首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome oxidase (C.O.) histochemistry and cytochemistry were used to examine the effects of optic denervation and subsequent optic fiber regeneration on oxidative metabolism in the retina and optic tectum of the goldfish. In the tectum, there was a dramatic and rapid decrease in C.O. activity within the optic layers 3-4 days after contralateral eye removal or optic nerve crush. At the E.M. level this was correlated with an initial decrease in mitochondrial reactivity within optic terminals followed by the subsequent degradation of mitochondria and phagocytosis of optic terminals. By 1 month after optic nerve crush, the entire tectum was reinnervated. However, the normal dark reactivity of the stratum fibrosum et griseum superficialis (SFGS), the main optic innervation layer, was not restored until after 3-4 months postcrush. The normal intense reactivity of the large-diameter optic axons and terminals at the bottom of the SFGS required an even longer period, about 7-8 months, for full recovery. The delayed restoration of C.O. reactivity was not due to a delay in synaptogenesis or in mitochondrial accumulation within optic terminals but to a delay in the maturation of mitochondrial reactivity. Following regeneration, the normal sublaminar stratification of C.O. bands was reestablished, suggesting that metabolically distinct classes of optic fibers may reinnervate at their original sublaminae. By using a distinct and persistent C.O. reactive sublamina, a of stratum griseum centrale (SGCa), just subjacent to the SFGS, it was possible to measure the thickness of the SFGS following optic denervation and subsequent reinnervation. At 1 week after optic nerve crush, the SFGS shrank by 35%. During regeneration, the thickness of the SFGS gradually increased to about 23% above normal at 2 months postcrush and this was maintained indefinitely. In the retina, ganglion cells were hypertrophic by 1 month postcrush and exhibited elevated levels of C.O. during the same period of time when optic terminals were unreactive. This indicates that oxidative metabolic activity within perikarya and axon terminals of the same neuron may be locally and independently regulated. It also suggests that in spite of the well-known elevation of axonal transport during the initial period of axon elongation and synaptogenesis, that oxidative metabolic energy production within the optic fibers is less than that of the mature projection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
J W Fawcett  W M Cowan 《Brain research》1985,349(1-2):147-163
By surgically dividing the region of the presumptive optic chiasm in chick embryos on the third day of incubation (around stage 15), we have been able to induce substantial numbers of optic nerve fibers to grow aberrantly into the ipsilateral optic tract. As a result, many of the visual centers that are normally innervated only by fibers from the contralateral retina received fibers from both eyes. The proportion of fibers going to each tectal lobe varied from case to case, but in about one-third of the animals the tectal lobes received approximately equal numbers of fibers from each eye. In animals that survived until embryonic days 17-19 (which is beyond the period of retinal ganglion cell death) labeling of the two eyes with WGA-HRP and [3H]proline respectively, revealed a pattern of sharply defined eye dominance stripes or patches in the stratum griseum et fibrosum superficiale (SGFS) of the optic tectum, and in the ventral lateral geniculate nucleus. Less clearly segregated eye dominance zones were seen in the ectomammillary nucleus and the nucleus externus. The size and distribution of the stripes varied depending on the number of fibers projecting from each eye to a given tectal lobe; the minimum size was about 75 micron, while the maximum was large enough to occupy almost the entire tectal lobe. In animals in which the tectal input from the two eyes was roughly equal, the stripes varied in width between 75 micron and about one-third of the surface of the tectal lobe. The orientation of the stripes was consistently orthogonal to the direction of fiber ingrowth from the optic tract. From the earliest stages of optic fiber ingrowth, the fibers from the two eyes are completely intermixed in the stratum opticum (SO). However, on embryonic day 12, shortly after they have begun to penetrate into the SGFS, they are already segregated into stripes, although the stripe borders are very fuzzy. This suggests that the fibers from the two eyes may overlap at this stage. The phase of stripe formation coincides with that of naturally occurring retinal ganglion cell death, and we suggest that the two processes are interlinked.  相似文献   

3.
Although widely accepted, the theory, that neurones carry immutable cytochemical markers which specify their synaptic connections, is not consistent with plastic reorganizations. Half retinal fish were therefore tested for changed markers following expansion. Optic nerve crush at the time of the half retinal ablation resulted in regeneration of a normal, restricted projection; but nerve crush following expansion (many months later) resulted in reestablishment of the expanded projection, assessed both by electrophysiological mapping and by radioautography. Since this implied changed markers, the half retina and tectum were tested independently using the ipsilateral tectum and eye as controls. In normal fish, removal of one tectum and deflection of the corresponding optic tract toward the remaining tectum resulted in regeneration of a positionally normal but ipsilateral map. In experimental fish, after the half retina had expanded its projection to the contralateral tectum, its optic tract was deflected to the control tectum. After 40 days it had regenerated a normal, restricted map indicating that the retinal markers had not changed. Such restricted projections did not expand in the presence of the normal projection even after a year or more. Similarly, the optic tract from the normal eye was deflected to cause innervation of the tectum containing the expanded half retinal projection. After 40 days, the projection regenerated from the normal eye was similar to the expanded half retinal projection. Areas of the normal retina corresponding to the missing areas of the half retina were not represented. Tectal markers had been altered by the half retinal fibers. In a final group, tecta were denervated and tested at various intervals by innervation from ipsilateral half retinal eyes. After five months of denervation, the regenerating fibers were no longer restricted to the rostral tectum but formed an expanded projection initially. Apparently tectal markers are induced by the retinal fibers, changed during expansion, and disappear during long-term denervation.  相似文献   

4.
In the frog optic tectum, at the depth of 200-270 micron extracellular monosynaptic PSPS of one axon were recorded under threshold electrical stimulation of the retina by a short train of stimuli. The latency of presynaptic spike was 8-12 ms. At a 5-25 ms interval between successive stimuli a negative spike was observed on the top of the testing EEG quanta enlarged 1.5-2.5 times. This spike is considered to be a population discharge evoked by the firing of a single fibre of the optic tract. This fibre terminates in layer F or G, while the population spike is generated by the tectum units of layers 6-8. A possibility that the firing of the 3d-5th class detectors excites tectal ganglionic cells whose axons form the main part of the tectobulbospinal tract is discussed.  相似文献   

5.
In normal goldfish, lesions of various size were made in nasal or temporal retina immediately prior to retinal labeling with tritiated proline. The resulting gaps in retinal innervation of tectum indicated that the projection is retinotopographically ordered to a precision of about 50 μm. Similarly, acute tectal incisions transecting the optic pathways were combined with immediate retinal labeling. The resulting tectal denervation confirmed that most fibers follow highly ordered paths through the stratum opticum of tectum; but a few fibers were found to follow unusual paths to their appropriate tectal positions. In other fish, the optic nerve was crushed. At various times afterwards, retinotopography and pathway order were similarly analyzed by making retinal lesions or tectal incisions just prior to labeling. For up to 40 days after crush, the projection lacked any refined retinotopic order. Only a gross topography could be demonstrated. Over several months, retinotopography gradually improved eventually approaching that of normals. Correlated with this was an initial stereotypic growth through the pathways of the stratum opticum followed by a long period of highly anomalous growth through the innervation layer. Evidently, many regenerated fibers grew in through inappropriate routes to the wrong region of tectum but subsequently arrived at their appropriate locus by circuitous routes within the innervation layer.  相似文献   

6.
M. Romeskie  S.C. Sharma   《Brain research》1980,201(1):202-205
Following optic nerve crush, the precise termination sites of regenerating goldfish optic axons may be influenced by the presence or abscence of degenerating axonal debris from the previous projection. We investigated whether tectal polarity reversal can be induced in the absence of axonal debris The right optic tectum was denervated by contralateral eye removal. One year later, when no debris was present, a piece of the right tectum was rotated and innervation by the right eye was induced by removal of the left tectum. The new ipsilateral projection to the rotated region was correspondingly rotated. It is concluded that retention of tectal polarity is not dependent upon degenerating axonal debris.  相似文献   

7.
The processes of degeneration and reinnervation in the optic tectum of Xenopus laevis have been detailed by quantitative ultrastructural analysis. The tecta were denervated either permanently, by removing the contralateral eye, or temporarily, by cutting the optic tract. After denervation the total number of synapses decreases rapidly within 4 days of a stable level of about 40% of the original number. Vacated postsynaptic sites are subsequently removed by phagocytosis. When regenerating axons arrive in the tectum they make synaptic contact by inducing new postsynaptic membrane specializations. The ultrastructural sequence of reinnervation by optic axons resembles initial synaptogenesis.  相似文献   

8.
Intraocular injection of tetrodotoxin (TTX) in goldfish, which abolishes physiological activity in the optic axons, decreased by up to about 30% the amount of radioactively labeled adenosine, uridine and guanosine (and their nucleotide derivatives) that was axonally transported in the optic nerve. The amount of labeled nucleoside that reached the optic tectum and became incorporated into RNA in the postsynaptic tectal neurons and glial cells was reduced by up to about 50%. There was no change, however, in the amount of transported nucleoside that became incorporated into RNA in the optic nerve glia. The TTX-induced changes were eliminated when axonal transport was blocked with vincristine, indicating that this change did not involve material moving along the nerve by diffusion. If the TTX injection was delayed until several hours after labeling of the transported materials, the transported labeled nucleoside in the nerve was reduced very little, but the RNA labeling in the tectum was reduced just as much as when TTX was given prior to labeling. This indicates that the labeling of the tectal cells was affected more by the level of activity in the pathway than by the amount of transported nucleoside reaching the optic nerve terminals. It appears likely, therefore, that the process most affected by the decrease in physiological activity is the release of nucleoside from the terminals of the presynaptic neurons or its uptake into postsynaptic tectal neurons and glia. The fact that physiological activity may modify the amount of axonally transported nucleosides made available for metabolism (including RNA synthesis) in postsynaptic neurons may provide an explanation for activity-linked neurotrophic effects.  相似文献   

9.
Ultrastructural morphometry was used to test firstly, whether regenerating optic axons in goldfish tectum will form connections in adjacent denervated foreign territory and secondly, whether intact optic axons will collaterally sprout to innervate this territory. The stratum fibrosum marginale of the tectum was partially denervated by removing the torus longitudinalis and cutting the tectal commissure. Optic axons do not normally synapse in this layer. Thirty days after partial denervation and optic tract section the numbers of normal synapses in a micron 2 column through the stratum fibrosum marginale reached a minimum and then started to increase so that by 159-173 days after the operation they had returned to control levels. Optic terminals, recognised by their degeneration after optic nerve section, did not contribute to these increasing numbers of synapses. Instead, optic axons preferentially reinnervated their normal tectal layers. Similarly, there was no evidence of collateral sprouting of intact optic axons into the partially denervated stratum fibrosum marginale and numbers of normal synapses in the layer also returned to control levels. These probably arose from collateral sprouting of terminals remaining after the partial denervation, raising the possibility that optic axons were prevented from synapsing there by the rapid occupation of vacant sites by other axons. However, delaying the partial denervation with respect to the tract section did not alter the result. These results support the idea of a specific affinity between optic axons and their postsynaptic targets.  相似文献   

10.
In order to test physiologically for cerebrotectal connections in a fish, averaged evoked potentials and unit responses were recorded from the optic tectum following electrical stimulation applied to the telencephalon in the siluroid teleost Ictalurus nebulosus. A single shock applied to the area dorsalis centralis (Dc) of the telencephalon, and only to this area, elicits a sequence of deflections in the ipsilateral optic tectum: an initial negative peak at about 8 ms, (= N8), a larger N25 and a slow P50-N95. The configurations, depth profiles, latencies and susceptibility to repetitive stimulation, together with the known tectal anatomy, suggest that the first wave is due to the afferent fibers from the telencephalon and that N25 is due to deep tectal neurons. Telencephalic input exerts a conditioning effect on the field potentials and unit responses evoked by direct optic nerve shock. Such a shock elicits, in the contralateral tectum, small negative, optic tract axon peaks followed by a large N6, believed to be postsynaptic, and a still later P12. As a first approximation it is argued that the telencephalic input and the retinal input are activating different sets of neuronal elements in the optic tectum, since the configuration and depth profile of the telencephalic and optic nerve shock-elicited potentials are different. A conditioning Dc stimulus has a long-lasting effect on the form of the optic nerve field potential, maximally when the pallial shock precedes the optic by about 90 ms. The effect, observed by subtracting the conditioned from the unconditioned tectal response to optic nerve shock, is a difference wave with N11 and P20. The unit activity from deep tectal laminae is either activated or accelerated following Dc stimulation, while superficially located neurons are not affected. In another group of tectal units, the optic nerve shock-induced response is depressed by a preceding pallial dorsalis centralis stimulus. The evidence is compatible with the assumption of direct projections from Dc to the deep layers of the tectum, but the timing could also permit indirect pathways. In any case, the influence is not simple or identical for different tectal cell classes.  相似文献   

11.
In developing swine, time and frequency domain analyses were used to compare changes in discharge features of efferent phrenic and postganglionic renal nerve activities evoked by prolonged (1 h) exposure to severe hypercapnia (10% CO2, balance O2), before and after combined carotid sinus and aortic depressor nerve (CSN-AOD) sectioning. With intact CSN-AOD innervation, respiration-related activity in renal nerve discharge was rare (3 of 11 animals) during baseline periods with intact innervation, but was observed in most cases (10 of 11 animals) during baseline following denervation. Renal nerve respiration-related activity was recruited by hypercapnic stimulation in animals with intact CSN-AOD innervation, and was augmented in denervated animals with ongoing respiratory activity. Phrenic nerve discharge was markedly augmented during hypercapnia, whether CSN-AOD innervation was intact or not, and it did not exhibit a post-hypercapnic depression. Autopower spectra of renal nerve activity revealed the presence of two coexisting rhythms, 2-6 and 7-13 Hz, which were present whether CSN-AOD innervation was intact or not. The hypercapnic-induced increases of activity in the 2-6 and 7-13 Hz bands were not comparable, with the latter region exhibiting a much more robust response to hypercapnia, especially following CSN-AOD denervation. Thus, prolonged exposure to hypercapnia evoked changes in renal nerve discharge that involved increased coupling to neuronal ensembles shaping central inspiratory activity and those generating central sympathetic outflows, especially to networks generating 7-13 Hz rhythm. Such changes may permit more efficient modulation of innervated structures during exposure to stressors.  相似文献   

12.
When a primordial eye was transplanted to the ear position in Rana pipiens embryos, the optic nerve from the ectopic eye penetrated the medulla and invariably established a tract in the dorsolateral white matter of the ipsilateral spinal cord. In response to visual stimulation of the transplanted eye, extracellular recordings with metal microelectrodes were conducted with the spinal cords of post-metamorphic animals. Visual activity in the spinal cord could only be recorded in those experimental animals in which the transplanted optic nerve succeeded in penetrating the medulla. This activity was frequently encountered in the gray matter of the cord well below the dorsolateral position of the transplanted optic tract. The discharge characteristics and adaptation properties of the visual activity were often similar to that of optic nerve fibers from normal eyes suggesting that axons or their collaterals branch off from the transplanted optic tract and arborize within the spinal cord. However, occassionally stimulation of the transplanted eye evoked activity with adaptation and/or response characteristics unlike that of normal optic nerve fibers. Visual activity in the spincal cords of our experimental animals could be driven by moving small dark objects within circumscribed regions in the visual field of the transplanted eye. However we were unable to find any evidene of a systematic mapping of the transplanted retina within these abnormally penetrated spinal cords.  相似文献   

13.
Glutamic acid binding in goldfish brain and denervated optic tectum   总被引:2,自引:0,他引:2  
The binding of L-glutamic acid to goldfish brain membranes and changes in tectal binding following optic nerve denervation and regeneration were investigated. Saturable, reversible, and specific binding occurred to sodium-free washed membranes from goldfish brain at a single population of sites having an apparent Kd of 3.4 microM and a capacity of 10 pM/mg original tissue. Binding was enriched in crude synaptosomal (P2) subcellular fractions. There was a 10-fold regional variation in the concentration of binding sites. In pharmacological studies protection constants (Kp) (the concentration which resulted in a 50% inhibition of binding) ranged from 4 microM for glutamate to greater than 10 mM for GABA. Following eye removal, the total number of tectal glutamic acid binding sites was stable for 4 days, followed by a rapid loss in binding, reaching 40% of control at 24 days. After optic nerve crush and optic nerve regeneration, the number and concentration of binding sites was not different from control. The relationship between glutamate, nicotinic, and muscarinic receptor sites in the retinotectal pathway is discussed.  相似文献   

14.
We have studied the outer neuropil layers in frog tectum where the ummyelinated optic nerve fibers terminate. At any point the neuropil an extracellular microelectrode records several different visually evoked electrical transients, distinct by size and shape. When classified by shape alone, each transient falls into one of 3 distinct classes. Some of these transients are binocularly driven, as originally described by Finch and Collett. The aggregate of the receptive fields of all the elements recorded at a single point defines a multiunit receptive field (MURF). Each MURF is characteristically oval, and divided into 3 sections along its long axis. Each section represents the aggregate of the receptive fields associated with one class of transient; i.e. transients belonging to only one specific class can be evoked by stimulating that part of the visual field corresponding to the appropriate section of the MURF. All of the MURFs mapped by recording in a single tectum are radially arranged in visual space about a central point, or ‘visual pole’. Several conclusions are made. First, the two larger types of transient are generated postsynaptically by electrically active dendritic elements, specifically the beaded dendritic appendages of tectal neurons. The smallest type of transient is of presynaptic origin. Second, these tectal elements have a local and global anatomical order across the tectum, which accounts for both the tripartite structure of the MURFs and their radial arrangement about a visual pole. Third, since the large transients are of postsynaptic origin, genuine recordings of single retinal ganglion cell (RGC) activity can be made only in the optic nerve or retina itself. Fourth, information is conveyed over the unmyelinated optic nerve fibers at pulse rates as high as 80/s and is transsynaptically effective at such rates. Finally, the electrically active tectal dendritic elements, with their highly organized spatial arrangement, are an important component of the frog's visual processing apparatus, instead of being merely relays or repeaters.  相似文献   

15.
We have studied the outer neuropil layers in frog tectum where the ummyelinated optic nerve fibers terminate. At any point the neuropil an extracellular microelectrode records several different visually evoked electrical transients, distinct by size and shape. When classified by shape alone, each transient falls into one of 3 distinct classes. Some of these transients are binocularly driven, as originally described by Finch and Collett. The aggregate of the receptive fields of all the elements recorded at a single point defines a multiunit receptive field (MURF). Each MURF is characteristically oval, and divided into 3 sections along its long axis. Each section represents the aggregate of the receptive fields associated with one class of transient; i.e. transients belonging to only one specific class can be evoked by stimulating that part of the visual field corresponding to the appropriate section of the MURF. All of the MURFs mapped by recording in a single tectum are radially arranged in visual space about a central point, or ‘visual pole’. Several conclusions are made. First, the two larger types of transient are generated postsynaptically by electrically active dendritic elements, specifically the beaded dendritic appendages of tectal neurons. The smallest type of transient is of presynaptic origin. Second, these tectal elements have a local and global anatomical order across the tectum, which accounts for both the tripartite structure of the MURFs and their radial arrangement about a visual pole. Third, since the large transients are of postsynaptic origin, genuine recordings of single retinal ganglion cell (RGC) activity can be made only in the optic nerve or retina itself. Fourth, information is conveyed over the unmyelinated optic nerve fibers at pulse rates as high as 80/s and is transsynaptically effective at such rates. Finally, the electrically active tectal dendritic elements, with their highly organized spatial arrangement, are an important component of the frog's visual processing apparatus, instead of being merely relays or repeaters.  相似文献   

16.
This study tested the capacity of regenerating optic fibers to read tectal markers and thereby grow to their appropriate tectal loci when initial position, optic pathway, and interfiber interactions are eliminated as useful cues. The stability of these markers with long-term optic denervation of the tectum was also examined. In adult goldfish optic fibers innervating lateroposterior optic tectum were dissected free of tectum and inserted into the medial anterior region of the opposite "host" tectum. Normally, fibers at this position either innervate medial anterior tectum or follow the medial division of the optic pathway into medioposterior tectum. Host tectum was denervated of all other optic fibers by enucleating its contralateral eye either at the time of the deflection or at various times up to 18 months prior to deflection. The regeneration of these deflected fibers into host tectum was examined by autoradiography and electrophysiology at 1 to 11 months later. At the insertion site deflected fibers split into two groups of roughly equal size. One group directly entered the optic layers of medial tectum and grew posterolaterally across the medial half of tectum into the lateral half. The second group followed an almost direct path to the lateral tectum, sometimes traversing through the deep cell layers of tectum in which optic fibers are not usually found. These fibers subsequently entered the optic layers at the lateral edge of tectum and grew posteriorly. This second path was not seen in controls in which optic fibers from medioposterior tectum were similarly deflected. Instead growth was almost entirely posteriorly directed. On the average by 1.5 months deflected lateroposterior fibers were preferentially distributed in the lateral half of the tectum. Densitometric measurements indicated nearly a 4-fold difference in lateroposterior compared with medial posterior labeling. By contrast, controls in which medial posterior fibers were deflected had 4 times more grains medially than laterally. There was also a posterior over anterior preference, but this was weak. There was no suggestion that long periods of optic denervation prior to deflection or long postoperative periods after deflection of lateroposterior fibers diminished the lateral over medial preference. These findings support the idea that stable tectal markers exist which are differentially read by medial and lateral optic fibers. However, in no case was the innervation by deflected fibers as selective as in the normal projection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
One optic tract underwent prolonged degeneration after enucleating one eye. Crushing the remaining optic nerve at a later time resulted in regeneration to both tectal lobes. However, density of the tectal projection through the degenerated optic tract was directly related to the duration of optic tract degeneration.  相似文献   

18.
We investigated the developmental pattern of functional synaptogenesis in the chick visual pathway using a multiple-site optical recording method. Responses to optic nerve stimulation were recorded from the diencephalon and mesencephalon of the chick embryo. The first excitatory postsynaptic responses to optic nerve stimulation appeared in the contralateral diencephalon at Hamburger-Hamilton stage 27, which corresponds to an incubation day 5.5 (E5.5). At more developed stages, the optical signals evoked by optic nerve stimulation spread to several different regions, including the tectum and extra-tectal visual nuclei. We constructed maps of neural activity in the diencephalon and mesencephalon at different stages to investigate the spatio-temporal patterns of functional development in the chick visual system. The maps revealed that distinct postsynaptic response areas in the extra-tectal regions showed different onsets of activity, suggesting that the corresponding visual nuclei exhibit different time courses of functional synaptogenesis. We also identified the onset and location of the first functional synaptic connection in the optic tectum, which had been a point of controversy in earlier studies. In the tectal region, the action potential and the excitatory postsynaptic potential first appeared at E8, although these signals were recognized in the tecto/tegmental region at E7. The response area expanded with retinotectal fibre elongation, and reached the area centralis at E9. These results show that the onset of synaptic function in the tectum occurs 2-3 days earlier than was previously reported.  相似文献   

19.
Cells driven reliably by shocks delivered to the optic nerve or optic chiasm were encountered throughout the depth of the colliculus. The incidence of such cells, however, decreased markedly in the laminae ventral to the stratum opticum. The distribution of conduction velocities for the retinal afferents to the tectum was quite broad (range: 1.7-25.5 m/sec) and clearly biomodal with peaks at about 6 and 12 m/sec. A small number of cells were innervated by rapidly (> 15 m/sec) conducting axons. No evidence of an indirect-fast pathway from the retina to the colliculus via the lateral geniculate nucleus and visual cortex was obtained. Afferent conduction velocity was not correlated with retinal eccentricity, collicular depth or speed selectivity. It was, however, clearly related to directional selectivity. Ninety percent of the tectal neurons receiving inputs from axons having conduction velocities of less than 5 m/sec were directionally selective while only 41% of those neurons innervated by more rapidly conducting fibers (> 5 m/sec) exhibited selectivity. One hundred and sixteen cells in the anterior portion of the colliculus were tested with shocks delivered to the ipsilateral optic nerve and photic stimulation of the ipsilateral eye. Of these, 11% exhibited some degree of binocularity and only 6% were responsive to optic nerve shocks. These electrophysiological findings were correlated with the limited nature of the retinal input to the ipsilateral superior colliculus.  相似文献   

20.
The development of the retina and tectum in goldfish was studied using light and electron microscopy. Soon after hatching the retina is well differentiated in that all the layers of the adult retina are present. The tectum at this time lacks the characteristic layered structure of the adult and innervation in the stratum opticum is extremely sparse, being confined mainly to the rostral region. The retina grows rapidly and retinal layers increase in thickness. This continues into adulthood. Optic innervation of the tectum increases and in fish 19 mm in body length the adult pattern of layers seen by silver staining and by electron microscopy is recognizable. At this time the optic nerve contains large number of unmyelinated axons. The thickness of tectal layers continues to increase over the entire size range of fish studied, well into adulthood. Synaptic densities in the layer of optic termination also change. Density falls in the rostral region as the fish increase in size. In the caudal region there is an initial decrease followed by a small increase. Total numbers of synapses in the main layer of optic termination increase both rostrally and caudally over the entire range of fish studied. Optic and nonoptic fibers contribute to this. The optic nerve at this stage is almost completely myelinated. The continuing growth of both the retina and tectum, including synaptogenesis, may provide a basis for the remarkable regeneration and plasticity shown by this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号