首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Molecular imaging of proliferation in malignant lymphoma   总被引:7,自引:0,他引:7  
We have determined the ability of positron emission tomography (PET) with the thymidine analogue 3'-deoxy-3'-[(18)F]fluorothymidine (FLT) to detect manifestation sites of malignant lymphoma, to assess proliferative activity, and to differentiate aggressive from indolent tumors. In this prospective study, FLT-PET was done additionally to routine staging procedures in 34 patients with malignant lymphoma. Sixty minutes after i.v. injection of approximately 330 MBq FLT, emission and transmission scanning was done. Tracer uptake in lymphoma was evaluated semiquantitatively by calculation of standardized uptake values (SUV) and correlated to tumor grading and proliferation fraction as determined by Ki-67 immunohistochemistry. FLT-PET detected a total of 490 lesions compared with 420 lesions revealed by routine staging. In 11 patients with indolent lymphoma, mean FLT-SUV in biopsied lesions was 2.3 (range, 1.2-4.5). In 21 patients with aggressive lymphoma, a significantly higher FLT uptake was observed (mean FLT-SUV, 5.9; range, 3.2-9.2; P < 0.0001) and a cutoff value of SUV = 3 accurately discriminated between indolent and aggressive lymphoma. Linear regression analysis indicated significant correlation of FLT uptake in biopsied lesions and proliferation fraction (r = 0.84; P < 0.0001). In this clinical study, FLT-PET was suitable for imaging malignant lymphoma and noninvasive assessment of tumor grading. Due to specific imaging of proliferation, FLT may be a superior PET tracer for detection of malignant lymphoma in organs with high physiologic fluorodeoxyglucose uptake and early detection of progression to a more aggressive histology or potential transformation.  相似文献   

2.
PURPOSE: The aim of the study was to investigate the feasibility of (18)F-3'-fluoro-3'-deoxy-L-thymidine positron emission tomography (FLT-PET) for the detection and grading of soft tissue sarcoma (STS). EXPERIMENTAL DESIGN: Nineteen patients with 20 STSs of the extremities were scanned, using attenuation corrected whole-body FLT-PET. Standardized uptake values (SUVs) and tumor:nontumor ratios (TNTs) were compared with histopathological parameters using French and Japanese grading systems. RESULTS: Mean SUV, maximal SUV, and TNT could differentiate between low-grade (grade 1; n = 6) STS and high-grade (grade 2 and 3; n = 14) STS according to the French grading system (P = 0.001). Mean SUV, max SUV, and TNT correlated with mitotic score, MIB-1 score, the French and Japanese grading system (* = 0.550-0.747). CONCLUSIONS: FLT-PET is able to visualize STS and differentiate between low-grade and high-grade STS. The uptake of FLT correlates with the proliferation of STS.  相似文献   

3.
FDG (18F-deoxy-glucose) is the current gold standard for PET imaging. FLT (3'-deoxy-3'-(18F-fluorothymidine), a PET imaging marker of proliferation, has been proposed as an alternative to FDG for the assessment of therapeutic response. We examined the therapeutic predictive value of FLT-PET and FDG-PET using CALU-6, a human, p53-null, non-small cell lung cancer cell line with comparison of combined targeted therapy, TRAIL and sorafenib, versus combined conventional chemotherapy, docetaxel and cisplatin. CALU-6 tumor-bearing nu/nu mice (n=46) were evaluated in 3 therapeutic trials measuring FLT and FDG prediction of tumor response at 72 h following initiation of daily combination therapy with targeted agents, TRAIL (200 μg i.v.) and sorafenib (30 mg/kg i.p.) and compared to conventional chemotherapeutics cisplatin (3 mg/kg i.p.) and docetaxel (7.5 mg/kg i.p.). PET imaging response was compared to morphological and histological indicators of therapeutic response, including decreased vascularity (in vivo AngioSense imaging and anti-CD31 staining), slowed tumor growth (caliper measurements), decreased cellular proliferation (Ki-67 staining) and increased apoptosis (TUNEL staining). Decreases in tumor accumulation of FLT (FLTMAX -30%, p=0.03) at 72 h post treatment were observed in response to TRAIL and sorafenib combination therapy resulting in smaller, less vascular, more apoptotic tumors. No similar reduction in tumor accumulation of FLT (FLTMAX -2%, p=0.67) was observed 72 h following initiation of cisplatin and docetaxel combination therapy, despite histological and morphological evidence of drug response. In contrast, tumor imaging with FDG did demonstrate a decrease in accumulation in both treatment groups, -21% (p=0.30) in response to cisplatin/docetaxel and -8% (p=0.59) in response to TRAIL/sorafenib, but did not reach statistical significance. FLT, but not FDG, is predictive of therapeutic response to the targeted regimen TRAIL/sorafenib. However, FLT-PET may not predict therapeutic response to DNA damaging agents in p53-null tumors, likely due to loss of cell cycle control of thymidine kinase 1 (TK1). Thus, tumor imaging response by FLT may be limited in human tumors without functional p53.  相似文献   

4.
PURPOSE Positron emission tomography (PET) has been used in grading of CNS tumors in adults, whereas studies of children have been limited. PATIENTS AND METHODS Nineteen boys and 19 girls (median age, 8 years) with primary CNS tumors were studied prospectively by fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) PET with (n = 16) or without (n = 22) H(2)(15)O-PET before therapy. Image processing included coregistration to magnetic resonance imaging (MRI) in all patients. The FDG uptake in tumors was semiquantitatively calculated by a region-of-interest-based tumor hotspot/brain index. Eight tumors without histologic confirmation were classified as WHO grade 1 based on location, MRI, and clinical course (22 to 42 months). Results Four grade 4 tumors had a mean index of 4.27 +/- 0.5, four grade 3 tumors had a mean index of 2.47 +/- 1.07, 10 grade 2 tumors had a mean index of 1.34 +/- 0.73, and eight of 12 grade 1 tumors had a mean index of -0.31 +/- 0.59. Eight patients with no histologic confirmation had a mean index of 1.04. For these 34 tumors, FDG uptake was positively correlated with malignancy grading (n = 34; r = 0.72; P < .01), as for the 26 histologically classified tumors (n = 26; r = 0.89; P < .01). The choroid plexus papilloma (n = 1) and the pilocytic astrocytomas (n = 3) had a mean index of 3.26 (n = 38; r = 0.57; P < .01). H(2)(15)O-uptake showed no correlation with malignancy. Digitally performed PET/MRI coregistration increased information on tumor characterization in 90% of cases. CONCLUSION FDG PET of the brain with MRI coregistration can be used to obtain a more specific diagnosis with respect to malignancy grading. Improved PET/MRI imaging of the benign hypermetabolic tumors is needed to optimize clinical use.  相似文献   

5.
3'-Deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) has been proposed as a new marker for imaging tumor proliferation by positron emission tomography (PET). The uptake of [(18)F]FLT is regulated by cytosolic S-phase-specific thymidine kinase 1 (TK1). In this article, we have investigated the use of [(18)F]FLT to monitor the response of tumors to antiproliferative treatment in vivo. C3H/Hej mice bearing the radiation-induced fibrosarcoma 1 tumor were treated with 5-fluorouracil (5-FU; 165 mg/kg i.p.). Changes in tumor volume and biodistribution of [(18)F]FLT and 2-[(18)F]fluoro-2-deoxy-D-glucose ([(18)F]FDG) were measured in three groups of mice (n = 8-12/group): (a) untreated controls; (b) 24 h after 5-FU; and (c) 48 h after 5-FU. In addition, dynamic [(18)F]FLT-PET imaging was performed on a small animal scanner for 60 min. The metabolism of [(18)F]FLT in tumor, plasma, liver, and urine was determined chromatographically. Proliferation was determined by staining histological sections for proliferating cell nuclear antigen (PCNA). Tumor levels of TK1 protein and cofactor (ATP) were determined by Western blotting and bioluminescence, respectively. Tumor [(18)F]FLT uptake decreased after 5-FU treatment (47.8 +/- 7.0 and 27.1 +/- 3.7% for groups b and c, respectively, compared with group a; P < 0.001). The drug-induced reduction in tumor [(18)F]FLT uptake was significantly more pronounced than that of [(18)F]FDG. The PET image data confirmed lower tumor [(18)F]FLT retention in group c compared with group a, despite a trend toward higher radiotracer delivery for group c. Other than phosphorylation in tumors, [(18)F]FLT was found to be metabolically stable in vivo. The decrease in tumor [(18)F]FLT uptake correlated with the PCNA-labeling index (r = 0.71, P = 0.031) and tumor volume changes after 5-FU treatment (r = 0.58, P = 0.001). In this model system, the decrease in [(18)F]FLT uptake could be explained by changes in catalytic activity but not translation of TK1 protein. Compared with group a, TK1 levels were lower in group b (78.2 +/- 5.2%) but higher in group c (141.3 +/- 9.1%, P < 0.001). In contrast, a stepwise decrease in ATP levels was observed from group a to b to c (P < 0.001). In conclusion, we have demonstrated the ability to measure tumor response to antiproliferative treatment with [(18)F]FLT and PET. In our model system, the radiotracer uptake was correlated with PCNA-labeling index. The decrease in [(18)F]FLT uptake after 5-FU was more pronounced than that of [(18)F]FDG. [(18)F]FLT is, therefore, a promising marker for monitoring antiproliferative drug activity in oncology that warrants additional testing.  相似文献   

6.
PURPOSE: Early identification of esophageal cancer patients who are responding or resistant to combined chemoradiotherapy may lead to individualized therapeutic approaches and improved clinical outcomes. We assessed the ability of 3'-deoxy-3'-(18)F-fluorothymidine positron emission tomography (FLT-PET) to detect early changes in tumor proliferation after chemoradiotherapy in experimental models of esophageal carcinoma. EXPERIMENTAL DESIGN: The in vitro and ex vivo tumor uptake of [(3)H]FLT in SEG-1 human esophageal adenocarcinoma cells were studied at various early time points after docetaxel plus irradiation and validated with conventional assessments of cellular proliferation [thymidine (Thd) and Ki-67] and [(18)F]FLT micro-PET imaging. Imaging-histologic correlation was determined by comparing spatial Ki-67 and [(18)F]FLT distribution in autoradiographs. Comparison with fluorodeoxyglucose (FDG) was done in all experiments. RESULTS: In vitro [(3)H]FLT and [(3)H]Thd uptake rapidly decreased in SEG-1 cells 24 hours after docetaxel with a maximal reduction of over 5-fold (P = 0.005). The [(3)H]FLT tumor-to-muscle uptake ratio in xenografts declined by 75% compared with baseline (P < 0.005) by 2 days after chemoradiotherapy, despite the lack of change in tumor size. In contrast, the decline of [(3)H]FDG uptake was gradual and less pronounced. Tumor uptake of [(3)H]FLT was more closely correlated with Ki-67 expression (r = 0.89, P < 0.001) than was [(3)H]FDG (r = 0.39, P = 0.08). Micro-PET images depicted similar trends in reduction of [(18)F]FLT and [(18)F]FDG tumor uptake. Autoradiographs displayed spatial correlations between [(18)F]FLT uptake and histologic Ki-67 distribution in preliminary studies. CONCLUSIONS: FLT-PET is suitable and more specific than FDG-PET for depicting early reductions in tumor proliferation that precede tumor size changes after chemoradiotherapy.  相似文献   

7.
PURPOSE: Inhibition of the protein kinase mammalian target of rapamycin (mTOR) is being evaluated for treatment of a variety of malignancies. However, the effects of mTOR inhibitors are cytostatic and standard size criteria do not reliably identify responding tumors. The aim of this study was to evaluate whether response to mTOR inhibition could be assessed by positron emission tomography (PET) imaging of tumor metabolism. Experiment Design: Glucose, thymidine, and amino acid utilization of human glioma cell lines with varying degrees of sensitivity to mTOR inhibition were assessed by measuring in vitro uptake of [18F]fluorodeoxyglucose ([18F]FDG), [18F]fluorothymidine ([18F]FLT), and [3H]l-tyrosine before and after treatment with the mTOR inhibitor rapamycin. The tumor metabolic activity in vivo was monitored by small-animal PET of tumor-bearing mice. The mechanisms underlying changes in metabolic activity were analyzed by measuring expression and functional activity of enzymes and transporters involved in the uptake of the studied imaging probes. RESULTS: In sensitive cell lines, rapamycin decreased [18F]FDG and [18F]FLT uptake by up to 65% within 24 hours after the start of therapy. This was associated with inhibition of hexokinase and thymidine kinase 1. In contrast, [3H]l-tyrosine uptake was unaffected by rapamycin. The effects of rapamycin on glucose and thymidine metabolism could be imaged noninvasively by PET. In sensitive tumors, [18F]FDG and [18F]FLT uptake decreased within 48 hours by 56 +/- 6% and 52 +/- 8%, respectively, whereas there was no change in rapamycin-resistant tumors. CONCLUSIONS: These encouraging preclinical data warrant clinical trials evaluating [18F]FDG and [18F]FLT-PET for monitoring treatment with mTOR inhibitors in patients.  相似文献   

8.

BACKGROUND:

This study sought to determine whether [18F]fluorothymidine (FLT) positron emission tomography (PET)/computed tomography (CT) imaging allows assessment of tumor viability and proliferation in patients with soft tissue sarcomas who are treated with neoadjuvant therapy.

METHODS:

Twenty patients with biopsy‐proven, resectable, high‐grade soft tissue sarcoma underwent [18F]FLT PET/CT imaging before and after neoadjuvant therapy. Histologic subtypes included sarcomas not otherwise specified (n = 5), malignant peripheral nerve sheath tumors (n = 3), gastrointestinal stromal tumors (n = 3), leiomyosarcomas (n = 3), angiosarcomas (n = 2), and others (n = 4). Changes in [18F]FLT peak standardized uptake value (SUVpeak) were correlated with percent necrosis in excised tissue, whereas posttreatment [18F]FLT tumor uptake was correlated with thymidine kinase 1 (TK1) expression and Ki‐67 staining indices in excised tumor tissue.

RESULTS:

Tumor FLT SUVpeak averaged 7.1 ± 3.7 g/mL (range, 1.9‐16.1 g/mL) at baseline and decreased significantly to 2.7 ± 1.6 g/mL (range, 0.8‐6.0 g/mL) at follow‐up (P < .001); however, marked reductions in SUV were not specific for histopathological response. The posttreatment SUVpeak did not correlate with TK1 (P = .27) or Ki‐67 expression (P = .21).

CONCLUSIONS:

Marked reductions in [18F]FLT tumor uptake in response to neoadjuvant treatment were observed in most patients with sarcoma. However, these reductions were not specific for histopathologic response to neoadjuvant therapy. Furthermore, posttreatment [18F]FLT tumor uptake was unrelated to tumor proliferation by Ki‐67 and TK1 staining. These results question the value of [18F]FLT PET imaging for treatment response assessments in patients with soft tissue sarcoma. Cancer 2012;118: 3135–44. © 2011 American Cancer Society.  相似文献   

9.
Several studies have demonstrated substantial variability among individual radiation oncologists in defining target volumes using computed tomography (CT). The objective of this study was to determine the impact of combined positron emission tomography and computed tomography (PET/CT) on inter-observer variability of target volume delineation in rectal cancer. We also compared the relative concordance of two PET imaging tracers, 18F-fluorodeoxyglucose (FDG) and 18F-fluorodeoxythymidine (FLT), against conventional computed tomography (CT). Six consecutive patients with locally advanced rectal cancer were enrolled onto an institutional protocol involving preoperative chemoradiotherapy and correlative studies including FDG- and FLT-PET scans acquired in the treatment position. Using these image data sets, four radiation oncologists independently delineated primary and nodal gross tumor volumes (GTVp and GTVn) for a hypothetical boost treatment. Contours were first defined based on CT alone with observers blinded to the PET images, then based on combined PET/CT. An inter-observer similarity index (SI), ranging from a value of 0 for complete disagreement to 1 for complete agreement of contoured voxels, was calculated for each set of volumes. For primary gross tumor volume (GTVp), the difference in estimated SI between CT and FDG was modest (CT SI = 0.77 vs. FDG SI = 0.81), but statistically significant (p = 0.013). The SI difference between CT and FLT for GTVp was also slight (FLT SI = 0.80) and marginally non-significant (p < 0.082). For nodal gross tumor volume, (GTVn), SI was significantly lower for CT based volumes with an estimated SI of 0.22 compared to an estimated SI of 0.70 for FDG-PET/CT (p < 0.0001) and an estimated SI of 0.70 for FLT-PET/CT (p < 0.0001). Boost target volumes in rectal cancer based on combined PET/CT results in lower inter-observer variability compared with CT alone, particularly for nodal disease. The use of FDG and FLT did not appear to be different from this perspective.  相似文献   

10.
Classification and treatment strategy of oligodendrogliomas (ODG) remain controversial. Imaging relies essentially on contrast enhancement using CT or MRI. The aim of our study was to use positron emission tomography (PET) using [18F]-flurodeoxyglucose (FDG) and [11C]-L-methyl-methionine (MET) to evaluate metabolic characteristics of ODG. We studied 19 patients with proven ODG, comparing standardized uptake values (SUV) and maximal tumor/contralateral normal tissues ratios (T/N). Imaging findings were compared with WHO, Smith and Daumas-Duport classifications. Uptake of FDG was decreased only in 8 patients, independently of grading, while MET uptake was always increased. MET uptake was significantly higher for high grade tumors grouped according to Smith or Daumas-Duport classifications, while no significant difference in MET uptake was found when using WHO classification. A different correlation was found between FDG and MET uptakes in normal tissues and high grade tumors. A trend for improved progression free survival was found for tumors that lacked contrast enhancement on MRI or those showing low FDG or MET uptake. In conclusion, MET appeared more sensitive than FDG to detect proliferation in ODG. The preferential protein metabolism, already noticeable for low-grade tumor, correlated with glucose metabolism and helped to separate, in vivo, high and low grade tumors.  相似文献   

11.
We evaluated whether tracer FDG uptake, quantified as an SUV by PET in ovarian epithelial tumors, correlates with clinical stage, tumor grade, cell proliferation and glucose metabolism, all of which are biomarkers for response to chemotherapy, prognosis and overall survival in ovarian cancer patients. Seventeen patients suspected of having ovarian cancer by physical examination, tumor marker analysis and anatomic imaging (such as sonography, CT and/or MRI) underwent whole-body FDG-PET within the 2 weeks prior to surgery. Seventeen epithelial ovarian tumor specimens (13 malignant tumors, 5 at stage I, 2 at stage II, 6 at stage III; 2 borderline tumors; and 2 benign lesions) were available for pathologic evaluation. They were graded histopathologically, and immunohistochemistry for MIB-1 (proliferation index marker) and GLUT-1 was performed. Correlation between FDG uptake and clinical stage, GLUT-1 expression, MIB-1 LI and histologic grading score was determined. No positive correlation was observed between FDG uptake and clinical stage (p=0.14). Intensity of GLUT-1 expression (r=0.76, p=0.001), MIB-1 LI (r=0.457, p=0.014) and histologic grading score (r=0.692, p=0.005) showed statistically significant positive correlations with FDG uptake. Stepwise logistic regression analysis revealed that expression of GLUT-1 transporters was the strongest parameter (r=0.760, p=0.0004) by which to predict positive FDG uptake. Therefore, glucose consumption, as determined by analysis of SUVs in FDG-PET, may be a noninvasive biomarker for ovarian epithelial tumors.  相似文献   

12.
目的 转移性肿瘤原发灶的定位对指导组织学诊断及选择治疗方式具有重要意义。本文对50例原发灶不明转移癌患者进行~(18)F-FDG PET全身显像,以评价其在探测原发灶中的价值。 方法 50例原发灶不明转移癌患者,男36例,女14例,其中颈部转移瘤18例,骨骼转移瘤15例,脑转移瘤12例,其他5例。所有患者均进行FDG PET全身显像,结果判断应用目测法和半定量分析方法(标准摄取值,SUV)。 结果 50例患者中,有32例PET可检出原发灶(64%),且经组织学或细胞学证实,其中肺癌17例,鼻咽癌9例,乳腺癌2例,卵巢癌、结肠癌、前列腺癌、甲状腺癌各1例。2例(4%)FDG PET呈假阳性,分别为子宮和结肠病变各1例。18例FDG PET显像原发灶不明者,经临床随访2~26个月,有2例发现原发灶,1例证实为前列腺癌,1例为粘液性胃癌。17例患者PET检出了其他部位的转移灶。 结论 PET一次检查可了解肿瘤原发灶及全身转移情况,包括骨骼及软组织的转移,对原发灶不明转移癌患者进行全身PET检查有助于原发灶的寻找,为临床制订治疗方案提供可靠依据。  相似文献   

13.
PURPOSE: The aim of this study is to compare glucose metabolism and hypoxia in four different tumor types using positron emission tomography (PET). (18)F-labeled fluorodeoxyglucose (FDG) evaluates energy metabolism, whereas the uptake of (18)F-labeled fluoromisonidazole (FMISO) is proportional to tissue hypoxia. Although acute hypoxia results in accelerated glycolysis, cellular metabolism is slowed in chronic hypoxia, prompting us to look for discordance between FMISO and FDG uptake. EXPERIMENTAL DESIGN: Forty-nine patients (26 with head and neck cancer, 11 with soft tissue sarcoma, 7 with breast cancer, and 5 with glioblastoma multiforme) who had both FMISO and FDG PET scans as part of research protocols through February 2003 were included in this study. The maximum standardized uptake value was used to depict FDG uptake, and hypoxic volume and maximum tissue:blood ratio were used to quantify hypoxia. Pixel-by-pixel correlation of radiotracer uptake was performed on coregistered images for each corresponding tumor plane. RESULTS: Hypoxia was detected in all four patient groups. The mean correlation coefficients between FMISO and FDG uptake were 0.62 for head and neck cancer, 0.47 for breast cancer, 0.38 for glioblastoma multiforme, and 0.32 for soft tissue sarcoma. The correlation between the overall tumor maximum standardized uptake value for FDG and hypoxic volume was small (Spearman r = 0.24), with highly significant differences among the different tumor types (P < 0.005). CONCLUSIONS: Hypoxia is a general factor affecting glucose metabolism; however, some hypoxic tumors can have modest glucose metabolism, whereas some highly metabolic tumors are not hypoxic, showing discordance in tracer uptake that can be tumor type specific.  相似文献   

14.
15.
Positron emission tomography (PET) using 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) is used as a functional imaging technique for the staging and follow-up of lymphomas. However, additional information about the tumor proliferation rate using 3'-deoxy-3'-[(18)F]fluorothymidine (FLT) may be useful for the assessment of prognosis. We enrolled 48 patients with Hodgkin's (n = 15) and non-Hodgkin's lymphoma (n = 33) with residual masses >2 cm examined by tracer studies with FDG and FLT. The results were related to median overall and progression-free survival. In 15 out of 48 patients analysed using FDG, positive results were found. Using FLT, 10 out of 48 patients were positive. 33 patients were FDG negative. Eight patients were positive both using FDG and FLT. Overall survival for patients with a negative PET scan was significantly higher than for patients with positive PET, irrespective of the tracer used. FLT alone was able to discriminate between patients with long or short overall survival. However, there was no statistical significance comparing FDG/FLT negative versus FDG negative alone. Although FDG detected more lesions than did FLT, the additional biological characterization of tumor tissue with respect to proliferation by FLT might be useful by providing complementary information for the identification of recurrence. However, the present data show no advantage of combined FDG/FLT studies over FDG alone with respect to the prediction of survival.  相似文献   

16.
The clinical course of meningioma varies from case to case, despite similar characteristics on magnetic resonance (MR) imaging. Functional imaging including (11)C-methionine and (18)F-fluorodeoxyglucose (FDG) positron-emission tomography (PET) has been widely studied for noninvasive preoperative evaluation of brain tumors. However, few reports have examined correlations between meningiomas and findings on (11)C-methionine and FDG PET. The objective of this study was to clarify the relationship between tumor characteristics and (11)C-methionine and FDG uptake in meningiomas. For 68 meningiomas in 51 cases, (11)C-methionine uptake was evaluated by measuring both mean and maximum tumor/normal (T/N) ratio for the whole area of the tumors. FDG uptake in 44 of those meningiomas was also analyzed. Tumor size was measured volumetrically, and tumor-doubling time was estimated. Histopathological evaluation was performed in 19 surgical cases. Mean and maximum T/N ratios of (11)C-methionine PET were significantly higher in skull-base lesions than in non-skull-base lesions. Correlations of mean and maximum T/N ratio of (11)C-methionine PET with tumor-doubling time, MIB-1 labeling index, microvessel density and World Health Organization grading were not significant. Mean T/N ratio of (11)C-methionine PET correlated significantly with tumor volume according to logarithm regression modeling (P < 0.0001, R = 0.544). However, mean and maximum T/N ratio of FDG-PET correlated with none of the tumor characteristics described above. These results suggest that (11)C-methionine uptake correlates with tumor volume, but not with tumor aggressiveness.  相似文献   

17.
目的 应用术后病理作为对照判断氟脱氧胸苷(FLT)PET-CT检测食管癌大体肿瘤生物靶区长度的最佳方法 和最佳界值,并与FDG PET-CT、CT、食管钡餐和食管镜进行直接对照研究.方法 24例患者行FLT PET-CT检查,其中22例行FDG PET-CT检查对照,全部患者均常规行食管钡餐、食管镜检查并均接受食管癌根治切除术.FLT PET-CT长度采用肉眼法,记为L_(FLTvisual),和采用SUV 1.3、1.4、1.5以及SUV_(max)的20%、25%和30%分别记为L_(FLT1.3)、L_(FLT1.4)、L_(FLT1.5)、L_(FLT20%)、L_(FLT25%)、L_(FLT30%);FDG PET-CT长度采用肉眼法、SUV 2.5和SUV_(max)的40%分别记为L_(FDGviaual)、L_(FDG2.5)、L_(FDG40%).CT、食管钡餐和食管镜所测得病变长度分别记为L_(CT)、L_(Scopy)和L_(X-ray)分别与术后病理长度L_(Path)进行比较.结果 L_(Path)值为(4.90±2.14)cm,各检测方法 所得病变长度由小到大依次为L_(FDG40%)、L_(Scopy)、L_(X-ray)、L_(FLT1.5)、L_(CT)、L_(FLT30%)、L_(FLTvis)、L_(FLT1.4)、L_(FLT25%)、L_(FDG2.5)、L_(FDGvis)、L_(FLT1.3)、L_(FLT20%),均数分别为(3.85±1.52)、(4.46±2.23)、(4.63±2.37)、(4.64±2.38)、(4.69±1.85)、(4.75±2.19)、(4.85±2.33)、(4.87±2.35)、(5.05±2.20)、(5.08±2.19)、(5.10 ±2.22)、(5.21 ±2.40)、(5.53±2.17)cm,与L_(Path)的相关系数分别为0.91、0.93、0.88、0.95、0.90、0.81、0.96、0.96、0.80、0.99、0.99、0.95、0.79,P值均为0.000.L_(FLT1.4)和L_(FDG2.5)分别为最佳FLT PET-CT和FDG PET-CT长度,且L_(FDG2.5)与L_(FLT1.4)相似(t=1.23,P=0.232).结论 最接近食管癌病理长度的FLT PET-CT界值为SUV 1.4,而FDG PET-CT的为SUV 2.5,可作为客观和简便易行的半定量分析指标.  相似文献   

18.
PURPOSE: Although positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ((18)F-FDG) has a major impact on the treatment of adult cancer, the reported experience with extracranial tumors of childhood is limited. We describe a role for PET in patients with neuroblastoma (NB). PATIENTS AND METHODS: In 51 patients with high-risk NB, 92 PET scans were part of a staging evaluation that included iodine-123 or iodine-131 metaiodobenzylguanidine (MIBG) scan, bone scan, computed tomography (and/or magnetic resonance imaging), urine catecholamine measurements, and bone marrow (BM) examinations. The minimum number of tests sufficient to detect NB was determined. RESULTS: Of 40 patients who were not in complete remission, only 1 (2.5%) had NB that would have been missed had a staging evaluation been limited to PET and BM studies, and 13 (32.5%) had NB detected by PET but not by BM and urine tests. PET was equal or superior to MIBG scans for identifying NB in soft tissue and extracranial skeletal structures, for revealing small lesions, and for delineating the extent and localizing sites of disease. In 36 evaluations of 22 patients with NB in soft tissue, PET failed to identify only two long-standing MIBG-negative abdominal masses. PET and MIBG scans showed more skeletal lesions than bone scans, but the normally high physiologic brain uptake of FDG blocked PET visualization of cranial vault lesions. Similar to MIBG, FDG skeletal uptake was diffusely increased with extensive or progressing BM disease but faint or absent with minimal or nonprogressing BM disease. CONCLUSION: In the absence or after resolution of cranial vault lesions, and once the primary tumor is resected, PET and BM tests suffice for monitoring NB patients at high risk for progressive disease in soft tissue and bone/BM.  相似文献   

19.
Prediction of Pathology and Survival by FDG PET in Gliomas   总被引:24,自引:0,他引:24  
Objectives: Despite being in use for nearly two decades, the utility of [18F]2-fluoro-2deoxy-d-glucose positron emission tomography (FDG PET) in the evaluation and treatment of brain tumors remains controversial. We retrospectively analyzed all patients with histologically proven gliomas, between the years 1990 and 2000, who underwent FDG PET studies at various stages of their treatment and who were followed till either death or for a minimum period of 1 year in an attempt to bring resolution to this controversy. Methods: All PET scans prior to 1997 were acquired on an ECAT 951/31 scanner in 2D. Scans since 1997 were obtained on a Siemens HR+ scanner in 3D mode. The majority of FDG PET scans were co-registered with the magnetic resonance imaging (MRI) scans to aid in diagnosis and therapy. Based on independent visual inspection, two board certified nuclear medicine physicians graded the highest activity level of the tumor using the metabolic grading: 0 = no uptake; 1 = uptake less or equal to normal white matter; 2 = uptake greater than normal white matter and less than gray matter; 3 = uptake equal to or greater than gray mater. The measure of association of lambda was used to measure the strength of predictive ability of FDG PET for pathological grading of the gliomas. The Cox proportional hazards regression model was used to assess the significance of grade of uptake on survival. Results: A total of 331 patients were analyzed of which 137 had a PET scan prior to histological diagnosis and therapeutic intervention (mean age = 46.5years; M:F = 1.7:1). Eighty six percent (143/166) of the patients with low uptake (metabolic scores 0,1) had low-grade gliomas (grade I,II) and 14% (23/166) high-grade gliomas (grade III,IV) on histologic examination. Ninety four percent (154/165) of the patients with high uptake (metabolic scores 2,3) on PET had high-grade gliomas and 7% (11/165) had low-grade gliomas on histologic examination. The grade of uptake had increasing significance on survival as the level increased from 'low' to 'high' (P = 0.0009). Ninety four percent (156/166) of the patients with low uptake survived for >1 year (median survival of 28 months) and 19% survived for >5 years. Only 29% (48/165) of patients with high uptake survived for >1 year, (median survival of 11 months) and none survived for >5 years. Irrespective of when the scan showed a high uptake of FDG, before or after intervention, the prognosis following that scan was poor. Conclusions: Our observations confirm the utility of FDG PET as a prognostic tool for the histological grading and survival in patients with gliomas and appears to more than complement pathological grading.  相似文献   

20.
刘健  赵涛  吕杰  孙波  张鹏 《中国骨肿瘤骨病》2011,10(1):19-22,35
目的 探讨FDG PET/CT显像诊断骨或软组织肿瘤和术后疗效评价的价值.方法 回顾性分析48例已证实的骨及软组织肿瘤患者的FDG PET/CT显像结果,以鉴别诊断肿瘤的良恶性,是否复发、有无其他转移及周围侵犯,并与同机CT对比分析.结果 FDG PET/CT显像诊断骨及软组织肿瘤灵敏度为100%(7/7),特异性为80%(4/5);监测术后复发(残留)的灵敏度和特异性均为100%;通过PET/CT显像多发现转移灶35处,对于肺部12个转移灶,有赖于同机CT.结论 FDG PET/CT显像对骨及软组织肿瘤的诊断优于常规影像检查,可早期准确判断肿瘤复发,同时发现更多转移灶(肺转移除外),对肿瘤治疗诊断有指导作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号