首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Neuropeptide Y (NPY) and peptide YY (PYY) seem to act on at least two receptor subtypes, Y1 and Y2. The Y1-receptor requires the whole C-terminally amidated NPY/PYY molecule whereas the Y2-receptor in addition recognizes C-terminal fragments of the two peptides. The present study was designed to elucidate whether NPY and related peptides were able to release histamine from isolated peritoneal mast cells of the rat. 2. NPY, NPY 15-36, NPY 22-36, NPY 26-36 and desamido-NPY evoked a concentration-dependent release of mast-cell histamine. The pEC15 values for NPY 15-36 and NPY 22-36 were higher, while the pEC15 value for NPY 26-36 was lower than that for NPY. At the highest concentration tested (0.1 mM), NPY and its C-terminal fragments released between 30 and 40% of the total histamine content. At the same concentration desamido-NPY released about 20%. 3. PYY and PYY 15-36 also evoked a concentration-dependent release of mast-cell histamine. PYY was more effective than PYY 15-36 since, at 0.1 mM, PYY released about 33%, while PYY 15-36 released about 15% of the total histamine content. Pancreatic polypeptide (PP) and the Y1-receptor-selective agonist [Pro34]NPY were virtually inactive. 4. The effect profile of the NPY/PYY-related peptides suggests that they act on the mast cells by a mechanism that does not involve either of the receptor subtypes hitherto described.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. The action of analogues and C-terminal fragments of neuropeptide Y (NPY) was examined on excitatory synaptic transmission in area CA1 of the rat hippocampal slice in vitro, by use of intracellular and extracellular recordings, to determine by agonist profile the NPY receptor subtype mediating presynaptic inhibition. 2. Neither NPY, analogues nor fragments of NPY affected the passive or active properties of the post-synaptic CA1 pyramidal neurones, indicating their action is at a presynaptic site. 3. The full-sequence analogues, peptide YY (PYY) and human NPY (hNPY), were equipotent with NPY at the presynaptic receptor, while desamido hNPY was without activity. 4. NPY2-36 was equipotent with NPY. Fragments as short as NPY 13-36 were active, but gradually lost activity with decreasing length. NPY 16-36 had no effect on extracellular field potentials, but still significantly inhibited excitatory postsynaptic potential amplitudes. Fragments shorter than NPY 16-36 had no measurable effect on synaptic transmission. 5. The presynaptic NPY receptor in hippocampal CA1 therefore shares an identical agonist profile with the presynaptic Y2 receptor at the peripheral sympathetic neuroeffector junction.  相似文献   

3.
1. We have compared the binding and Ca2+ mobilizing properties of various full agonists, partial agonists and a non-peptide antagonist at the neuropeptide Y (NPY) receptor of human erythroleukemia (HEL) cells. 2. [125I]-NPY binding to intact HEL cells was rapid, saturable, of high affinity and with a specificity typical for the Y1-like subtype: NPY, peptide YY (PYY) and [Pro34]-NPY competed for [125I]-NPY binding with high affinity whereas NPY13-36 and NPY18-36 had only low affinity. 3. NPY, PYY and [Pro34]-NPY potently increased intracellular Ca2+ in HEL cells and had equal efficacy. NPY13-36, vasoactive intestinal peptide (VIP) and pancreatic polypeptide (PP) increased intracellular Ca2+ only poorly. 4. Whereas VIP and PP did not significantly affect NPY-stimulated Ca2+ mobilization, NPY13-36 inhibited NPY-stimulated Ca2+ increases and shifted the NPY concentration-response curve to the right without altering its maximal effect. 5. The agonist (pEC50) potencies of the various peptides corresponded well with the affinities of these compounds in the binding assay (pKi), whereas the antagonist potencies (pKb) of the peptide partial agonists and the pA2 value of the non-peptide NPY antagonist (He 90481), calculated from functional data, were lower than the respective affinities determined in the binding studies. 6. A plot of the fractional Ca2+ response vs the fractional receptor occupancy did not reveal any non-linear receptor-effector coupling for NPY or [Pro34]-NPY; a small receptor reserve might exist for PYY. 7. We conclude that the binding and functional properties of HEL cell NPY receptors are very similar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
1. We investigated the effects of neuropeptide Y (NPY), peptide YY (PYY), NPY13-36, NPY18-36, [Leu31][Pro34]NPY and of pancreatic polypeptide Y (PPY) on calcium-dependent, potassium-stimulated glutamate release in superfused rat hippocampal slices. 2. NPY, PYY and the Y2 receptor agonist NPY13-36 equipotently inhibited the release of glutamate. The half-maximal response was observed at about 10 nM in a dose-dependent manner (3 to 100 nM). Maximal inhibition of 50 to 60% was obtained at 100 nM. At higher concentrations of the peptides (300 nM and 1 microM) this inhibition was partially or entirely reversed. Porcine NPY13-36 and NPY18-36 inhibited glutamate release by about 44% at 100 nM. 3. The specific Y1 receptor agonist, [Leu31][Pro34]NPY, caused an insignificant increase in glutamate release at 100 to 300 nM concentrations. PPY had no effect on potassium-evoked glutamate release in hippocampal slices at concentrations of 30 nM to 1 microM. 4. The experiments support previous electrophysiological data. They suggest a potent inhibitory action of NPY through NPY-Y2 receptors on the release of the excitatory amino acid glutamate in rat hippocampus. Especially under conditions of increased NPY synthesis, such as in epilepsy, this mechanism may be of pathophysiological relevance.  相似文献   

6.
1. The aim of this study was to provide a pharmacological characterization of the Y receptor types responsible for neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) effects upon electrogenic ion transport in isolated human colonic mucosa. 2. Preparations of descending colon were voltage-clamped at 0 mV in Ussing chambers and changes in short-circuit current (I(sc)) continuously recorded. Basolateral PYY, NPY, human PP (hPP), PYY(3 - 36), [Leu(31), Pro(34)]PYY (Pro(34)PYY) and [Leu(31), Pro(34)]-NPY (Pro(34)NPY) all reduced basal I(sc) in untreated colon. Of all the Y agonists tested PYY(3 - 36) responses were most sensitive to tetrodotoxin (TTX) pretreatment, indicating that Y(2)-receptors are located on intrinsic neurones as well as epithelia in this tissue. 3. The EC(50) values for Pro(34)PYY, PYY(3 - 36) and hPP were 9.7 nM (4.0 - 23.5), 11.4 nM (7.6 - 17.0) and 14.5 nM (10.2 - 20.5) and response curves exhibited similar efficacies. The novel Y(5) agonist [Ala(31), Aib(32)]-NPY had no effect at 100 nM. 4. Y(1) receptor antagonists, BIBP3226 and BIBO3304 both increased basal I(sc) levels per se and inhibited subsequent PYY and Pro(34)PYY but not hPP or PYY(3 - 36) responses. The Y(2) antagonist, BIIE0246 also raised basal I(sc) levels and attenuated subsequent PYY(3 - 36) but not Pro(34)PYY or hPP responses. 5. We conclude that Y(1) and Y(2) receptor-mediated inhibitory tone exists in human colon mucosa. PYY and NPY exert their effects via both Y(1) and Y(2) receptors, but the insensitivity of hPP responses to either Y(1) or Y(2) antagonism, or to TTX, indicates that Y(4) receptors are involved and that they are predominantly post-junctional in human colon.  相似文献   

7.
1. BIIE0246, a newly synthesized non-peptide neuropeptide Y (NPY) Y(2) receptor antagonist, was able to compete with high affinity (8 to 15 nM) for specific [(125)I]PYY(3 - 36) binding sites in HEK293 cells transfected with the rat Y(2) receptor cDNA, and in rat brain and human frontal cortex membrane homogenates. 2. Interestingly, in rat brain homogenates while NPY, C2-NPY and PYY(3 - 36) inhibited all specific [(125)I]PYY(3 - 36) labelling, BIIE0246 failed to compete for all specific binding suggesting that [(125)I]PYY(3 - 36) recognized, in addition to the Y(2) subtype, another population of specific NPY binding sites, most likely the Y(5) receptor. 3. Quantitative receptor autoradiographic data confirmed the presence of [(125)I]PYY(3 - 36)/BIIE0246-sensitive (Y(2)) and-insensitive (Y(5)) binding sites in the rat brain as well as in the marmoset monkey and human hippocampal formation. 4. In the rat vas deferens and dog saphenous vein (two prototypical Y(2) bioassays), BIIE0246 induced parallel shifts to the right of NPY concentration-response curves with pA(2) values of 8.1 and 8.6, respectively. In the rat colon (a Y(2)/Y(4) bioassay), BIIE0246 (1 microM) completely blocked the contraction induced by PYY(3 - 36), but not that of [Leu(31), Pro(34)]NPY (a Y(1), Y(4) and Y(5) agonist) and hPP (a Y(4) and Y(5) agonist). Additionally, BIIE0246 failed to alter the contractile effects of NPY in prototypical Y(1) in vitro bioassays. 5. Taken together, these results demonstrate that BIIE0246 is a highly potent, high affinity antagonist selective for the Y(2) receptor subtype. It should prove most useful to establish further the functional role of the Y(2) receptor in the organism.  相似文献   

8.
1. The subtype of neuropeptide Y receptor mediating the selective inhibition of the slow inhibitory postsynaptic potential (i.p.s.p.) of submucous neurones in guinea-pig caecum was investigated by use of conventional intracellular electrophysiological recording techniques. 2. Neuropeptide Y (NPY) (1-300 nM) was found to depress or abolish reversibly the slow i.p.s.p. evoked by focal stimulation of internodal fibre tracts. At low concentrations (1-30 nM), a reduction in the duration of the slow i.p.s.p. was often apparent before any inhibition of the amplitude of this synaptic potential. 3. These inhibitory effects of NPY were mimicked by peptide YY (PYY; 0.3-100 nM), NPY13-36 (1-300 nM) and NPY22-36 (10-100 nM); [Leu31,Pro34]NPY ([Pro34]NPY) and bovine pancreatic polypeptide (bPP) were without pre- or postsynaptic effects at concentrations of up to 300 nM. The IC50 +/- s.e. mean values for PYY, NPY, and NPY13-36 were 2.7 +/- 0.3, 7.8 +/- 2.1 and 30 +/- 4.8 nM, respectively, and were significantly different from each other. Thus, the apparent rank order of potency was PYY > NPY > NPY13-36 >> [Pro34]NPY and bPP. 4. In concentrations of up to 300 nM, NPY and its analogues had no depressant effects on the active and passive properties of the impaled neurone and did not affect the amplitude or duration of either cholinergic fast synaptic potentials or non-cholinergic, slow excitatory postsynaptic potentials (e.p.s.ps). Furthermore, none of these peptides altered the amplitude or time-course of changes in membrane potential induced by focal application of acetylcholine or noradrenaline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Neuropeptide Y (NPY) is a well-established vasopressor agent present in sympathetic perivascular nerves. Recently, it was found that high doses of the peptide cause a biphasic pressor-depressor response upon intravenous administration. We now report that C-terminal NPY fragments (NPY-(18-36) and NPY-(22-36] given intravenously to conscious or pithed (areflexive) male Sprague-Dawley rats mimic the depressor component of the NPY-(1-36) response while displaying very low pressor activity. Additionally, we have found that the depressor component is blocked by the histamine H1-antagonist, mepyramine. Since the fragment, NPY-(22-36), was equipotent with NPY in inducing histamine release from isolated peritoneal mast cells, we conclude that short C-terminal NPY fragments, like NPY itself, act on mast cells to initiate histamine-mediated cardiovascular actions. Such actions may conceivably be accounted for by the abundance of positively charged amino acid residues in the C-terminus. Moreover, these fragments have little affinity for vascular NPY receptors, as indicated by their poor ability to displace iodinated NPY or peptide YY (PYY) from specific binding sites on vascular smooth muscle cells derived from rat aorta. In conclusion, we propose that short C-terminal NPY fragments, which contain several positively charged amino acid residues, retain the ability of NPY to release histamine from rat mast cells while being essentially devoid of direct vascular motor activity.  相似文献   

10.
Evidence from animal studies has led to the proposal that neuropeptide Y (NPY) has anxiolytic-like effects in rats after intracerebroventricular (i.c.v.) administration. The purpose of the present study was to extend these observations by examining the behavioral effects of a series of NPY receptor agonists including NPY, peptide YY (PYY), the NPY fragment 2-36 (NPY(2-36)), the Y(1) agonist [Leu(31), Pro(34)]-NPY and the Y(2) agonist NPY fragment 13-36 (NPY(13-36)), in two established anxiety models in rats: the elevated plus-maze and the fear-potentiated startle procedures. In the elevated plus-maze procedure, i.c.v. PYY (0.07-2.3nmol), NPY (0.07-2.3nmol), NPY(2-36) (0.07-2.3nmol). [Leu(31), Pro(34)]-NPY (0.7-7nmol), but not NPY(13-36) (0.7-7nmol), increased preference for the open arms of the plus-maze in a dose-dependent manner. In an acoustic startle paradigm, NPY, PYY and NPY(2-36) inhibited fear-potentiated startle over the dose-range of 0.23-2.3nmol. [Leu(31), Pro(34)]-NPY (2.3-13.2nmol) also attenuated fear-potentiated startle, whereas NPY(13-36) (up to 13.2nmol) had no effect. Taken together, these findings demonstrate that NPY, PYY and NPY(2-36) have anxiolytic-like effects that are likely mediated by Y(1) receptors.  相似文献   

11.
BACKGROUND AND PURPOSE: Although previous studies have demonstrated that neuropeptide Y (NPY) modulates nociceptors, the relative contributions of the Y1 and Y2 receptors are unknown. Therefore, we evaluated the effect of Y1 and Y2 receptor activation on nociceptors stimulated by bradykinin (BK) and prostaglandin E2 (PGE2). EXPERIMENTAL APPROACH: Combined immunohistochemistry (IHC) with in situ hybridization (ISH) demonstrated that Y1- and Y2-receptors are collocated with bradykinin (2) (B2)-receptors in rat trigeminal ganglia (TG). The relative functions of the Y1 and Y2 receptors in modulating BK/PGE2-evoked CGRP release and increased intracellular calcium levels in cultured TG neurons were evaluated. KEY RESULTS: The Y1 and Y2 receptors are co-expressed with B2 in TG neurons, suggesting the potential for direct NPY modulation of BK responses. Pretreatment with the Y1 agonist [Leu31,Pro34]-NPY, inhibited BK/PGE2-evoked CGRP release. Conversely, pretreatment with PYY(3-36), a Y2 agonist, increased BK/PGE2 evoked CGRP release. Treatment with NPY evoked an overall inhibitory effect, although of lesser magnitude. Similarly, [Leu31,Pro34]-NPY inhibited BK/PGE2-evoked increases in intracellular calcium levels whereas PYY(3-36) increased responses. NPY inhibition of BK/PGE2-evoked release of CGRP was reversed by the Y1 receptor antagonist, BIBO3304, and higher concentrations of BIBO3304 significantly facilitated CGRP release. The Y2 receptor antagonist, BIIE0246, enhanced the inhibitory NPY effects. CONCLUSIONS AND IMPLICATIONS: These results demonstrate that NPY modulation of peptidergic neurons is due to net activation of inhibitory Y1 and excitatory Y2 receptor systems. The relative expression or activity of these opposing receptor systems may mediate dynamic responses to injury and pain.  相似文献   

12.
1. A cyclic dimeric nonapeptide neuropeptide Y (NPY) receptor antagonist, 1229U91, was synthesized by Fmoc chemistry and dimerised in solution. Its effects were assayed in mesenteric arteries from rats and mice, and in rat vas deferens. 2. Mesenteric arteries were cannulated and pressurised to 55 mmHg and the external diameters continuously measured. NPY, PYY, Leu31Pro34NPY and NPY(13-36) each caused concentration-related contractions with the order of potency PYY > or = Leu31Pro34NPY = NPY > NPY (13-36), consistent with the Y1 receptor subtype. 3. 1229U91 had no agonist activity in the arteries but caused a concentration-related rightward shift of NPY (mouse arteries) or Leu31Pro34NPY (rat) concentration-response curves. The antagonism was competitive with pKBS of 7.69 +/- 0.15 and 7.47 +/- 0.13 in the mouse and rat arteries, respectively. 4. Sympathetic nerves in the vas deferens were stimulated with a single electrical field pulse every 20 s and the twitch responses recorded. NPY, PYY, Leu31Pro34NPY and NPY(13-36) inhibited the twitches with the order of potency PYY > NPY > NPY(13-36) >> Leu31Pro34NPY, consistent with the Y2 receptor subtype. 5. 1229U91 inhibited the vas deferens twitch with a shallow concentration-response curve and a time-course of inhibition distinct from that of NPY. 1229U91 (30 microM) did not cause a rightward shift of the NPY concentration-response curve. 1229U91 is at least 5 orders of magnitude less potent in the vas deferens than in rat brain Y2 binding assays reported by others, suggesting that the brain and vas deferens Y2 receptors are different. 6. It is concluded that 1229U91 is a competitive antagonist of NPY Y1 vascular receptors and has additional properties that inhibit the electrically evoked twitch of the rat vas deferens.  相似文献   

13.
Prejunctional neuropeptide Y (NPY) receptors that inhibit the contractions evoked in rat and rabbit vas deferens by field stimulation were investigated by using NPY, [Leu31,Pro34]NPY and the fragments, NPY-(13-36) and NPY-(18-36). NPY, and especially [Leu31,Pro34]NPY, were more potent agonists on the twitch response of the rabbit vas deferens. In contrast the NPY C-terminal fragments, NPY-(13-36) and NPY-(18-36), inhibited the twitch response at lower concentrations in the rat vas deferens. These results indicate that distinct NPY receptor subtypes mediate the biological effect in these two tissues. We suggest that prejunctional receptors in the rat vas deferens are of the Y2-subtype and those in rabbit vas deferens of the Y1-subtype.  相似文献   

14.
The effect of neuropeptide Y (NPY) on the basal and nerve stimulation-induced increase in norepinephrine synthesis was studied in the isolated and perfused mesenteric arterial bed of the rat. Tyrosine hydroxylation, the rate-limiting step in catecholamine (CA) biosynthesis, was assessed by measuring the accumulation of DOPA in the perfusate/superfusate overflow after perfusion of the mesenteric arterial bed with the decarboxylase inhibitor m-hydroxybenzyl hydralazine (NSD-1015). Treatment with NDS-1015 resulted in a time-dependent increase in DOPA production and nerve stimulation (8 Hz, supramaximal voltage, 2 ms duration) increased DOPA production even further. NPY 1 to 100 nM was observed to produce a concentration-dependent attenuation in both the basal and nerve stimulation-induced increase in DOPA formation.To come to an understanding of the NPY receptor subtype mediating the inhibition of CA synthesis, the rank order of potency of a series of NPY analogs with varying selectivity for NPY receptor subtypes including intestinal polypeptide (PYY), PYY 13-36, Leu36 Pro34 NPY, human pancreatic polypeptide (h-PP), and rat pancreatic polypeptide (r-PP) were determined. In addition, the effect of various selective NPY antagonists on the inhibitory effect of NPY was also examined. These included the Y1 antagonist BIB03304, the Y2 antagonist BIIE0246, and the Y5 antagonist CGP71683. The IC50's for NPY, PYY, PYY13-36, Leu31 Pro34 NPY, and hPP in inhibiting CA synthesis were 5, 7, 15, 30, and 33 nM respectively. rPP failed to inhibit CA synthesis. All 3 of the NPY antagonists produced attenuation of the NPY-induced inhibition of CA synthesis, but it took a combination of all 3 to completely block the effect of a maximal inhibitory concentration of NPY.These results demonstrate that NPY inhibits CA synthesis in the perfused mesenteric arterial bed and can do so by activation of a variety of receptors including the Y1, Y2, and Y5.  相似文献   

15.
1. We have characterized pharmacologically the receptor subtype(s) responsible for the neuropeptide Y (NPY)-induced vasoconstriction in human cerebral arteries. NPY, PYY and several of their derivatives with well defined affinities at the known Y1 and Y2 receptor subtypes were used. Moreover, we tested the ability of the new Y1 receptor antagonist, BIBP 3226, to antagonize the NPY-induced cerebral vasoconstriction. 2. NPY, PYY and their agonists with high affinities at the Y1 receptor subtype ([Leu31-Pro34]-NPY and [Leu31-Pro34]-PYY) elicited strong, long lasting and concentration-dependent contractions of human cerebral arteries. Compounds with Y2 affinity such as PYY3-36 or NPY13-36 either elicited a submaximal contraction at high concentrations or failed to induce any significant vasomotor response. Also, the application of NPY or the specific Y1 agonist, [Leu31-Pro34]-NPY, to human cerebral vessels pretreated with the Y1 agonist, NPY13-36, resulted in contractile responses identical to those obtained when these compounds were tested without prior application of NPY13-36. 3. The order of agonist potency at the human cerebrovascular receptor was: [Leu31-Pro34]-NPY = [Leu31-Pro34]-PYY > or = NPY > PYY > PYY3-36 > > > NPY13-36, which corresponded to that reported previously at the neuronal and vascular Y1 receptors. 4. Increasing concentrations (10(-9)-10(-6) M) of the Y1 receptor antagonist, BIBP 3226, to human cerebral vessels caused a parallel and rightward shift in the NPY dose-response curves without any significant change in the maximal contractile response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. The pharmacological activity of neuropeptide Y (NPY) and some analogues in inhibiting the twitch contractions induced by electrical stimulation (single pulses at 25 V, 0.15 Hz, 1 ms) in the prostatic portion of the rat isolated vas deferens was investigated. The rank order of agonist potency was: PYY > NPY2-36 > NPY >> NPY13-36 >> NPY18-36 >> [Leu31,Pro34]NPY = hPP, which is consistent with the activation of a Y2 receptor. 2. The putative Y1 and Y2 antagonist, benextramine (BXT), incubated at 100 microM for 10 or 60 min, was ineffective against PYY-induced inhibition of the twitch response, suggesting that the prejunctional Y2 receptor in this tissue is different from the postjunctional one reported in the literature to be sensitive to BXT blockade. 3. The putative NPY antagonist, PYX-2, incubated at 1 microM for 20 min, was completely ineffective in antagonizing PYY-induced inhibition of twitches. 4. The twitch response was totally inhibited by suramin (100 microM) but was little affected by prazosin (1 microM). Furthermore, NPY was without effect on the dose-response curve to ATP in resting conditions. Taken together, these results suggest that in our paradigm, NPY inhibits the release of a purinergic neurotransmitter which mediates contraction of the prostatic portion of the rat vas deferens.  相似文献   

17.
Centrally administered neuropeptide Y (NPY) produces anxiolytic and orexigenic effects by interacting with Y1 and Y5 receptors that are colocalized in many brain regions. Therefore, we tested the hypothesis that co-expression of Y1 and Y5 receptors results in heterodimerization, altered pharmacological properties and altered desensitization. To accomplish this, the carboxyl-termini of Y1 and Y5 receptors were fused with Renilla luciferase and green fluorescent protein and the proximity of the tagged receptors assessed using bioluminescent resonance energy transfer. Under basal conditions, cotransfection of tagged Y1 receptor and Y5 produced a substantial dimerization signal that was unaffected by the endogenous, nonselective agonists, NPY and peptide YY (PYY). Selective Y5 agonists produced an increase in the dimerization signal while Y5 antagonists also produced a slight but significant increase. In the absence of agonists, selective antagonists decreased dimerization. In functional studies, Y5 agonists produced a greater inhibition of adenylyl cyclase activity in Y1/Y5 cells than cells expressing Y5 alone while NPY and PYY exhibited no difference. With PYY stimulation, the Y1 antagonist became inactive and the Y5 antagonist exhibited uncompetitive kinetics in the Y1/Y5 cell line. In confocal microscopy studies, Y1/Y5 co-expression resulted in increased Y5 signaling following PYY stimulation. Addition of both Y1 and Y5 receptor antagonists was required to significantly decrease PYY-induced internalization. Therefore, Y1/Y5 co-expression results in heterodimerization, altered agonist and antagonist responses and reduced internalization rate. These results may account for the complex pharmacology observed when assessing the responses to NPY and analogs in vivo.  相似文献   

18.
1. The Y receptor subtype involved in the antagonism by neuropeptide Y (NPY) of intracisternal corticotropin-releasing factor (CRF)-induced inhibition of gastric acid secretion was studied in urethane-anaesthetized rats by use of peptides with various selectivity for Y1, Y2 and Y3 subtypes: NPY, a Y1, Y2 and Y3 agonist, peptide YY (PYY), a Y1 and Y2 agonist, [Leu31, Pro34]-NPY, a Y1 and Y3 agonist, NPY(3-36) and PYY(3-36), highly selective Y2 agonists and NPY(13-36) a weak Y2 and Y3 agonist. Peptides were injected intracisternally 10 min before intracisternal injection of CRF (10 micrograms) and gastric acid secretion was measured by the flushed technique for 1 h before and 2 h after pentagastrin-(10 micrograms kg-1 h-1, i.v.) infusion which started 10 min after CRF injection. 2. Intracisternal injection of CRF (10 micrograms) inhibited by 56% gastric acid secretion stimulated by pentagastrin. Intracisternal injection of NPY and PYY (0.1-0.5 microgram) did not influence the acid response to pentagastrin but blocked CRF-induced inhibition of pentagastrin-stimulated acid secretion. NPY(3-36) (0.5 microgram) and PYY(3-36) (0.25 and 0.5 microgram) also completely blocked the inhibitory action of CRF on pentagastrin-stimulated acid secretion. 3. [Leu31, Pro34]-NPY (0.5-5 micrograms) and NPY(13-36) (0.5-5 micrograms) injected intracisternally did not modify gastric acid secretion induced by pentagastrin or CRF inhibitory action. 4. The sigma antagonist, BMY 14802 (1 mg kg-1, s.c.) did not influence the acid response to pentagastrin but prevented the antagonism by PYY(3-36) (0.5 microgram) of the CRF antisecretory effect. 5. These results show that both PYY and NPY and the 3-36 forms of PYY and NPY are equipotent in blocking central CRF-induced inhibition of pentagastrin-stimulated gastric acid secretion. The structure-activity profile suggests a mediation through Y2 receptor subtype and the involvement of sigma binding sites.  相似文献   

19.
The purpose of the present study was to determine whether or not activation of neuropeptide Y (NPY) receptors resulted in an enhancement or attenuation of the KCl (50 mM) evoked release of [3H]dopamine newly synthesized from [3H]tyrosine in superfused striatal slices and, if so to identify the NPY receptor subtype mediating the effect. Rat striatal slices were prepared and placed in microsuperfusion chambers and continuously superfused with physiological buffer containing 50 microCi/ml of l-3-5-[3H]tyrosine. Superfusate effluents were collected and analyzed for [3H]dopamine by liquid scintillation spectrometry following amberlite CG50 and alumina chromatography. NPY agonists (NPY and PYY3-36) were added 6 min prior to the addition of KCl, while the Y1, Y2, and Y5 antagonist BIBO3304, BIIE0246 and CGP71683A, respectively were added 6 min prior to the agonists. Continuous superfusion with [3H]tyrosine resulted in the production of [3H]dopamine which reached a steady state at approximately 48 min. Depolarization with KCl resulted in a 2- to 3-fold increase in [3H]dopamine overflow. NPY and PYY3-36 produced a concentration dependent enhancement in the KCl induced increase in newly synthesized [3H]dopamine overflow. The Y2 antagonist BIIE0246 produced an attenuation of both the NPY and PYY3-36 induced enhancement while the Y1 antagonist BIBO3304 and theY5 antagonist CGP71683A failed to alter the NPY or PYY3-36 induced enhancement. These results are consistent with the NPY-Y2 receptor subtype mediating the facilitatory effect.  相似文献   

20.
1. Confluent epithelial layers of a human adenocarcinoma cell line called Colony-6 have been shown to respond to nanomolar concentrations of vasoactive intestinal polypeptide (VIP), peptide YY (PYY), neuropeptide Y (NPY) and somatostatin (Som). 2. The VIP-induced increase in basal short-circuit current (SCC) was attenuated by basolateral application of Som, PYY or NPY, and also by the Y1-receptor agonist [Leu31,Pro34]NPY, as well as pancreatic polypeptide (PP). High concentrations (0.1-3.0 microM) of NPY(2-36) were effective but the C-terminal fragment NPY(13-36) (0.1-1.0 microM) and desamidoNPY (0.6 microM) were not active. A rank order of agonist EC50 values was: PYY > NPY > [Leu31,Pro34]NPY > PP > NPY(2-36) >> NPY (13-36). 3. Receptors for all these peptides were preferentially located within the basolateral domain. Apical addition of PP (1 microM) and Som (100 nM) had no effect upon basal SCC while apical VIP (10 nM) responses were 18%, and apical PYY (100 nM) were 27% the size of respective basolateral controls (100%). 4. Cross-desensitization was observed between [Leu31,Pro34]NPY (1 microM) and both PYY (100 nM) and PP (1 microM) and between PYY and NPY(2-36) (1 microM), but was not significant between PYY (100 nM) and PP (1 microM). We suggest that either these cells express a single new Y-receptor with an unusual phenotype or that two Y-receptor populations exist in Colony-6 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号