首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been well established that repetitive motor performance and skill learning alter the functional organization of human corticomotoneuronal system. Over the past decade, transcranial magnetic stimulation (TMS) has helped to demonstrate motor practice and learning-related changes in corticomotoneuronal excitability and representational plasticity. It has also provided some insights into the mechanisms underlying such plasticity. TMS-derived indices show that motor practice, skill acquisition and learning are associated with an increase in cortical excitability and a modulation of intracortical inhibition partly related to the amount of GABA-related inhibition. It has been suggested that these changes in excitability might be related to learning and motor memory formation in the motor cortex. However, it has proved difficult to relate different aspects of TMS-derived representational plasticity with specific behavioral outcomes. A better understanding of the relationship between TMS measurements of practice-related cortical plasticity and underlying mechanisms, in the context of associated changes in behavior, will facilitate the development of techniques and protocols that will allow predictable modulation of cortical plasticity in health and disease.  相似文献   

2.
Motor cortical plasticity induced by repetitive transcranial magnetic stimulation (rTMS) sometimes depends on the prior history of neuronal activity. These effects of preceding stimulation on subsequent rTMS-induced plasticity have been suggested to share a similar mechanism to that of metaplasticity, a homeostatic regulation of synaptic plasticity. To explore metaplasticity in humans, many investigations have used designs in which both priming and conditioning are applied over the primary motor cortex (M1), but the effects of priming stimulation over other motor-related cortical areas have not been well documented. Since the supplementary motor area (SMA) has anatomical and functional cortico-cortical connections with M1, here we studied the homeostatic effects of priming stimulation over the SMA on subsequent rTMS-induced plasticity of M1. For priming and subsequent conditioning, we employed a new rTMS protocol, quadripulse stimulation (QPS), which produces a broad range of motor cortical plasticity depending on the interval of the pulses within a burst. The plastic changes induced by QPS at various intervals were altered by priming stimulation over the SMA, which did not change motor-evoked potential sizes on its own but specifically modulated the excitatory I-wave circuits. The data support the view that the homeostatic changes are mediated via mechanisms of metaplasticity and highlight an important interplay between M1 and SMA regarding homeostatic plasticity in humans.  相似文献   

3.
Paired associative stimulation (PAS) can increase motor cortical excitability, possibly by long-term potentiation (LTP)-like mechanisms. As the capability of the cortex for plasticity decreases with age, we were interested here in testing interindividual variability and age-dependency of the PAS effect. Motor-evoked potentials (MEPs) were recorded from the resting right abductor pollicis brevis muscle before and for 30 min after PAS in 27 healthy subjects (22–71 years of age). PAS consisted of 225 pairs (rate, 0.25 Hz) of right median nerve stimulation followed at an interval equaling the individual N20-latency of the median nerve somatosensory-evoked cortical potential plus 2 ms by transcranial magnetic stimulation of the hand area of left primary motor cortex (PASN20+2). The PASN20+2-induced changes in MEP amplitude (ratio post PAS/pre PAS) were highly variable (1.00 ± 0.07, range 0.36–1.68). Fourteen subjects showed the expected LTP-like MEP increase (responders) while 13 subjects showed a long-term depression (LTD)-like MEP decrease (non-responders). Responders had a significantly lower resting motor threshold (RMT) and minimum stimulus intensity to elicit MEPs of 1 mV (MEP1 mV) than non-responders. RMT and MEP1 mV correlated significantly negatively with the PASN20+2 effect. The absolute PASN20+2 effect size irrespective of its direction decreased with age (r = −0.57, P = 0.002), i.e., LTP-like and LTD-like plasticity were large in young subjects but substantially smaller in elderly subjects. In conclusion, measures of motor cortical excitability (RMT, MEP1 mV) and age determine direction and magnitude of PAS effects in individual subjects.  相似文献   

4.
The purpose of this study was to assess the relationship between peripheral muscle responses (motor evoked potentials, MEP) evoked by transcranial magnetic stimulation (TMS) and the early components of the TMS-evoked EEG response, both of which reflect cortical excitability. Left primary motor cortex of five healthy volunteers was stimulated with 100% of the motor threshold. The relationship between MEP amplitudes and the peak-to-peak amplitudes of the N15–P30 complex of the evoked EEG signal was determined at the single-trial level. MEP and N15–P30 amplitudes were significantly correlated in all five subjects. The results support the view that the amount of direct activation of neurons in M1 evoked by TMS affects both subsequent cortical activation and the activation of the target muscle. Cortical excitability is altered in some neuronal disorders and modulated locally during various tasks. It could thus be used as a marker of the state of health in many cases and as a method to study brain function. The present results improve our understanding of the early components of the TMS-evoked EEG signal, which reflect cortical excitability, and may thus have widespread use in clinical and scientific studies.  相似文献   

5.
The supplementary motor area (SMA) is a secondary motor area that is involved in various complex hand movements. In animal studies, short latency and probably direct excitatory inputs from SMA to the primary motor cortex (M1) have been established. Although human imaging studies revealed functional connectivity between SMA and M1, its electrophysiological nature has been less studied. This study explored the connection between SMA and M1 in humans using a single-pulse transcranial magnetic stimulation (TMS) over SMA. First, TMS over SMA did not alter the corticospinal tract excitability measured by the size of motor evoked potential elicited by single-pulse TMS over M1. Next, we measured short-interval intracortical facilitation (SICF), which reflects the function of a facilitatory circuit within M1, with or without a single-pulse TMS over SMA. When the intensity of the second pulse in the SICF paradigm (S2) was as weak as 1.0 active motor threshold for a hand muscle, SMA stimulation significantly enhanced the SICF. Furthermore, this enhancement by SMA stimulation was spatially confined and had a limited time window. On the other hand, SMA stimulation did not alter short-interval intracortical inhibition or contralateral silent period duration, which reflects the function of an inhibitory circuit mediated by gamma-aminobutyric acid A (GABAA) or GABAB receptors, respectively. We conclude that a single-pulse TMS over SMA modulates a facilitatory circuit within M1.  相似文献   

6.
To investigate whether priming stimulation influences the responses of intracortical inhibitory and facilitatory motor circuits to a subsequent plasticity-inducing inhibitory theta burst TMS paradigm. Using standard transcranial magnetic stimulation (TMS) procedures, MEP amplitude, short-interval intracortical inhibition (SICI), and short-interval intracortical facilitation (SICF) were assessed at baseline and 5, 20 and 30 min following continuous theta burst stimulation (cTBS), intermittent TBS (iTBS), and iTBS-primed cTBS. SICI was assessed using paired-pulse TMS at inter-stimulus intervals (ISI) of 3 ms (SICI(3)) and the latency corresponding to the latency at which SICF was minimal in each individual. SICF was assessed at ISIs corresponding to Peak 1, Trough 1, Peak 2, and Peak 3 of each individual's SICF curve. When applied alone cTBS inhibited and iTBS facilitated MEP amplitudes. iTBS-primed cTBS resulted in greater MEP inhibition than cTBS alone. There were no changes in SICF and only marginal changes in SICI following any intervention. Synapses mediating MEP generation undergo modification following iTBS-primed cTBS, possibly through mechanisms related to metaplasticity or synaptic depotentiation. A lack of substantial changes in SICI and SICF under all experimental conditions suggests that the tested rTMS paradigms may be non-optimal for inducing robust modulation of the neural elements mediating SICI and SICF across subjects. Priming stimulation may provide an approach which facilitate neuroplastic change within the human motor cortex at least in circuits responsible for MEP generation.  相似文献   

7.
Transcranial magnetic stimulation (TMS)-induced corticospinal volleys can be investigated in detail by analysing the firing pattern modulation of active motor units (MUs) at close to threshold stimulation strengths. In amyotropic lateral sclerosis (ALS) these volleys are dispersed and prolonged, attributed to altered motor cortical excitability. Impaired intracortical inhibition, as found in ALS, is not unique to this disease, but is also a well-established finding in Parkinson's disease (PD). The present study explored whether reduced inhibition in the motor cortex in PD is accompanied by similar changes in motor unit firing modulation by TMS as are found in ALS. TMS was applied to the contralateral motor cortex during a low-force voluntary elbow flexion while 126-channel surface electromyography (SEMG) was recorded from the brachial biceps muscle. A recently developed method for SEMG decomposition was used to extract the firing pattern of up to five simultaneously active MUs. Sixteen MUs in 7 PD patients and 17 MUs in 5 healthy control subjects were analysed and peristimulus time histograms (PSTHs) and interspike interval change functions (IICFs) were calculated. The IICF provides an estimate of the modulation of the postsynaptic membrane potential at the spinal motoneuron, evoked by the stimulus. In PD the duration of the PSTH peak was significantly increased and the synchrony was decreased. The excitatory phase at 20–50 ms of the IICF was broader in PD, reflecting a longer duration of the TMS-evoked excitatory postsynaptic potential. It is proposed that these results are due to prolonged corticospinal volleys resulting from impaired intracortical inhibition. Electronic Publication  相似文献   

8.
This study was designed to determine whether a silent period could be elicited in the diaphragm electromyographic (EMG) activity by transcranial magnetic stimulation (TMS) of the motor cortex and, if so, to assess the influence of reflex or voluntary control of breathing on diaphragmatic cortical silent period (cSP). Diaphragmatic EMG activity was recorded in six healthy volunteers after motor cortex TMS triggered by the inspiratory flow peak and applied during forced inspiration (FI), voluntary hyperventilation (vHV) and reflex hyperventilation (rHV) to a CO(2) stimulus. Electrophysiological and respiratory parameters were studied, including diaphragmatic cSP duration and transdiaphragmatic pressure swing (DeltaPdi). A diaphragmatic cSP was found and correlated with DeltaPdi values. DeltaPdi and cSP duration were similar in the vHV and rHV conditions but were significantly increased during FI. This study established for the first time the existence of a diaphragmatic cSP to motor cortex TMS. The diaphragmatic cSP duration depended on the magnitude of the respiratory effort, as assessed by DeltaPdi, but not on the mechanism (volitional or reflex) of diaphragm activation.  相似文献   

9.
Positron emission tomography (PET) was used to assess changes in regional cerebral blood flow (CBF) induced by paired-pulse transcranial magnetic stimulation (TMS) of primary motor cortex (M1). The study was performed in eight normal volunteers using two Magstim-200 stimulators linked with a Bistim module. A circular TMS coil was held in the scanner by a mechanical arm and located over the left M1. Surface electrodes were used to record motor evoked potentials (MEPs) from the contralateral first dorsal interosseous muscle (FDI). Cortical excitability was evaluated in the relaxed FDI using a paired conditioning-test stimulus paradigm with two interstimulus intervals (ISIs): 3 and 12 ms. The subjects were scanned three times during each of the following four conditions: 1) baseline with no TMS (BASE); 2) single-pulse TMS (TMSsing); 3) 3-ms paired-pulse TMS (TMS3); and 4) 12-ms paired-pulse TMS (TMS12). CBF and peak-to-peak MEP amplitudes were measured over each 60-s scanning period. To assess TMS-induced changes in CBF, a t-statistic map was generated by first subtracting the single-pulse TMS condition from the 3- and 12-ms paired-pulse TMS conditions and then correlating the CBF differences, respectively, with the amount of suppression and facilitation of the EMG responses. A significant positive correlation was observed between the CBF difference (TMS3-TMSsing) and the amount of suppression of EMG response, as well as between the CBF difference (TMS12-TMSsing) and the amount of facilitation of EMG response. This positive correlation was observed in the left M1, left lateral premotor cortex, and right M1 in the case of 3-ms paired-pulse TMS, but only in the left M1 in the case of 12-ms paired-pulse TMS. The above pattern of CBF response to paired-pulse TMS supports the possibility that suppression and facilitation of the EMG response are mediated by different populations of cortical interneurons.  相似文献   

10.
11.
Paired associative stimulation (PAS) is an effective non-invasive method to induce human motor plasticity by the repetitive pairing of peripheral nerve stimulation and transcranial magnetic stimulation (TMS) at the primary motor cortex (M1) with a specific time interval. Although the repetitive pairing of two types of afferent stimulation might be a biological basis of neural plasticity and memory, other types of paired stimulation of the human brain have rarely been studied. We hypothesized that the repetitive pairing of TMS and interhemispheric cortico-cortical projection or paired bihemispheric stimulation (PBS), in which the right and left M1 were serially stimulated with a time interval of 15 ms, would produce an associative long-term potentiation (LTP)-like effect. In this study, 23 right-handed healthy volunteers were subjected to a 0.1 Hz repetition of 180 pairings of bihemispheric TMS, and physiological and behavioural measures of the motor system were compared before, immediately after, 20 min after and 40 min after PBS intervention. The amplitude of the motor evoked potential (MEP) induced by the left M1 stimulation and its input–output function increased for up to ∼20 min post-PBS. Fine finger movements were also facilitated by PBS. Spinal excitability measured by the H-reflex was insensitive to PBS, suggesting a cortical mechanism. The associative LTP-like effect induced by PBS was timing dependent, occurring only when the interstimulus interval was 5–25 ms. These findings demonstrate that using PBS in PAS can induce motor cortical plasticity, and this approach might be applicable to the rehabilitation of patients with motor disorders.  相似文献   

12.
We studied the effects of transcranial magnetic stimulation (TMS) on slow cortical potentials (SCPs) of the brain elicited during performance of a feedback and reward task. Ten healthy participants were trained to self-regulate their SCP amplitude using visual feedback and reward for increased or decreased amplitudes. Subjects participated in 27 runs (each comprising 70 trials) under three different conditions: single-pulse TMS delivered with the coil centered over Cz (vertex), over a lateral scalp position (LSP), which increased task difficulty, and in the absence of stimulation. Cz stimulation led to a non-significant enhancement of negative SCPs, while LSP stimulation led to a significant increase of positive SCPs. These results are consistent with the idea that enhanced task difficulty, as in LSP stimulation, enhances cognitive processing load leading to an increase of positive SCPs. Additionally, the data raise the hypothesis that TMS delivered to bilateral midcentral regions could modulate the amplitude of negative SCPs.  相似文献   

13.
Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES) of the motor cortex were recorded in separate sessions to assess changes in motor cortex excitability after a fatiguing isometric maximal voluntary contraction (MVC) of the right ankle dorsal flexor muscles. Five healthy male subjects, aged 37.4±4.2 years (mean±SE), were seated in a chair equipped with a load cell to measure dorsiflexion force. TMS or TES was delivered over the scalp vertex before and after a fatiguing MVC, which was maintained until force decreased by 50%. MEPs were recorded by surface electrodes placed over quadriceps, hamstrings, tibialis anterior (TA), and soleus muscles bilaterally. M-waves were elicited from the exercised TA by supramaximal electrical stimulation of the peroneal nerve. H-reflex and MVC recovery after fatiguing, sustained MVC were also studied independently in additional sessions. TMS-induced MEPs were significantly reduced for 20 min following MVC, but only in the exercised TA muscle. Comparing TMS and TES mean MEP amplitudes, we found that, over the first 5 min following the fatiguing MVC, they were decreased by about 55% for each. M-wave responses were unchanged. H-reflex amplitude and MVC force recovered within the 1st min following the fatiguing MVC. When neuromuscular fatigue was induced by tetanic motor point stimulation of the TA, TMS-induced MEP amplitudes remained unchanged. These findings suggest that the observed decrease in MEP amplitude represents a focal reduction of cortical excitability following a fatiguing motor task and may be caused by intracortical and/or subcortical inhibitory mechanisms.  相似文献   

14.
This study evaluates the effect of transcranial magnetic stimulation (TMS; 60 Hz and 0.7 mT) treatment on 3-nitropropionic acid (20 mg/kg i.p./day for 4 days)-induced oxidative stress in cortical synaptosomes of Wistar rats. The oxidative derangement was confirmed by a high level of lipid peroxidation products and protein carbonyls, together with a decreased in reduced glutathione (GSH) content, catalase and GSH-peroxidase (GSH-Px) activities. Additionally, it was observed a reduction in succinate dehydrogenase (SDH) activity. All changes were partially prevented or reversed by administration of TMS. These results show that TMS reduces oxidative stress in cortical synaptosomes, and suggest that TMS may protect neuronal and maintain synaptic integrity.  相似文献   

15.

Introduction

Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are non-invasive techniques able to induce changes in corticospinal excitability. In this study, we combined rTMS and tDCS to understand possible interactions between the two techniques, and investigate whether they are polarity dependent.

Materials and methods

Eleven healthy subjects participated in the study. Each patient underwent both anodal and cathodal conditioning tDCS in two separate sessions; brief 5 Hz-rTMS trains were delivered over the primary motor cortex at an intensity of 120% the resting motor threshold (RMT) before tDCS (T0), immediately after (T1) and 10 min after current offset (T2). We then analysed changes induced by cathodal and anodal tDCS on TMS variables.

Results

Our results showed that in both anodal and cathodal sessions, the motor evoked potential (MEP) amplitude increased significantly in size before stimulation (T0). Conversely, after anodal tDCS, the MEP facilitation measured at T1 and T2 was absent, whereas after cathodal tDCS it was preserved.

Conclusions

Our findings provide new direct neurophysiological evidence that tDCS influences primary motor cortex excitability.  相似文献   

16.
The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) may be a core component in the common molecular pathways for drug addiction. Moreover, studies using animal models of drug addiction have demonstrated that changing CaMKII activity or expression influences animals' responses to the drugs of abuse. Here, we explored the roles of CaMKII in the nucleus accumbens (NAc) shell in the extinction and reinstatement of morphine-seeking behavior. Rats were trained to obtain intravenous morphine infusions through poking hole on a fixed-ratio one schedule. Selective CaMKII inhibitor myristoylated autocamtide-2-inhibitory peptide (myr-AIP) was injected into the NAc shell of rats after the acquisition of morphine self-administration (SA) or before the reinstatement test. The results demonstrated that injection of myr-AIP after acquisition of morphine SA did not influence morphine-seeking in the following extinction days and the number of days spent for reaching extinction criterion. However, pretreatment with myr-AIP before the reinstatement test blocked the reinstatement of morphine-seeking behavior induced by morphine-priming. Our results strongly indicate that CaMKII activity in the NAc shell is essential to the relapse to morphine-seeking.  相似文献   

17.
Transcranial magnetic stimulation (TMS) was initially used to evaluate the integrity of the corticospinal tract in humans non-invasively. Since these early studies, the development of paired-pulse and repetitive TMS protocols allowed investigators to explore inhibitory and excitatory interactions of various motor and non-motor cortical regions within and across cerebral hemispheres. These applications have provided insight into the intracortical physiological processes underlying the functional role of different brain regions in various cognitive processes, motor control in health and disease and neuroplastic changes during recovery of function after brain lesions. Used in combination with neuroimaging tools, TMS provides valuable information on functional connectivity between different brain regions, and on the relationship between physiological processes and the anatomical configuration of specific brain areas and connected pathways. More recently, there has been increasing interest in the extent to which these physiological processes are modulated depending on the behavioural setting. The purpose of this paper is (a) to present an up-to-date review of the available electrophysiological data and the impact on our understanding of human motor behaviour and (b) to discuss some of the gaps in our present knowledge as well as future directions of research in a format accessible to new students and/or investigators. Finally, areas of uncertainty and limitations in the interpretation of TMS studies are discussed in some detail.  相似文献   

18.
Ten healthy subjects and two patients who had an electrode implanted into the cervical epidural space underwent repetitive transcranial magnetic stimulation (rTMS; 50 stimuli at 5 Hz at active motor threshold intensity) of the hand motor area. We evaluated intracortical inhibition before and after rTMS. In healthy subjects, we also evaluated threshold and amplitude of motor evoked potentials (MEPs), duration of cortical silent period and short-latency intracortical facilitation. rTMS led to a short-lasting reduction in the amount of intracortical inhibition in control subjects with a high interindividual variability. There was no significant effect on other measures of motor cortex excitability. Direct recordings of descending corticospinal volleys from the patients were consistent with the idea that the effect of rTMS on intracortical inhibition occurred at the cortical level. Since the level of intracortical inhibition can be influenced by drugs that act on GABAergic systems, this may mean that low-intensity repetitive magnetic stimulation at 5 Hz can selectively modify the excitability of GABAergic networks in the human motor cortex. Electronic Publication  相似文献   

19.
Changes in the strength of corticospinal projections to muscles in the upper and lower limbs are induced in conscious humans after paired associative stimulation (PAS) to the motor cortex. We tested whether an intervention of PAS consisting of 90 low-frequency (0.1-Hz) stimuli to the common peroneal nerve combined with suprathreshold transcranial magnetic stimulation (TMS) produces specific changes to the motor-evoked potentials (MEPs) in lower leg muscles if the afferent volley from peripheral stimulation is timed to arrive at the motor cortex after TMS-induced firing of corticospinal neurons. Unlike PAS in the hand, MEP facilitation in the leg was produced when sensory inputs were estimated to arrive at the motor cortex over a range of 15 to 90 ms after cortical stimulation. We examined whether this broad range of facilitation occurred as a result of prolonged subthreshold excitability of the motor cortex after a single pulse of suprathreshold TMS so that coincident excitation from sensory inputs arriving many milliseconds after TMS can occur. We found that significant facilitation of MEP responses (>200%) occurred when the motor cortex was conditioned with suprathreshold TMS tens of milliseconds earlier. Likewise, it was possible to induce strong MEP facilitation (85% at 60 min) when afferent inputs were directly paired with subthreshold TMS. We argue that in the leg motor cortex, facilitation of MEP responses from PAS occurred over a large range of interstimulus intervals as a result of the paired activation of sensory inputs with sustained, subthreshold activity of cortical neurons that follow a pulse of suprathreshold TMS.  相似文献   

20.
Paired-pulse transcranial magnetic stimulation (ppTMS) is a noninvasive method to measure cortical inhibition in vivo. Long interpulse interval (50-500 ms) ppTMS (LI-ppTMS) provokes intracortical inhibitory circuits and can reveal pathologically impaired cortical inhibition in disorders such as epilepsy. Adaptation of ppTMS protocols to rodent disease models is highly desirable to facilitate basic and translational research. We previously adapted single-pulse TMS (spTMS) methods to rats, but ppTMS has yet to be applied. Specifically, whether ppTMS elicits an inhibitory response in rodents is unknown. ppTMS in rats also requires anesthesia, a setting under which the preservation of these measures is undetermined. We therefore tested, in anesthetized rats, whether anesthetic choice affects spTMS-motor-evoked potentials (MEPs), LI-ppTMS in rats, as in humans, elicits intracortical inhibition of the MEP, and rat LI-ppTMS inhibition is acutely impaired in a seizure model. Rats were anesthetized with pentobarbital (PB) or ketamine-atropine-xylazine (KAX) and stimulated unilaterally over the motor cortex while recording bilateral brachioradialis MEPs. LI-ppTMS was applied analogous to human long interval intracortical inhibition (LICI) protocols, and acute changes in inhibition were evaluated following injection of the convulsant pentylenetetrazole (PTZ). We find that spTMS-evoked MEPs were reliably present under either anesthetic, and that LI-ppTMS elicits inhibition of the conditioned MEP in rats, similar to human LICI, by as much as 58 ± 12 and 71 ± 11% under PB and KAX anesthesia, respectively. LI-ppTMS inhibition was reduced to as much as 53% of saline controls following PTZ injection, while spTMS-derived measures of corticospinal excitability were unchanged. Our data show that regional inhibition, similar to human LICI, is present in rats, can be elicited under PB or KAX anesthesia, and is reduced following convulsant administration. These results suggest a potential for LI-ppTMS as a biomarker of impaired cortical inhibition in murine disease models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号