has a ratio similar to that previously shown for clozapine. In the repeated administration studies, rats were observed on day 13 of drug treatment for the ability of olanzapine to induce jaw movements, and olanzapine failed to induce jaw movements. On day 14, olanzapine reduced tacrine-induced tremulous jaw movements (ED50: 1.12 mg/kg). In a separate experiment, olanzapine significantly suppressed lever pressing, and this effect showed sensitization with repeated administration (day 14, ED50: 0.76 mg/kg). Thus, repeated injections of olanzapine reduced tacrine-induced jaw movements in a dose range similar to or slightly higher than that which suppressed lever pressing. Conclusions: On tests of jaw-movement activity and lever pressing after both acute and repeated drug administration, olanzapine demonstrated a profile somewhat similar to clozapine, and both of these drugs differ substantially from the typical antipsychotic haloperidol. Received: 14 October 1998 / Final version: 15 March 1999  相似文献   

15.
Rationale Quetiapine, an atypical neuroleptic, has beneficial antipsychotic effects in schizophrenic patients, but with a lower incidence of extrapyramidal symptoms (EPS) compared with typical antipsychotics. While typical antipsychotics are often switched to atypical agents when adverse effects become limiting, there is little preclinical information to support this strategy, both in terms of efficacy and side effects.Objectives The antipsychotic effects and EPS during concomitant administration of quetiapine with haloperidol, a typical antipsychotic agent, were evaluated in mice and compared with chlorpromazine and risperidone.Methods We first investigated the antipsychotic effects and EPS liability of quetiapine, risperidone, chlorpromazine, and haloperidol when administered alone to select optimal doses for subsequent combination studies. The second study was designed to evaluate the antipsychotic efficacy and EPS profile of concomitant administration of quetiapine, risperidone, or chlorpromazine with haloperidol. Antipsychotic effects were evaluated with the methamphetamine-induced hyperlocomotion test, and EPS liability was evaluated in a catalepsy-induction model.Results Quetiapine, risperidone, chlorpromazine, and haloperidol dose-dependently reduced methamphetamine-induced hyperlocomotion, with ED50 values of 5.6, 0.020, 1.8, 0.035 mg/kg, respectively. In the catalepsy test, quetiapine only weakly induced catalepsy at the highest dose of 100 mg/kg, whereas risperidone, chlorpromazine, and haloperidol dose-dependently induced catalepsy with ED50 values of 0.25, 4.6, and 0.10 mg/kg, respectively. While the combination of quetiapine (6 mg/kg) and haloperidol (0.04 mg/kg) significantly reduced methamphetamine-induced hyperlocomotion in comparison with haloperidol alone, quetiapine (10, 32 mg/kg) plus haloperidol did not potentiate the cataleptogenic activity of haloperidol. In contrast, risperidone (0.1, 0.32 mg/kg) or chlorpromazine (3.2 mg/kg) significantly augmented catalepsy induced by haloperidol. Catalepsy induced by co-administration of quetiapine (10 mg/kg) and haloperidol (0.1 mg/kg) was significantly potentiated by WAY100635, a 5-HT1A antagonist, and catalepsy induced by co-administration of risperidone (0.1 mg/kg) and haloperidol (0.1 mg/kg) was significantly antagonized by 8-OH-DPAT, a 5-HT1A agonist.Conclusion The present study demonstrated that the combined administration of quetiapine with haloperidol did not aggravate EPS, possibly because of its affinity for 5-HT1A receptors. This finding may have the clinical implication that quetiapine could provide a successful regimen in switching from typical antipsychotic agents in the symptom management of schizophrenia, or even in adjunctive therapy with other antipsychotic agents.  相似文献   

16.
This study compared the ability of the novel atypical antipsychotic olanzapine with that of clozapine to reverse thed-amphetamine-induced inhibition of substantia nigra (A9) and ventral tegmental area (A10) dopamine (DA) cells. Extracellular single-unit recordings were made from A9 and A10 DA cells in anesthetized rats. When administered alone, neither olanzapine nor clozapine altered the firing rate of A9 or A10 DA cells. Administration ofd-amphetamine (0.5, 1.0 and 2.0 mg/kg, IV, decreased the firing rate of A9 and A10 DA cells. Olanzapine completely reversed the inhibitory effects ofd-amphetamine on A10 DA cells (ED100=0.18 mg/kg, IV) and on A9 DA cells (ED100=1.0 mg/mg, IV). Clozapine completely reversed the inhibitory effects ofd-amphetamine on A10 DA cells (ED100=3.8 mg/kg, IV), but only partially reversed the effects ofd-amphetamine on A9 DA cells at the highest dose tested (8.0 mg/kg, IV). Thus, olanzapine, like clozapine, was more potent in reversing the effects ofd-amphetamine on A10 than A9 DA cells. In addition, olanzapine was more potent than clozapine in the reversal ofd-amphetamine effects on A9 and A10 DA cells. These results indicate that olanzapine and clozapine have similar effects on DA unit activity and predict that olanzapine should have an atypical antipsychotic profile in man.  相似文献   

17.
Clozapine, the prototype for atypical antipsychotic drugs, is used in the drug discrimination paradigm as a model for screening atypical from typical antipsychotic drugs. Previous drug discrimination studies in rats have shown that a 1.25 mg/kg clozapine training dose provides full stimulus generalization (i.e.) >or=80% condition-appropriate responding) to most atypical antipsychotic drugs, although a 5.0 mg/kg clozapine training dose appears necessary to provide stimulus generalization to other atypical antipsychotic drugs. The present study sought to characterize the pharmacological mechanisms that mediate these clozapine training doses. In rats trained to discriminate 1.25 vs. 5.0 mg/kg clozapine vs. vehicle in a three-choice drug discrimination task, various receptor-selective compounds were tested for stimulus generalization. The antidepressant mianserin was also tested. Full stimulus generalization from the 1.25 mg/kg clozapine training dose occurred only to mianserin (98.8%). Partial substitution (i.e. >or=60% and <80% condition-appropriate responding) to the 5.0 mg/kg clozapine training dose occurred for the muscarinic receptor antagonist scopolamine. The combined total percentage of responding on the 1.25 and 5.0 mg/kg clozapine levers, however, was well above the full substitution criteria at the 0.25, 0.5, and 1.0 mg/kg scopolamine doses. The M1 agonist N-desmethylclozapine, the nicotinic antagonist mecamylamine, the D1 antagonist SCH 23390, the D4 antagonist LU 38-012, the 5-HT1A agonist (+)-8-OH-DPAT, the 5-HT1A antagonist WAY 100 635, the 5-HT2A/2B/2C antagonist ritanserin, the 5-HT6 antagonist RO4368554, the alpha1 antagonist prazosin, the alpha2 antagonist yohimbine, and the histamine H1 antagonist pyrilamine all failed to substitute for either the 1.25 or the 5.0 mg/kg clozapine training doses. These results are consistent with previous evidence that antidepressant drugs have a tendency to substitute for clozapine and that muscarinic receptor antagonism may mediate the discriminative stimulus properties of 5.0 mg/kg clozapine. The lack of stimulus generalization from either clozapine training dose to other receptor-selective compounds, however, fails to explain how this model screens atypical from typical antipsychotic drugs and suggests that the discriminative stimulus properties of clozapine consist of a compound cue.  相似文献   

18.
It has been previously shown that cross-tolerance to the discriminative stimulus properties of clozapine can be demonstrated with the drug discrimination paradigm. This study examined the ability of N-desmethylclozapine and N-desmethylolanzapine (metabolites of the atypical antipsychotic drugs clozapine and olanzapine, respectively) to induce cross-tolerance to the discriminative stimulus effects of clozapine. After C57BL/6 mice were trained to reliably discriminate 2.5 mg/kg clozapine from vehicle, a clozapine generalization curve was generated. Next, training was suspended and the mice received a maintenance dosing regimen in which they were injected twice daily with 10 mg/kg N-desmethylclozapine for 10 days. Then a second clozapine generalization curve was generated. This was followed by a 10-day washout period during which the mice did not receive drug injections or discrimination training. Finally, a third clozapine generalization curve was generated. These same procedures were followed for N-desmethylolanzapine (10 mg/kg twice daily during maintenance dosing). Both N-desmethylclozapine and N-desmethylolanzapine produced significant rightward shifts in the clozapine generalization curve indicating cross-tolerance between N-desmethylclozapine and clozapine and between N-desmethylolanzapine and clozapine. After a washout period with no training or drug administration this cross-tolerance effect was lost for both metabolites. This cross-tolerance drug discrimination procedure demonstrated in-vivo similarities between these two metabolites and clozapine and suggests that common underlying pharmacological mechanisms were responsible for the cross-tolerance that was observed. These findings also demonstrated that this procedure may be useful for identifying drugs with therapeutic efficacy similar to the atypical antipsychotic clozapine under repeated dosing conditions.  相似文献   

19.
The effects of clozapine and other purported atypical antipsychotics were compared with those of typical antipsychotics within the neuroendocrine axis of the rat. Atypical antipsychotics (e.g., clozapine, thioridazine, melperone, setoperone and RMI 81582) differed from typical antipsychotics (e.g., haloperidol, chlorpromazine, cis-flupentixol and fluphenazine) in that they produced only a brief elevation in serum concentrations of prolactin but marked increases in serum or plasma concentrations of corticosterone and ACTH. Moreover, atypical antipsychotics, but not typical antipsychotics, acutely increased the activity of tuberoinfundibular dopamine neurons, as judged from the accumulation of DOPA in the median eminence after inhibition of decarboxylase activity. The effects of atypical antipsychotics on tuberoinfundibular dopamine neurons and corticosterone secretion were mimicked by neurotensin. It would appear that atypical antipsychotics elicit unique neuroendocrine responses that differentiate these agents from typical antipsychotic drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号