首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anabolic osteoporosis drugs improve bone mineral density by increasing bone formation. The objective of this study was to evaluate the early effects of abaloparatide on indices of bone formation and to assess the effect of abaloparatide on modeling-based formation (MBF), remodeling-based formation (RBF), and overflow MBF (oMBF) in transiliac bone biopsies. In this open-label, single-arm study, 23 postmenopausal women with osteoporosis were treated with 80 μg abaloparatide daily. Subjects received double fluorochrome labels before treatment and before biopsy collection at 3 months. Change in dynamic histomorphometry indices in four bone envelopes were assessed. Median mineralizing surface per unit of bone surface (MS/BS) increased to 24.7%, 48.7%, 21.4%, and 16.3% of total surface after 3 months of abaloparatide treatment, representing 5.5-, 5.2-, 2.8-, and 12.9-fold changes, on cancellous, endocortical, intracortical, and periosteal surfaces (p < .001 versus baseline for all). Mineral apposition rate (MAR) was significantly increased only on intracortical surfaces. Bone formation rate (BFR/BS) was significantly increased on all four bone envelopes. Significant increases versus baseline were observed in MBF on cancellous, endocortical, and periosteal surfaces, for oMBF on cancellous and endocortical surfaces, and for RBF on cancellous, endocortical, and intracortical surfaces. Overall, modeling-based formation (MBF + oMBF) accounted for 37% and 23% of the increase in bone-forming surface on the endocortical and cancellous surfaces, respectively. Changes from baseline in serum biomarkers of bone turnover at either month 1 or month 3 were generally good surrogates for changes in histomorphometric endpoints. In conclusion, treatment with abaloparatide for 3 months stimulated bone formation on cancellous, endocortical, intracortical, and periosteal envelopes in transiliac bone biopsies obtained from postmenopausal women with osteoporosis. These increases reflected stimulation of both remodeling- and modeling-based bone formation, further elucidating the mechanisms by which abaloparatide improves bone mass and lowers fracture risk. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

2.
Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin‐like growth factor (IGF‐1). Studies have suggested that the reduction in IGF‐1 compromises healthspan, whereas others report that loss of IGF‐1 is beneficial because it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF‐1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF‐1 on vertebral bone aging in male and female Igff/f mice. IGF‐1 was reduced at multiple specific time points during the mouse lifespan: early in postnatal development (crossing albumin–cyclic recombinase [Cre] mice with Igff/f mice); and in early adulthood and in late adulthood using hepatic‐specific viral vectors (AAV8‐TBG‐Cre). Vertebrae bone structure was analyzed at 27 months of age using micro–computed tomography (μCT) and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age‐related reductions in vertebral bone structure. In male mice, reduction of circulating IGF‐1 induced at any age did not diminish vertebral bone loss. Interestingly, early‐life loss of IGF‐1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early‐life IGF‐1–deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor‐activator of NF‐κB‐ligand (RANKL) levels in circulation. Within 3 months of a loss of IGF‐1, there was a 2.2‐fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF‐1. Together, these data suggest the age‐related loss of vertebral bone density in females can be reduced by modifying circulating IGF‐1 levels early in life. © 2015 American Society for Bone and Mineral Research.  相似文献   

3.
The Ras homolog A (RhoA) subfamily of Rho guanosine triphosphatases (GTPases) regulates actin‐based cellular functions in bone such as differentiation, migration, and mechanotransduction. Polymorphisms or genetic ablation of RHOA and some of its regulatory guanine exchange factors (GEFs) have been linked to poor bone health in humans and mice, but the effects of RhoA‐specific GTPase‐activating proteins (GAPs) on bone quality have not yet been identified. Therefore, we examined the consequences of RhoGAP Myo9b gene knockout on bone growth, phenotype, and cellular activity. Male and female mice lacking both alleles demonstrated growth retardation and decreased bone formation rates during early puberty. These mice had smaller, weaker bones by 4 weeks of age, but only female KOs had altered cellular numbers, with fewer osteoblasts and more osteoclasts. By 12 weeks of age, bone quality in KOs worsened. In contrast, 4‐week‐old heterozygotes demonstrated bone defects that resolved by 12 weeks of age. Throughout, Myo9b ablation affected females more than males. Osteoclast activity appeared unaffected. In primary osteogenic cells, Myo9b was distributed in stress fibers and focal adhesions, and its absence resulted in poor spreading and eventual detachment from culture dishes. Similarly, MC3T3‐E1 preosteoblasts with transiently suppressed Myo9b levels spread poorly and contained decreased numbers of focal adhesions. These cells also demonstrated reduced ability to undergo IGF‐1–induced spreading or chemotaxis toward IGF‐1, though responses to PDGF and BMP‐2 were unaffected. IGF‐1 receptor (IGF1R) activation was normal in cells with diminished Myo9b levels, but the activated receptor was redistributed from stress fibers and focal adhesions into nuclei, potentially affecting receptor accessibility and gene expression. These results demonstrate that Myo9b regulates a subset of RhoA‐activated processes necessary for IGF‐1 responsiveness in osteogenic cells, and is critical for normal bone formation in growing mice. © 2017 American Society for Bone and Mineral Research  相似文献   

4.
Denosumab (DMAb) administration to postmenopausal women with osteoporosis is associated with continued bone mineral density (BMD) increases and low fracture incidence through 8 years, despite persistently reduced bone turnover markers and limited fluorochrome labeling in iliac crest bone biopsies. BMD increases were hypothesized to result from additional accrual of bone matrix via modeling‐based bone formation—a hypothesis that was tested by examining fluorochrome labeling patterns in sections from ovariectomized (OVX) cynomolgus monkeys (cynos) treated with DMAb for 16 months. Mature OVX or Sham cynos were treated monthly with vehicle for 16 months, whereas other OVX cynos received monthly 25 or 50 mg/kg DMAb. DMAb groups exhibited very low serum bone resorption and formation biomarkers and near‐absent fluorochrome labeling in proximal femur cancellous bone. Despite these reductions, femoral neck dual‐energy X‐ray absorptiometry (DXA) BMD continued to rise in DMAb‐treated cynos, from a 4.6% increase at month 6 to 9.8% above baseline at month 16. Further examination of cortical bone in the proximal femur demonstrated consistent and prominent labeling on the superior endocortex and the inferior periosteal surface, typically containing multiple superimposed labels from month 6 to 16 over smooth cement lines, consistent with continuous modeling‐based bone formation. These findings were evident in all groups. Quantitative analysis at another modeling site, the ninth rib, demonstrated that DMAb did not alter the surface extent of modeling‐based labels, or the cortical area bound by them, relative to OVX controls, while significantly reducing remodeling‐based bone formation and eroded surface. This conservation of modeling‐based formation occurred concomitantly with increased femoral neck strength and, when coupled with a reduction in remodeling‐based bone loss, is likely to contribute to increases in bone mass with DMAb treatment. Thus, this study provides preclinical evidence for a potential mechanism that could contribute to the clinical observations of continued BMD increases and low fracture rates with long‐term DMAb administration. © 2015 American Society for Bone and Mineral Research.  相似文献   

5.
Current treatments for postmenopausal osteoporosis aim to either promote bone formation or inhibit bone resorption. The C1 conjugate drug represents a new treatment approach by chemically linking the antiresorptive compound alendronate (ALN) with the anabolic agent prostanoid EP4 receptor agonist (EP4a) through a linker molecule (LK) to form a conjugate compound. This enables the bone‐targeting ability of ALN to deliver EP4a to bone sites and mitigate the systemic side effects of EP4a, while also facilitating dual antiresorptive and anabolic effects. In vivo hydrolysis is required to release the EP4a and ALN components for pharmacological activity. Our study investigated the in vivo efficacy of this drug in treating established bone loss using an ovariectomized (OVX) rat model of postmenopausal osteopenia. In a curative experiment, 3‐month‐old female Sprague‐Dawley rats were OVX, allowed to lose bone for 7 weeks, then treated for 6 weeks. Treatment groups consisted of C1 conjugate at low and high doses, vehicle‐treated OVX and sham, prostaglandin E2 (PGE2), and mixture of unconjugated ALN‐LK and EP4a to assess the effect of conjugation. Results showed that weekly administration of C1 conjugate dose‐dependently increased bone volume in trabecular bone, which partially or completely reversed OVX‐induced bone loss in the lumbar vertebra and improved vertebral mechanical strength. The conjugate also dose‐dependently stimulated endocortical woven bone formation and intracortical resorption in cortical bone, with high‐dose treatment increasing the mechanical strength but compromising the material properties. Conjugation between the EP4a and ALN‐LK components was crucial to the drug's anabolic efficacy. To our knowledge, the C1 conjugate represents the first time that a combined therapy using an anabolic agent and the antiresorptive compound ALN has shown significant anabolic effects which reversed established osteopenia. © 2014 American Society for Bone and Mineral Research.  相似文献   

6.
7.
To investigate the role of IGF‐I signaling in osterix (OSX)‐expressing cells in the skeleton, we generated IGF‐I receptor (IGF‐IR) knockout mice (OSXIGF‐IRKO) (floxed‐IGF‐IR mice × OSX promoter‐driven GFP‐labeled cre‐recombinase [OSXGFPcre]), and monitored postnatal bone development. At day 2 after birth (P2), OSXGFP‐cre was highly expressed in the osteoblasts in the bone surface of the metaphysis and in the prehypertrophic chondrocytes (PHCs) and inner layer of perichondral cells (IPCs). From P7, OSXGFP‐cre was highly expressed in PHCs, IPCs, cartilage canals (CCs), and osteoblasts (OBs) in the epiphyseal secondary ossification center (SOC), but was only slightly expressed in the OBs in the metaphysis. Compared with the control mice, the IPC proliferation was decreased in the OSXIGF‐IRKOs. In these mice, fewer IPCs invaded into the cartilage, resulting in delayed formation of the CC and SOC. Immunohistochemistry indicated a reduction of vessel number and lower expression of VEGF and ephrin B2 in the IPCs and SOC of OSXIGF‐IRKOs. Quantitative real‐time PCR revealed that the mRNA levels of the matrix degradation markers, MMP‐9, 13 and 14, were decreased in the OSXIGF‐IRKOs compared with the controls. The OSXIGF‐IRKO also showed irregular morphology of the growth plate and less trabecular bone in the tibia and femur from P7 to 7 weeks, accompanied by decreased chondrocyte proliferation, altered chondrocyte differentiation, and decreased osteoblast differentiation. Our data indicate that during postnatal bone development, IGF‐I signaling in OSX‐expressing IPCs promotes IPC proliferation and cartilage matrix degradation and increases ephrin B2 production to stimulate vascular endothelial growth factor (VEGF) expression and vascularization. These processes are required for normal CC formation in the establishment of the SOC. Moreover, IGF‐I signaling in the OSX‐expressing PHC is required for growth plate maturation and osteoblast differentiation in the development of the metaphysis. © 2015 American Society for Bone and Mineral Research.  相似文献   

8.
Osteoporosis and cardiovascular disease (CVD) are both common causes of morbidity and mortality. Previous studies, mainly of people older than 60 years, suggest a relationship between these conditions. Our aim was to determine the association between bone characteristics and CVD markers in younger and middle‐aged individuals. Women (n = 3366) and their adolescent offspring (n = 4368) from the UK population‐based cohort study, Avon Longitudinal Study of Parents and Children (ALSPAC), were investigated. We measured total body (TB) and hip bone mineral density (BMD), TB bone area (BA) and bone mineral content (BMC) by dual‐energy X‐ray absorptiometry (DXA), and carotid intima‐media thickness (cIMT) by high‐resolution ultrasound. Arterial distensibility was calculated as the difference between systolic and diastolic arterial diameters. Linear regression determined associations between bone exposures and cIMT (in adolescents) and both cIMT and arterial distensibility (in women), generating partial correlation coefficients. Mean (SD) age of women was 48 (4.2) years, body mass index (BMI) was 26.2 (5.0) kg/m2, and 71% were premenopausal. In confounder‐adjusted analyses (age, height, lean mass, fat mass, menopause, smoking, estrogen replacement, calcium/vitamin D supplementation, and education) TB and hip BMD were both positively associated with cIMT (0.071 [0.030, 0.112], p = 0.001; 0.063 [0.025, 0.101], p = 0.001, respectively). Femoral neck BMD and TB BMD, BMC, and BA were positively associated with arterial distensibility. Mean (SD) age of adolescents was 17 (0.4) years, BMI was 23 (4.1) kg/m2, and 44.5% were male. Total hip and TB measurements were positively associated with cIMT, with similar magnitudes of association to those found in their mothers. In contrast to most published findings, we identified weak positive associations between BMD and cIMT in predominantly premenopausal women and their adolescent offspring. We found greater femoral neck BMD and TB DXA measurements to be associated with reduced arterial stiffness. Rather than a relationship with preclinical atherosclerosis, in these relatively young populations, we speculate our associations between BMD, cIMT, and arterial distensibility may reflect a shared relationship between bone and vascular growth and development. © 2016 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.  相似文献   

9.
Abaloparatide‐SC is a novel 34–amino acid peptide created to be a potent and selective activator of the parathyroid hormone receptor type 1 (PTHR1) signaling pathway. In the Abaloparatide Comparator Trial in Vertebral Endpoints (ACTIVE) Phase 3 trial (NCT01343004), abaloparatide reduced new morphometric vertebral fractures by 86% compared with placebo (p < 0.001) and nonvertebral fractures by 43% (p = 0.049) in postmenopausal women with osteoporosis. Abaloparatide‐SC increased bone mineral density (BMD) 3.4% at the total hip, 2.9% at the femoral neck, and 9.2% at the lumbar spine at 18 months (all p < 0.001 versus placebo). The analysis reported here was designed to evaluate whether fracture risk reductions and BMD accrual were consistent across different levels of baseline risk. Risk factor subgroups were predefined categorically for BMD T‐score of the lumbar spine, total hip, and femoral neck (≤–2.5 versus >–2.5 and ≤–3.0 versus >–3.0), history of nonvertebral fracture (yes versus no), prevalent vertebral fracture (yes versus no), and age (<65 versus 65 to <75 versus ≥75 years) at baseline. Forest plots show that there were no clinically meaningful interactions between any of the baseline risk factors and the treatment effect of abaloparatide‐SC on new morphometric vertebral fractures, nonvertebral fractures, or BMD increases. Abaloparatide provides protection against fractures consistently across a wide variety of ages and baseline risks, including those with and without prior fractures, and it has potential utility for a broad group of postmenopausal women with osteoporosis. © 2016 American Society for Bone and Mineral Research.  相似文献   

10.
Bone strength is predominantly determined by bone density, but bone microarchitecture also plays an important role. We examined whether trabecular bone score (TBS) predicts the risk of vertebral fractures in a Japanese female cohort. Of 1950 randomly selected women aged 15 to 79 years, we analyzed data from 665 women aged 50 years and older, who completed the baseline study and at least one follow‐up survey over 10 years, and who had no conditions affecting bone metabolism. Each survey included spinal imaging by dual‐energy X‐ray absorptiometry (DXA) for vertebral fracture assessment and spine areal bone mineral density (aBMD) measurement. TBS was obtained from spine DXA scans archived in the baseline study. Incident vertebral fracture was determined when vertebral height was reduced by 20% or more and satisfied McCloskey‐Kanis criteria or Genant's grade 2 fracture at follow‐up. Among eligible women (mean age 64.1 ± 8.1 years), 92 suffered incident vertebral fractures (16.7/103 person‐years). These women were older with lower aBMD and TBS values relative to those without fractures. The unadjusted odds ratio of vertebral fractures for one standard deviation decrease in TBS was 1.98 (95% confidence interval [CI] 1.56, 2.51) and remained significant (1.64, 95% CI 1.25, 2.15) after adjusting for aBMD. The area under the receiver operating characteristic curve of TBS and aBMD combined was 0.700 for vertebral fracture prediction and was not significantly greater than that of aBMD alone (0.673). However, reclassification improvement measures indicated that TBS and aBMD combined significantly improved risk prediction accuracy compared with aBMD alone. Further inclusion of age and prevalent vertebral deformity in the model improved vertebral fracture prediction, and TBS remained significant in the model. Thus, lower TBS was associated with higher risk of vertebral fracture over 10 years independently of aBMD and clinical risk factors including prevalent vertebral deformity. TBS could effectively improve fracture risk assessment in clinical settings. © 2014 American Society for Bone and Mineral Research.  相似文献   

11.
Type 2 diabetes mellitus (T2DM) is associated with an increased risk of fractures according to several studies. The underlying mechanisms remain unclear, although small case‐control studies indicate poor quality of the cortical bone. We have studied a population‐based sample of women aged 75 to 80 years in Gothenburg, randomly invited from the population register. Areal bone mineral density (aBMD) was measured by dual‐energy X‐ray absorptiometry (Hologic Discovery A), bone microarchitecture by high‐resolution peripheral quantitative computed tomography (HR‐pQCT; ExtremeCT from Scanco Medical AG), and reference point indentation was performed with Osteoprobe (Active Life Scientific). Women with T2DM (n = 99) had higher aBMD compared to controls (n = 954). Ultradistal tibial and radial trabecular bone volume fraction (+11% and +15%, respectively), distal cortical volumetric BMD (+1.6% and +1.7%), cortical area (+11.5% and +9.3%), and failure load (+7.7% and +12.9%) were higher in diabetics than in controls. Cortical porosity was lower (mean ± SD: 1.5% ± 1.1% versus 2.0% ± 1.7%, p = 0.001) in T2DM in the distal radius but not in the ultradistal radius or the tibia. Adjustment for covariates (age, body mass index, glucocorticoid treatment, smoking, physical activity, calcium intake, bone‐active drugs) eliminated the differences in aBMD but not in HR‐pQCT bone variables. However, bone material strength index (BMSi) by reference point indentation was lower in T2DM (74.6 ± 7.6 versus 78.2 ± 7.5, p < 0.01), also after adjustment, and women with T2DM performed clearly worse in measures of physical function (one leg standing: –26%, 30‐s chair‐stand test: –7%, timed up and go: +12%, walking speed: +8%; p < 0.05‐0.001) compared to controls. In conclusion, we observed a more favorable bone microarchitecture but no difference in adjusted aBMD in elderly women with T2DM in the population compared to nondiabetics. Reduced BMSi and impaired physical function may explain the increased fracture risk in T2DM. © 2016 American Society for Bone and Mineral Research.  相似文献   

12.
13.
Osteoporosis mainly affects postmenopausal women and older men. Gastrointestinal hormones released after meal ingestion, such as glucose‐dependent insulinotropic peptide (GIP) and glucagon‐like peptide (GLP)‐2, have been shown to regulate bone turnover. However, whether GLP‐1, another important gastrointestinal hormone, and its analogues also have antiosteoporotic effects, especially in aged postmenopausal situation, has not been confirmed. In the present study, we evaluated the effects of the GLP‐1 receptor agonist exendin‐4 on ovariectomy (OVX)‐induced osteoporosis in old rats. Twelve‐month‐old female Sprague‐Dawley rats were subjected to OVX, and exendin‐4 was administrated 4 weeks after the surgery and lasted for 16 weeks. Bone characters and related serum and gene biomarkers were analyzed. Sixteen weeks of treatment with exendin‐4 slowed down body weight gain by decreasing fat mass and prevented the loss of bone mass in old OVX rats. Exendin‐4 also enhanced bone strength and prevented the deterioration of trabecular microarchitecture. Moreover, exendin‐4 decreased the urinary deoxypyridinoline (DPD)/creatinine ratio and serum C‐terminal cross‐linked telopeptides of type I collagen (CTX‐I) and increased serum alkaline phosphatase (ALP), osteocalcin (OC), and N‐terminal propeptide of type 1 procollagen (P1NP) levels, key biochemical markers of bone turnover. Interestingly, gene expression results further showed that exendin‐4 not only inhibited bone resorption by increasing the osteoprotegerin (OPG)/receptor activator of NF‐κB ligand (RANKL) ratio, but also promoted bone formation by increasing the expression of OC, Col1, Runx2, and ALP, which exhibited dual regulatory effects on bone turnover as compared with previous antiosteoporotic agents. In conclusion, these findings demonstrated for the first time the antiosteoporotic effects of exendin‐4 in old OVX rats and that it might be a potential candidate for treatment of aged postmenopausal osteoporosis.  相似文献   

14.
Osteoblast‐mediated bone formation is coupled to osteoclast‐mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age‐related bone loss. Osteoclasts release and activate TGF‐β from the bone matrix. Here we show that osteoclast‐specific inhibition of TGF‐β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF‐β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF‐β receptor signaling. Osteoclasts in aged murine bones had lower TGF‐β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF‐β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF‐β availability with age. Therefore, osteoclast responses to TGF‐β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age‐related bone loss. © 2015 American Society for Bone and Mineral Research.  相似文献   

15.
Estrogen receptor alpha (ERα) has been implicated in bone's response to mechanical loading in both males and females. ERα in osteoblast lineage cells is important for determining bone mass, but results depend on animal sex and the cellular stage at which ERα is deleted. We demonstrated previously that when ERα is deleted from mature osteoblasts and osteocytes in mixed‐background female mice, bone mass and strength are decreased. However, few studies exist examining the skeletal response to loading in bone cell–specific ERαKO mice. Therefore, we crossed ERα floxed (ERαfl/fl) and osteocalcin‐Cre (OC‐Cre) mice to generate animals lacking ERα in mature osteoblasts and osteocytes (pOC‐ERαKO) and littermate controls (LC). At 10 weeks of age, the left tibia was loaded in vivo for 2 weeks. We analyzed bone mass through micro‐CT, bone formation rate by dynamic histomorphometry, bone strength from mechanical testing, and osteoblast and osteoclast activity by serum chemistry and immunohistochemistry. ERα in mature osteoblasts differentially regulated bone mass in males and females. Compared with LC, female pOC‐ERαKO mice had decreased cortical and cancellous bone mass, whereas male pOC‐ERαKO mice had equal or greater bone mass than LC. Bone mass results correlated with decreased compressive strength in pOC‐ERαKO female L5 vertebrae and with increased maximum moment in pOC‐ERαKO male femora. Female pOC‐ERαKO mice responded more to mechanical loading, whereas the response of pOC‐ERαKO male animals was similar to their littermate controls. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.  相似文献   

16.
17.
The effects of dietary protein on bone structure and metabolism have been controversial, with evidence for and against beneficial effects. Because no long‐term randomized, controlled studies have been performed, a two‐year study of protein supplementation in 219 healthy ambulant women aged 70 to 80 years was undertaken. Participants were randomized to either a high‐protein drink containing 30 g of whey protein (n = 109) or a placebo drink identical in energy content, appearance, and taste containing 2.1 g of protein (n = 110). Both drinks provided 600 mg of calcium. Dual‐energy X‐ray absorptiometric (DXA) hip areal bone mineral density (aBMD), 24‐hour urinary calcium excretion, and serum insulin‐like growth factor 1 (IGF‐1) were measured at baseline and at 1 and 2 years. Quantitative computed tomographic (QCT) hip volumetric bone mineral density (vBMD) and a femoral neck engineering strength analysis were undertaken at baseline and at 2 years. Baseline average protein intake was 1.1 g/kg of body weight per day. There was a significant decrease in hip DXA aBMD and QCT vBMD over 2 years with no between‐group differences. Femoral neck strength was unchanged in either group over time. The 24‐hour urinary calcium excretion increased significantly from baseline in both groups at 1 year but returned to baseline in the placebo group at 2 years, at which time the protein group had a marginally higher value. Compared with the placebo group, the protein group had significantly higher serum IGF‐1 level at 1 and 2 years (7.3% to 8.0%, p < .05). Our study showed that in protein‐replete healthy ambulant women, 30 g of extra protein increased IGF‐1 but did not have beneficial or deleterious effects on bone mass or strength. The effect of protein supplementation in populations with low dietary protein intake requires urgent attention. © 2011 American Society for Bone and Mineral Research  相似文献   

18.
Previous studies have shown that disruption of von Hippel–Lindau gene (Vhl) coincides with activation of hypoxia‐inducible factor α (HIFα) signaling in bone cells and plays an important role in bone development, homeostasis, and regeneration. It is known that activation of HIF1α signaling in mature osteoblasts is central to the coupling between angiogenesis and bone formation. However, the precise mechanisms responsible for the coupling between skeletal angiogenesis and osteogenesis during bone remodeling are only partially elucidated. To evaluate the role of Vhl in bone homeostasis and the coupling between vascular physiology and bone, we generated mice lacking Vhl in osteochondral progenitor cells (referred to as Vhl cKO mice) at postnatal and adult stages in a tamoxifen‐inducible manner and changes in skeletal morphology were assessed by micro–computed tomography (µCT), histology, and bone histomorphometry. We found that mice with inactivation of Vhl in osteochondral progenitor cells at the postnatal stage largely phenocopied that of mice lacking Vhl in mature osteoblasts, developing striking and progressive accumulation of cancellous bone with increased microvascular density and bone formation. These were accompanied with a significant increase in osteoblast proliferation, upregulation of differentiation marker Runx2 and osteocalcin, and elevated expression of vascular endothelial growth factor (VEGF) and phosphorylation of Smad1/5/8. In addition, we found that Vhl deletion in osteochondral progenitor cells in adult bone protects mice from aging‐induced bone loss. Our data suggest that the VHL‐mediated signaling in osteochondral progenitor cells plays a critical role in bone remodeling at postnatal/adult stages through coupling osteogenesis and angiogenesis. © 2014 American Society for Bone and Mineral Research.  相似文献   

19.
CXC chemokine receptor 4 (CXCR4) is a specific receptor for stromal‐derived‐factor 1 (SDF‐1). SDF‐1/CXCR4 interaction is reported to play an important role in vascular development. On the other hand, the therapeutic potential of endothelial progenitor cells (EPCs) in fracture healing has been demonstrated with mechanistic insight of vasculogenesis/angiogenesis and osteogenesis enhancement at sites of fracture. The purpose of this study was to investigate the influence of the SDF‐1/CXCR4 pathway in Tie2‐lineage cells (including EPCs) in bone formation. We created CXCR4 gene conditional knockout mice using the Cre/loxP system and set two groups of mice: Tie2‐CreER CXCR4 knockout mice (CXCR4?/?) and wild‐type mice (WT). We report here that in vitro, EPCs derived from of CXCR4?/? mouse bone marrow demonstrated severe reduction of migration activity and EPC colony‐forming activity when compared with those derived from WT mouse bone marrow. In vivo, radiological and morphological examinations showed fracture healing delayed in the CXCR4?/? group and the relative callus area at weeks 2 and 3 was significantly smaller in CXCR4?/? group mice. Quantitative analysis of capillary density at perifracture sites also showed a significant decrease in the CXCR4?/? group. Especially, CXCR4?/?group mice demonstrated significant early reduction of blood flow recovery at fracture sites compared with the WT group in laser Doppler perfusion imaging analysis. Real‐time RT‐PCR analysis showed that the gene expressions of angiogenic markers (CD31, VE‐cadherin, vascular endothelial growth factor [VEGF]) and osteogenic markers (osteocalcin, collagen 1A1, bone morphogenetic protein 2 [BMP2]) were lower in the CXCR4?/? group. In the gain‐of‐function study, the fracture in the SDF‐1 intraperitoneally injected WT group healed significantly faster with enough callus formation compared with the SDF‐1 injected CXCR4?/? group. We demonstrated that an EPC SDF‐1/CXCR4 axis plays an important role in bone fracture healing using Tie2‐CreER CXCR4 conditional knockout mice. © 2014 American Society for Bone and Mineral Research.  相似文献   

20.
Spinal cord injury (SCI) has been associated with a marked increase in bone loss and bone remodeling, especially short‐term after injury. The absence of mechanical load, mediated by osteocyte mechanosensory function, seems to be a causative factor related to bone loss in this condition. However, the pathogenesis and clinical management of this process remain unclear. Therefore, the aim of the study was to analyze the effect of recent SCI on the Wnt pathway antagonists, sclerostin and Dickkopf (Dkk‐1), and their relationship with bone turnover and bone mineral density (BMD) evolution. Forty‐two patients (aged 35 ± 14yrs) with a recent (<6months) complete SCI were prospectively included. Sclerostin and Dkk‐1, bone turnover markers (bone formation: PINP, bone ALP; resorption: sCTx) and BMD (lumbar spine, proximal femur, total body and lower extremities [DXA]) were assessed at baseline and at 6 and 12 months. The results were compared with a healthy control group. 22/42 patients completed the 12‐month follow‐up. At baseline, SCI patients showed a marked increase in bone markers (PINP and sCTx), remaining significantly increased at up to 6 months of follow‐up. Additionally, they presented significantly increased Dkk‐1 values throughout the study, whereas sclerostin values did not significantly change. BMD markedly decreased at the proximal femur (‐20.2 ± 5.4%, p < 0.01), total body (‐5.7 ± 2.2%, p = 0.02) and lower extremities (‐13.1 ± 4.5%, p = 0.01) at 12 months. Consequently, 59% of patients developed densitometric osteoporosis at 12 months. Patients with higher Dkk‐1 values (>58 pmol/L) at baseline showed higher sublesional BMD loss. In conclusion, this study shows that short‐term after SCI there is a marked increase in bone turnover and bone loss, the latter associated with an increase in Dkk‐1 serum levels. The persistence of increased levels of this Wnt antagonist throughout the study and their relationship with the magnitude of bone loss suggests a contributory role of this mediator in this process. © 2014 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号