共查询到20条相似文献,搜索用时 13 毫秒
1.
Inhibition of Cathepsin K Increases Modeling‐Based Bone Formation,and Improves Cortical Dimension and Strength in Adult Ovariectomized Monkeys 下载免费PDF全文
Brenda L Pennypacker Charles M Chen Helen Zheng Mei‐Shu Shih Mary Belfast Rana Samadfam Le T Duong 《Journal of bone and mineral research》2014,29(8):1847-1858
Treatment with the cathepsin K (CatK) inhibitor odanacatib (ODN) protects against bone loss and maintains normal biomechanical properties in the spine and hip of ovariectomized (OVX) preclinical models. Here, we characterized the effects of ODN on the dynamics of cortical modeling and remodeling, and dimension and strength of the central femur in adult OVX‐rhesus monkeys. Animals were treated with vehicle or ODN (6 or 30 mg/kg, once per day [q.d., p.o.]) in prevention mode for 21 months. Calcein and tetracycline double‐labeling were given at 12 and 21 months, and the femoral cross‐sections were subjected to dynamic histomorphometric and cement line analyses. ODN treatment significantly increased periosteal and endocortical bone formation (BFR/BS), accompanied with an increase in endocortical mineralizing surface (102%, p < 0.01) with the 6 mg/kg dose. ODN at both doses reduced remodeling hemiosteon numbers by 51% and 66% (p < 0.05), respectively, and ODN 30 mg/kg numerically reduced activation frequency without affecting wall thickness. On the same endocortical surface, ODN increased all modeling‐based parameters, while reducing intracortical remodeling, consistent with the observed no treatment effects on cortical porosity. ODN 30 mg/kg markedly increased cortical thickness (CtTh, p < 0.001) and reduced marrow area (p < 0.01). Lastly, ODN treatment increased femoral structural strength (p < 0.001). Peak load was positively correlated with the increases in bone mineral content (BMC) (r2 = 0.9057, p < 0.0001) and CtTh (r2 = 0.6866, p < 0.0001). Taken together, by reducing cortical remodeling‐based and stimulating modeling‐based bone formation, ODN significantly improved cortical dimension and strength in OVX monkeys. This novel mechanism of CatK inhibition in stimulating cortical formation suggests that ODN represents a novel therapeutic approach for the treatment of osteoporosis. © 2014 American Society for Bone and Mineral Research. 相似文献
2.
Serum Levels of a Cathepsin‐K Generated Periostin Fragment Predict Incident Low‐Trauma Fractures in Postmenopausal Women Independently of BMD and FRAX 下载免费PDF全文
Nicolas Bonnet Emmanuel Biver Thierry Chevalley René Rizzoli Patrick Garnero Serge L Ferrari 《Journal of bone and mineral research》2017,32(11):2232-2238
Periostin is a matricellular protein involved in bone formation and bone matrix organization, but it is also produced by other tissues. Its circulating levels have been weakly associated with bone microstructure and prevalent fractures, possibly because periostin measured by the current commercial assays does not specifically reflect bone metabolism. In this context, we developed a new ELISA for a periostin fragment resulting from cathepsin K digestion (K‐Postn). We hypothesized that circulating K‐Postn levels could be associated with bone fragility. A total of 695 women (age 65.0 ± 1.5 years), enrolled in the Geneva Retirees Cohort (GERICO), were prospectively evaluated over 4.7 ± 1.9 years for the occurrence of low‐trauma fractures. At baseline, we measured serum periostin, K‐Postn, and bone turnover markers (BTMs), distal radius and tibia microstructure by HR‐pQCT, hip and lumbar spine aBMD by DXA, and estimated fracture probability using the Fracture Risk Assessment Tool (FRAX). Sixty‐six women sustained a low‐trauma clinical fracture during the follow‐up. Total periostin was not associated with fractures (HR [95% CI] per SD: 1.19 [0.89 to 1.59], p = 0.24). In contrast, K‐Postn was significantly higher in the fracture versus nonfracture group (57.5 ± 36.6 ng/mL versus 42.5 ± 23.4 ng/mL, p < 0.001) and associated with fracture risk (HR [95%CI] per SD: 2.14 [1.54 to 2.97], p < 0.001). After adjustment for aBMD, FRAX, bone microstructure, or BTMs, K‐Postn remained significantly associated with fracture risk. The performance of the fracture prediction models was improved by adding K‐Postn to aBMD or FRAX (Harrell C index for fracture: 0.70 for aBMD + K‐Post versus 0.58 for aBMD alone, p = 0.001; 0.73 for FRAX + K‐Postn versus 0.65 for FRAX alone, p = 0.005). Circulating K‐Postn predicts incident fractures independently of BMD, BTMs, and FRAX in postmenopausal women. Hence measurement of a periostin fragment resulting from in vivo cathepsin K digestion may help to identify subjects at high risk of fracture. © 2017 American Society for Bone and Mineral Research 相似文献
3.
Jianquan Chen Nilsson Holguin Yu Shi Matthew J. Silva Fanxin Long 《Journal of bone and mineral research》2015,30(2):369-378
Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase controlling many physiological processes in mammals. mTOR functions in two distinct protein complexes, namely mTORC1 and mTORC2. Compared to mTORC1, the specific roles of mTORC2 are less well understood. To investigate the potential contribution of mTORC2 to skeletal development and homeostasis, we have genetically deleted Rictor, an essential component of mTORC2, in the limb skeletogenic mesenchyme of the mouse embryo. Loss of Rictor leads to shorter and narrower skeletal elements in both embryos and postnatal mice. In the embryo, Rictor deletion reduces the width but not the length of the initial cartilage anlage. Subsequently, the embryonic skeletal elements are shortened due to a delay in chondrocyte hypertrophy, with no change in proliferation, apoptosis, cell size, or matrix production. Postnatally, Rictor‐deficient mice exhibit impaired bone formation, resulting in thinner cortical bone, but the trabecular bone mass is relatively normal thanks to a concurrent decrease in bone resorption. Moreover, Rictor‐deficient bones exhibit a lesser anabolic response to mechanical loading. Thus, mTORC2 signaling is necessary for optimal skeletal growth and bone anabolism. © 2014 American Society for Bone and Mineral Research. 相似文献
4.
Sclerostin (Scl) antibodies (Scl-Ab) potently stimulate bone formation, but these effects are transient. Whether the rapid inhibition of Scl-Ab anabolic effects is due to a loss of bone cells’ capacity to form new bone or to a mechanostatic downregulation of Wnt signaling once bone strength exceeds stress remains unclear. We hypothesized that bone formation under Scl-Ab could be reactivated by increasing the dose of Scl-Ab and/or by adding mechanical stimuli, and investigated the molecular mechanisms involved in this response, in particular the role of periostin (Postn), a co-activator of the Wnt pathway in bone. For this purpose, C57Bl/6, Postn−/− and Postn+/+ mice were treated with vehicle or Scl-Ab (50 to 100 mg/kg/wk) for various durations and subsequently subjected to tibia axial compressive loading. In wild-type (WT) mice, Scl-Ab anabolic effects peaked between 2 and 4 weeks and declined thereafter, with no further increase in bone volume and strength between 7 and 10 weeks. Doubling the dose of Scl-Ab did not rescue the decline in bone formation. In contrast, mechanical stimulation was able to restore cortical bone formation concomitantly to Scl-Ab treatment at both doses. Several Wnt inhibitors, including Dkk1, Sost, and Twist1, were upregulated, whereas Postn was markedly downregulated by 2 to 4 weeks of Scl-Ab. Mechanical loading specifically upregulated Postn gene expression. In turn, Scl-Ab effects on cortical bone were more rapidly downregulated in Postn−/− mice. These results indicate that bone formation is not exhausted by Scl-Ab but inhibited by a mechanically driven downregulation of Wnt signaling. Hence, increasing mechanical loads restores bone formation on cortical surfaces, in parallel with Postn upregulation. © 2020 American Society for Bone and Mineral Research (ASBMR). 相似文献
5.
Antagonizing the αvβ3 Integrin Inhibits Angiogenesis and Impairs Woven but Not Lamellar Bone Formation Induced by Mechanical Loading 下载免费PDF全文
Ryan E Tomlinson Anne H Schmieder James D Quirk Gregory M Lanza Matthew J Silva 《Journal of bone and mineral research》2014,29(9):1970-1980
Angiogenesis and osteogenesis are critically linked, although the role of angiogenesis is not well understood in osteogenic mechanical loading. In this study, either damaging or non‐damaging cyclic axial compression was used to generate woven bone formation (WBF) or lamellar bone formation (LBF), respectively, at the mid‐diaphysis of the adult rat forelimb. αvβ3 integrin–targeted nanoparticles or vehicle was injected intravenously after mechanical loading. β3 integrin subunit expression on vasculature was maximal 7 days after damaging mechanical loading, but was still robustly expressed 14 days after loading. Accordingly, targeted nanoparticle delivery in WBF‐loaded limbs was increased compared with non‐loaded limbs. Vascularity was dramatically increased after WBF loading (+700% on day 14) and modestly increased after LBF loading (+50% on day 14). This increase in vascularity was inhibited by nanoparticle treatment in both WBF‐ and LBF‐loaded limbs at days 7 and 14 after loading. Decreased vascularity led to diminished woven, but not lamellar, bone formation. Decreased woven bone formation resulted in impaired structural properties of the skeletal repair, particularly in post‐yield behavior. These results demonstrate that αvβ3 integrin–mediated angiogenesis is critical for recovering fracture resistance after bone injury but is not required for bone modeling after modest mechanical strain. © 2014 American Society for Bone and Mineral Research. 相似文献
6.
The Effect of the Cathepsin K Inhibitor ONO‐5334 on Trabecular and Cortical Bone in Postmenopausal Osteoporosis: The OCEAN Study 下载免费PDF全文
Klaus Engelke Shinichi Nagase Thomas Fuerst Maria Small Tomohiro Kuwayama Stephen Deacon Richard Eastell Harry K Genant 《Journal of bone and mineral research》2014,29(3):629-638
ONO‐5334 (Ono Pharmaceutical Co., Ltd., Osaka, Japan) inhibits cathepsin K and has been shown to increase areal bone mineral density (BMD) at the hip and spine in postmenopausal osteoporosis. Quantitative computed tomography (QCT) allows the study of the cortical and trabecular bone separately and provides structural information such as cortical thickness. We investigated the impact of 2 years of cathepsin K inhibition on these different bone compartments with ONO‐5334. The clinical study was a randomized, double‐blind, placebo, and active controlled parallel group study conducted in 13 centers in six European countries. The original study period of 12 months was extended by another 12 months. A total of 147 subjects (age 55–75 years) of the QCT substudy who participated in the extension period were included. Subjects had been randomized into one of five treatment arms: placebo; ONO‐5334 50 mg twice per day (BID); ONO‐5334 100 mg once daily (QD); ONO‐5334 300 mg QD; or alendronate 70 mg once weekly (QW). QCT was obtained to evaluate bone structure at the lumbar spine and proximal femur. After 24 months ONO‐5334 showed statistically significant increases versus placebo for integral, trabecular, and cortical BMD at the spine and the hip (for ONO‐5334 300 mg QD, BMD increases were 10.5%, 7.1%, and 13.4% for integral, cortical, and trabecular BMD at the spine, respectively, and 6.2%, 3.4%, and 14.6% for integral, cortical, and trabecular total femur BMD, respectively). Changes in cortical and trabecular BMD in the spine and hip were similar for alendronate as for ONO‐5334. Integral volume did not demonstrate statistically significant changes under ONO‐5334 treatment, thus there was no evidence of periosteal apposition, neither at the spine nor at the femur. Cortical thickness changes were not statistically significant for ONO‐5334 in the spine and hip, with exception of a 2.1% increase after month 24 in the intertrochanter for ONO‐5334 300 mg QD. Over 2 years ONO‐5334 showed a statistically significant and persistent increase of trabecular and integral BMD at the spine and the hip. Cortical BMD also progressively increased but at a lower rate. Changes in bone size and of periosteal apposition were not observed. © 2014 American Society for Bone and Mineral Research. 相似文献
7.
Tissue‐Level Mechanisms Responsible for the Increase in Bone Formation and Bone Volume by Sclerostin Antibody 下载免费PDF全文
Michael S Ominsky Qing‐Tian Niu Chaoyang Li Xiaodong Li Hua Zhu Ke 《Journal of bone and mineral research》2014,29(6):1424-1430
Bone formation can be remodeling‐based (RBF) or modeling‐based (MBF), the former coupled to bone resorption and the latter occurring directly on quiescent surfaces. Unlike osteoanabolic therapies such as parathyroid hormone (PTH) 1‐34 that increase bone remodeling and thus both formation and resorption, sclerostin antibody (Scl‐Ab) increases bone formation while decreasing bone resorption. With this unique profile, we tested our hypothesis that Scl‐Ab primarily elicited MBF by examining bones from Scl‐Ab–treated ovariectomized (OVX) rats and male cynomolgus monkeys (cynos). Histomorphometry was performed to quantify and characterize bone surfaces in OVX rats administered vehicle or Scl‐Ab (25 mg/kg) subcutaneously (sc) twice/week for 5 weeks and in adolescent cynos administered vehicle or Scl‐Ab (30 mg/kg) sc every 2 weeks for 10 weeks. Fluorochrome‐labeled surfaces in L2 vertebra and femur endocortex (cynos only) were considered to be MBF or RBF based on characteristics of their associated cement lines. In OVX rats, Scl‐Ab increased MBF by eightfold (from 7% to 63% of bone surface, compared to vehicle). In cynos, Scl‐Ab markedly increased MBF on trabecular (from 0.6% to 34%) and endocortical surfaces (from 7% to 77%) relative to vehicle. Scl‐Ab did not significantly affect RBF in rats or cynos despite decreased resorption surface in both species. In cynos, Scl‐Ab resulted in a greater proportion of RBF and MBF containing sequential labels from week 2, indicating an increase in the lifespan of the formative site. This extended formation period was associated with robust increases in the percent of new bone volume formed. These results demonstrate that Scl‐Ab increased bone volume by increasing MBF and prolonged the formation period at both modeling and remodeling sites while reducing bone resorption. Through these unique effects on bone formation and resorption, Scl‐Ab may prove to be an effective therapeutic to rapidly increase bone mass in diseases such as osteoporosis. © 2014 American Society for Bone and Mineral Research. 相似文献
8.
9.
Brenda L Pennypacker Le T Duong Tara E Cusick Patricia J Masarachia Michael A Gentile Jacques‐Yves Gauthier W Cameron Black Boyd B Scott Rana Samadfam Susan Y Smith Donald B Kimmel 《Journal of bone and mineral research》2011,26(2):252-262
Two cathepsin K inhibitors (CatKIs) were compared with alendronate (ALN) for their effects on bone resorption and formation in ovariectomized (OVX) rabbits. The OVX model was validated by demonstrating significant loss (9.8% to 12.8%) in lumbar vertebral bone mineral density (LV BMD) in rabbits at 13‐weeks after surgery, which was prevented by estrogen or ALN. A potent CatKI, L‐006235 (L‐235), dosed at 10 mg/kg per day for 27 weeks, significantly decreased LV BMD loss (p < .01) versus OVX‐vehicle control. ALN reduced spine cancellous mineralizing surface by 70%, whereas L‐235 had no effect. Similarly, endocortical bone‐formation rate and the number of double‐labeled Haversian canals in the femoral diaphysis were not affected by L‐235. To confirm the sparing effects of CatKI on bone formation, odanacatib (ODN) was dosed in food to achieve steady‐state exposures of 4 or 9 µM/day in OVX rabbits for 27 weeks. ODN at both doses prevented LV BMD loss (p < .05 and p < .001, respectively) versus OVX‐vehicle control to levels comparable with sham or ALN. ODN also dose‐dependently increased BMD at the proximal femur, femoral neck, and trochanter. Similar to L‐235, ODN did not reduce bone formation at any bone sites studied. The positive and highly correlative relationship of peak load to bone mineral content in the central femur and spine suggested that ODN treatment preserved normal biomechanical properties of relevant skeletal sites. Although CatKIs had similar efficacy to ALN in preventing bone loss in adult OVX rabbits, this novel class of antiresorptives differs from ALN by sparing bone formation, potentially via uncoupling bone formation from resorption. © 2011 American Society for Bone and Mineral Research. 相似文献
10.
Dysapoptosis of Osteoblasts and Osteocytes Increases Cancellous Bone Formation But Exaggerates Cortical Porosity With Age 下载免费PDF全文
Robert L Jilka Charles A O'Brien Paula K Roberson Lynda F Bonewald Robert S Weinstein Stavros C Manolagas 《Journal of bone and mineral research》2014,29(1):103-117
Skeletal aging is accompanied by decreased cancellous bone mass and increased formation of pores within cortical bone. The latter accounts for a large portion of the increase in nonvertebral fractures after age 65 years in humans. We selectively deleted Bak and Bax, two genes essential for apoptosis, in two types of terminally differentiated bone cells: the short‐lived osteoblasts that elaborate the bone matrix, and the long‐lived osteocytes that are immured within the mineralized matrix and choreograph the regeneration of bone. Attenuation of apoptosis in osteoblasts increased their working lifespan and thereby cancellous bone mass in the femur. In long‐lived osteocytes, however, it caused dysfunction with advancing age and greatly magnified intracortical femoral porosity associated with increased production of receptor activator of nuclear factor‐κB ligand and vascular endothelial growth factor. Increasing bone mass by artificial prolongation of the inherent lifespan of short‐lived osteoblasts, while exaggerating the adverse effects of aging on long‐lived osteocytes, highlights the seminal role of cell age in bone homeostasis. In addition, our findings suggest that distress signals produced by old and/or dysfunctional osteocytes are the culprits of the increased intracortical porosity in old age. © 2014 American Society for Bone and Mineral Research 相似文献
11.
12.
Amanda M. Rooney Tyler J. McNeill F. Patrick Ross Mathias P.G. Bostrom Marjolein C.H. van der Meulen 《Journal of bone and mineral research》2023,38(1):59-69
Parathyroid hormone (PTH) is an anabolic osteoporosis treatment that increases bone mass and reduces fracture risk. Clinically, the effects of PTH are site-specific, increasing bone mass more at the spine than the hip and not increasing bone mass at the radius. Differences in local loading environment between the spine, hip, and radius may help explain the variation in efficacy, as PTH and mechanical loading have been shown to synergistically increase bone mass. We hypothesized that differences in loading mode might further explain these variations. Owing to the curvature of the mouse tibia, cyclic compression of the hindlimb causes bending at the tibial midshaft, placing the anterior surface under tension and the posterior surface under compression. We investigated the combination of PTH treatment and tibial loading in an osteoblast-specific estrogen receptor-alpha knockout mouse model of low bone mass (pOC-ERαKO) and their littermate controls (LCs) and analyzed bone morphology in the tensile, compressive, and neutral regions of the tibial midshaft. We also hypothesized that pretreating wild-type C57Bl/6J (WT) mice with PTH prior to mechanical loading would enhance the synergistic anabolic effects. Compression was more anabolic than tension, and PTH enhanced the effect of loading, particularly under compression. PTH pretreatment maintained the synergistic anabolic effect for longer durations than concurrent treatment and loading alone. Together these data provide insights into more effective physical therapy and exercise regimens for patients receiving PTH treatment. © 2022 American Society for Bone and Mineral Research (ASBMR). 相似文献
13.
14.
Saghi Sadoughi Courtney Pasco Gabby B Joseph Po-Hung Wu Anne L Schafer Galateia J Kazakia 《Journal of bone and mineral research》2022,37(4):753-763
Roux-en Y gastric bypass (RYGB) surgery is an effective treatment for obesity; however, it may negatively impact skeletal health by increasing fracture risk. This increase may be the result not only of decreased bone mineral density but also of changes in bone microstructure, for example, increased cortical porosity. Increased tibial and radial cortical porosity of patients undergoing RYGB surgery has been observed as early as 6 months postoperatively; however, local microstructural changes and associated biological mechanisms driving this increase remain unclear. To provide insight, we studied the spatial distribution of cortical porosity in 42 women and men (aged 46 ± 12 years) after RYGB surgery. Distal tibias and radii were evaluated with high-resolution peripheral quantitative computed tomography (HR-pQCT) preoperatively and at 12 months postoperatively. Laminar analysis was used to determine cortical pore number and size within the endosteal, midcortical, and periosteal layers of the cortex. Paired t tests were used to compare baseline versus follow-up porosity parameters in each layer. Mixed models were used to compare longitudinal changes in laminar analysis outcomes between layers. We found that the midcortical (0.927 ± 0.607 mm−2 to 1.069 ± 0.654 mm−2, p = 0.004; 0.439 ± 0.293 mm−2 to 0.509 ± 0.343 mm−2, p = 0.03) and periosteal (0.642 ± 0.412 mm−2 to 0.843 ± 0.452 mm−2, p < 0.0001; 0.171 ± 0.101 mm−2 to 0.230 ± 0.160 mm−2, p = 0.003) layers underwent the greatest increases in porosity over the 12-month period at the distal tibia and radius, respectively. The endosteal layer, which had the greatest porosity at baseline, did not undergo significant porosity increase over the same period (1.234 ± 0.402 mm−2 to 1.259 ± 0.413 mm−2, p = 0.49; 0.584 ± 0.290 mm−2 to 0.620 ± 0.299 mm−2, p = 0.35) at the distal tibia and radius, respectively. An alternative baseline-mapping approach for endosteal boundary definition confirmed that cortical bone loss was not primarily endosteal. These findings indicate that increases in cortical porosity happen in regions distant from the endosteal surface, suggesting that the underlying mechanism driving the increase in cortical porosity is not merely endosteal trabecularization. © 2022 American Society for Bone and Mineral Research (ASBMR). 相似文献
15.
High‐Impact Mechanical Loading Increases Bone Material Strength in Postmenopausal Women—A 3‐Month Intervention Study 下载免费PDF全文
Daniel Sundh Martin Nilsson Michail Zoulakis Courtney Pasco Melis Yilmaz Galateia J Kazakia Martin Hellgren Mattias Lorentzon 《Journal of bone and mineral research》2018,33(7):1242-1251
Bone adapts to loading in several ways, including redistributing bone mass and altered geometry and microarchitecture. Because of previous methodological limitations, it is not known how the bone material strength is affected by mechanical loading in humans. The aim of this study was to investigate the effect of a 3‐month unilateral high‐impact exercise program on bone material properties and microarchitecture in healthy postmenopausal women. A total of 20 healthy and inactive postmenopausal women (aged 55.6 ± 2.3 years [mean ± SD]) were included and asked to perform an exercise program of daily one‐legged jumps (with incremental number, from 3×10 to 4×20 jumps/d) during 3 months. All participants were asked to register their performed jumps in a structured daily diary. The participants chose one leg as the intervention leg and the other leg was used as control. The operators were blinded to the participant's choice of leg for intervention. The predefined primary outcome was change in bone material strength index (BMSi), measured at the mid tibia with a handheld reference probe indentation instrument (OsteoProbe). Bone microstructure, geometry, and density were measured with high‐resolution peripheral quantitative computed tomography (XtremeCT) at the ultradistal and at 14% of the tibia bone length (distal). Differences were analyzed by related samples Wilcoxon signed rank test. The overall compliance to the jumping program was 93.6%. Relative to the control leg, BMSi of the intervention leg increased 7% or 0.89 SD (p = 0.046), but no differences were found for any of the XtremeCT‐derived bone parameters. In conclusion, a unilateral high‐impact loading program increased BMSi in postmenopausal women rapidly without affecting bone microstructure, geometry, or density, indicating that intense mechanical loading has the ability to rapidly improve bone material properties before changes in bone mass or structure. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc. 相似文献
16.
Fjola Johannesdottir Tom Turmezei Kenneth ES Poole 《Journal of bone and mineral research》2014,29(4):771-783
Hip fractures are the most serious of all fragility fractures in older people of both sexes. Trips, stumbles, and falls result in fractures of the femoral neck or trochanter, and the incidence of these two common fractures is increasing worldwide as populations age. Although clinical risk factors and chance are important in causation, the ability of a femur to resist fracture also depends on the size and spatial distribution of the bone, its intrinsic material properties, and the loads applied. Over the past two decades, clinical quantitative computed tomography (QCT) studies of living volunteers have provided insight into how the femur changes with advancing age to leave older men and women at increased risk of hip fractures. In this review, we focus on patterns of cortical bone loss associated with hip fracture, age‐related changes in cortical bone, and the effects of drugs used to treat osteoporosis. There are several methodologies available to measure cortical bone in vivo using QCT. Most techniques quantify bone density (g/cm3), mass (g), and thickness (mm) in selected, predefined or “traditional” regions of interest such as the “femoral neck” or “total hip” region. A recent alternative approach termed “computational anatomy,” uses parametric methods to identify systematic differences, before displaying statistically significant regions as color‐scaled maps of density, mass, or thickness on or within a representative femur model. This review will highlight discoveries made using both traditional and computational anatomy methods, focusing on cortical bone of the proximal femur. © 2014 American Society for Bone and Mineral Research. 相似文献
17.
Cortical and Trabecular Bone Microstructure Did Not Recover at Weight‐Bearing Skeletal Sites and Progressively Deteriorated at Non‐Weight‐Bearing Sites During the Year Following International Space Station Missions 下载免费PDF全文
Laurence Vico Bert van Rietbergen Nicolas Vilayphiou Marie‐Thérèse Linossier Hervé Locrelle Myriam Normand Mohamed Zouch Maude Gerbaix Nicolas Bonnet Valery Novikov Thierry Thomas Galina Vassilieva 《Journal of bone and mineral research》2017,32(10):2010-2021
Risk for premature osteoporosis is a major health concern in astronauts and cosmonauts; the reversibility of the bone lost at the weight‐bearing bone sites is not established, although it is suspected to take longer than the mission length. The bone three‐dimensional structure and strength that could be uniquely affected by weightlessness is currently unknown. Our objective is to evaluate bone mass, microarchitecture, and strength of weight‐bearing and non‐weight‐bearing bone in 13 cosmonauts before and for 12 months after a 4‐month to 6‐month sojourn in the International Space Station (ISS). Standard and advanced evaluations of trabecular and cortical parameters were performed using high‐resolution peripheral quantitative computed tomography. In particular, cortical analyses involved determination of the largest common volume of each successive individual scan to improve the precision of cortical porosity and density measurements. Bone resorption and formation serum markers, and markers reflecting osteocyte activity or periosteal metabolism (sclerostin, periostin) were evaluated. At the tibia, in addition to decreased bone mineral densities at cortical and trabecular compartments, a 4% decrease in cortical thickness and a 15% increase in cortical porosity were observed at landing. Cortical size and density subsequently recovered and serum periostin changes were associated with cortical recovery during the year after landing. However, tibial cortical porosity or trabecular bone failed to recover, resulting in compromised strength. The radius, preserved at landing, unexpectedly developed postflight fragility, from 3 months post‐landing onward, particularly in its cortical structure. Remodeling markers, uncoupled in favor of bone resorption at landing, returned to preflight values within 6 months, then declined farther to lower than preflight values. Our findings highlight the need for specific protective measures not only during, but also after spaceflight, because of continuing uncertainties regarding skeletal recovery long after landing. © 2017 American Society for Bone and Mineral Research. 相似文献
18.
Odanacatib Treatment Affects Trabecular and Cortical Bone in the Femur of Postmenopausal Women: Results of a Two‐Year Placebo‐Controlled Trial 下载免费PDF全文
Klaus Engelke Thomas Fuerst Bernard Dardzinski John Kornak Shabana Ather Harry K Genant Anne de Papp 《Journal of bone and mineral research》2015,30(1):30-38
Odanacatib, a selective cathepsin K inhibitor, increases areal bone mineral density (aBMD) at the spine and hip of postmenopausal women. To gain additional insight into the effects on trabecular and cortical bone, we analyzed quantitative computed tomography (QCT) data of postmenopausal women treated with odanacatib using Medical Image Analysis Framework (MIAF; Institute of Medical Physics, University of Erlangen, Erlangen, Germany). This international, randomized, double‐blind, placebo‐controlled, 2‐year, phase 3 trial enrolled 214 postmenopausal women (mean age 64 years) with low aBMD. Subjects were randomized to odanacatib 50 mg weekly (ODN) or placebo (PBO); all participants received calcium and vitamin D. Hip QCT scans at 24 months were available for 158 women (ODN: n = 78 women; PBO: n = 80 women). There were consistent and significant differential treatment effects (ODN‐PBO) for total hip integral (5.4%), trabecular volumetric BMD (vBMD) (12.2%), and cortical vBMD (2.5%) at 24 months. There was no significant differential treatment effect on integral bone volume. Results for bone mineral content (BMC) closely matched those for vBMD for integral and trabecular compartments. However, with small but mostly significant differential increases in cortical volume (1.0% to 1.3%) and thickness (1.4% to 1.9%), the percentage cortical BMC increases were numerically larger than those of vBMD. With a total hip BMC differential treatment effect (ODN‐PBO) of nearly 1000 mg, the proportions of BMC attributed to cortical gain were 45%, 44%, 52%, and 40% for the total, neck, trochanter, and intertrochanter subregions, respectively. In postmenopausal women treated for 2 years, odanacatib improved integral, trabecular, and cortical vBMD and BMC at all femur regions relative to placebo when assessed by MIAF. Cortical volume and thickness increased significantly in all regions except the femoral neck. The increase in cortical volume and BMC paralleled the increase in cortical vBMD, demonstrating a consistent effect of ODN on cortical bone. Approximately one‐half of the absolute BMC gain occurred in cortical bone. © 2014 American Society for Bone and Mineral Research. 相似文献
19.
Predicting Hip Fracture Type With Cortical Bone Mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study 下载免费PDF全文
Graham M Treece Andrew H Gee Carol Tonkin Susan K Ewing Peggy M Cawthon Dennis M Black Kenneth ES Poole ; for the Osteoporotic Fractures in Men Study 《Journal of bone and mineral research》2015,30(11):2067-2077
Hip fracture risk is known to be related to material properties of the proximal femur, but fracture prediction studies adding richer quantitative computed tomography (QCT) measures to dual‐energy X‐ray (DXA)‐based methods have shown limited improvement. Fracture types have distinct relationships to predictors, but few studies have subdivided fracture into types, because this necessitates regional measurements and more fracture cases. This work makes use of cortical bone mapping (CBM) to accurately assess, with no prior anatomical presumptions, the distribution of properties related to fracture type. CBM uses QCT data to measure the cortical and trabecular properties, accurate even for thin cortices below the imaging resolution. The Osteoporotic Fractures in Men (MrOS) study is a predictive case‐cohort study of men over 65 years old: we analyze 99 fracture cases (44 trochanteric and 55 femoral neck) compared to a cohort of 308, randomly selected from 5994. To our knowledge, this is the largest QCT‐based predictive hip fracture study to date, and the first to incorporate CBM analysis into fracture prediction. We show that both cortical mass surface density and endocortical trabecular BMD are significantly different in fracture cases versus cohort, in regions appropriate to fracture type. We incorporate these regions into predictive models using Cox proportional hazards regression to estimate hazard ratios, and logistic regression to estimate area under the receiver operating characteristic curve (AUC). Adding CBM to DXA‐based BMD leads to a small but significant (p < 0.005) improvement in model prediction for any fracture, with AUC increasing from 0.78 to 0.79, assessed using leave‐one‐out cross‐validation. For specific fracture types, the improvement is more significant (p < 0.0001), with AUC increasing from 0.71 to 0.77 for trochanteric fractures and 0.76 to 0.82 for femoral neck fractures. In contrast, adding DXA‐based BMD to a CBM‐based predictive model does not result in any significant improvement. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research. 相似文献
20.
David W Dempster Hua Zhou Sudhaker D Rao Chris Recknor Paul D Miller Benjamin Z Leder Miriam Annett Michael S Ominsky Bruce H Mitlak 《Journal of bone and mineral research》2021,36(4):644-653
Anabolic osteoporosis drugs improve bone mineral density by increasing bone formation. The objective of this study was to evaluate the early effects of abaloparatide on indices of bone formation and to assess the effect of abaloparatide on modeling-based formation (MBF), remodeling-based formation (RBF), and overflow MBF (oMBF) in transiliac bone biopsies. In this open-label, single-arm study, 23 postmenopausal women with osteoporosis were treated with 80 μg abaloparatide daily. Subjects received double fluorochrome labels before treatment and before biopsy collection at 3 months. Change in dynamic histomorphometry indices in four bone envelopes were assessed. Median mineralizing surface per unit of bone surface (MS/BS) increased to 24.7%, 48.7%, 21.4%, and 16.3% of total surface after 3 months of abaloparatide treatment, representing 5.5-, 5.2-, 2.8-, and 12.9-fold changes, on cancellous, endocortical, intracortical, and periosteal surfaces (p < .001 versus baseline for all). Mineral apposition rate (MAR) was significantly increased only on intracortical surfaces. Bone formation rate (BFR/BS) was significantly increased on all four bone envelopes. Significant increases versus baseline were observed in MBF on cancellous, endocortical, and periosteal surfaces, for oMBF on cancellous and endocortical surfaces, and for RBF on cancellous, endocortical, and intracortical surfaces. Overall, modeling-based formation (MBF + oMBF) accounted for 37% and 23% of the increase in bone-forming surface on the endocortical and cancellous surfaces, respectively. Changes from baseline in serum biomarkers of bone turnover at either month 1 or month 3 were generally good surrogates for changes in histomorphometric endpoints. In conclusion, treatment with abaloparatide for 3 months stimulated bone formation on cancellous, endocortical, intracortical, and periosteal envelopes in transiliac bone biopsies obtained from postmenopausal women with osteoporosis. These increases reflected stimulation of both remodeling- and modeling-based bone formation, further elucidating the mechanisms by which abaloparatide improves bone mass and lowers fracture risk. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR). 相似文献