首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modulation of the extracellular level of arginine, substrate for nitric oxide synthetases, is a promising modality to alleviate certain pathological conditions where excess nitric oxide (NO) is produced. However, complications arise, as only preferential inhibition of the inducible nitric oxide synthetase (iNOS), but not endothelial nitric oxide synthetase (eNOS), is desired for the treatment of NO over-production. We investigated the effect of arginine deprivation mediated by a recombinant arginine deiminase (rADI) on the activity of iNOS and eNOS in an endothelial cell line, TR-BBB. Our results demonstrated that cytokine-induced NO production depends on the extracellular arginine as substrate. However, if sufficient citrulline is present in the medium, A23187-activated NO production by eNOS does not rely on extracellular arginine. Treatment with rADI can markedly inhibit cytokine-induced NO production via iNOS, but not A23187-activated NO production via eNOS. Our results also showed that the decrease of NO production by iNOS could be achieved by depleting arginine from the medium even under the conditions that would up-regulate iNOS expression. Thus, rADI appears to be a novel selective modulator of iNOS activity that may be a used as a tool in the study of pathological disorders where NO over-production plays a key role.  相似文献   

2.
Dimerization of inducible NOS has been known to be a potential therapeutic target for iNOS-mediated pathologies. Cyclic dipeptides are among the simplest peptides commonly found as by-products of food processing or metabolites of microorganisms. In this study, we found that cyclo(dehydrohistidyl-l-tryptophyl) (CDHT), a cyclic dipeptide from an unidentified fungal strain Fb956, prevents iNOS dimerization in activated microglial BV-2 cells. CDHT inhibited NO production with an IC50 of 6.5 microM in LPS-treated BV-2 cells. Western blot analysis and iNOS activity measurement of fractions from size-exclusion chromatography of cell lysates indicated that CDHT inhibits dimerization of iNOS, while it has no effect on iNOS expression or enzyme activity. The CDHT inhibition of iNOS dimerization was confirmed by partially denaturing SDS-PAGE analysis. In contrast, CDHT did not affect cGMP production in endothelial HUVEC cells, which indicates no inhibition of endothelial NOS activity. These results reveal that CDHT, one of the simplest and cyclic dipeptides, selectively inhibits NO production by inhibiting iNOS dimerization, and could be a useful therapeutic agent for inflammation-mediated diseases.  相似文献   

3.
Paul V 《Biochemical pharmacology》2002,63(11):2019-2023
To determine the role of the metabolites of L-arginine in its actions on picrotoxin-induced convulsions in rats, the concentrations of nitric oxide (NO) and L-citrulline were measured in the brain 30 and 60 min after the administration of L-arginine (1000 and 2000 mg/kg) or of N-nitro-L-arginine methyl ester (L-NAME, 30 mg/kg), an inhibitor of NO synthase. Animals treated similarly were challenged 30 and 60 min later with picrotoxin (5mg/kg), and the time of onset of myoclonus and clonic convulsions and the frequency of convulsions were determined. These parameters were also determined 30 and 60 min after administering L-arginine in L-NAME-pretreated (30 min) animals. Thirty minutes after the administration of L-arginine, the concentrations of both NO and L-citrulline were raised, the onset of myoclonus and clonic convulsions was delayed, and the frequency of convulsions was decreased, indicating the anticonvulsant property of L-arginine. A 60-min treatment of L-arginine produced a further increase in the concentration of L-citrulline but not that of NO and promoted the frequency of picrotoxin-induced convulsions. Pretreatment with L-NAME prevented L-arginine from raising the concentrations of both NO and L-citrulline; it also promoted the anticonvulsant actions and prevented the proconvulsant actions of L-arginine. These results lead to the conclusion that NO has no involvement in the time-dependent anti and proconvulsant actions of L-arginine on the picrotoxin convulsion model, and that L-citrulline seems to have a role in the proconvulsant action of L-arginine.  相似文献   

4.
Cyclosporin A is known to decrease nitric oxide (NO) production in nervous tissues. The effects of systemic cyclosporine A on the induction and expression of morphine tolerance and dependence, acute morphine-induced antinociception, and the probable involvement of the L-arginine/nitric oxide pathway in these effects were assessed in mice. Cyclosporin A (20 mg/kg), N(G)-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg) and a combination of the two at lower and per se non-effective doses (5 and 3 mg/kg, respectively) showed a similar pattern of action, inhibiting the induction of tolerance to morphine-induced antinociception and increasing the antinociception threshold in the expression phase of morphine tolerance. These agents also inhibited the expression of morphine dependence as assessed by naloxone-precipitated withdrawal signs, while having no effect on the induction of morphine dependence. L-Arginine, at a per se non-effective dose (60 mg/kg), inhibited the effects of Cyclosporin A. Moreover, acute administration of Cyclosporin A (20 mg/kg) or L-NAME (10 mg/kg) enhanced the antinociception induced by acute administration of morphine (5 mg/kg), while chronic pretreatment with Cyclosporin A (20 mg/kg) or L-NAME (10 mg/kg) for 2 days (twice daily) did not affect morphine-induced antinociception. The inducible nitric oxide synthase inhibitor, aminoguanidine (100 mg/kg), did not alter morphine antinociception, tolerance or dependence. In conclusion, decreasing NO production through constitutive nitric oxide synthase may be a mechanism through which cyclosporin A differentially modulates morphine tolerance, dependence and antinociception.  相似文献   

5.
We measured changes in nitric oxide (NO) concentration in the cerebral cortex during experimental carbon monoxide (CO) poisoning and assessed the role for N-methyl-d-aspartate receptors (NMDARs), a glutamate receptor subtype, with progression of CO-mediated oxidative stress. Using microelectrodes, NO concentration was found to nearly double to 280 nM due to CO exposure, and elevations in cerebral blood flow, monitored as laser Doppler flow (LDF), were found to loosely correlate with NO concentration. Neuronal nitric oxide synthase (nNOS) activity was the cause of the NO elevation based on the effects of specific NOS inhibitors and observations in nNOS knockout mice. Activation of nNOS was inhibited by the NMDARs inhibitor, MK 801, and by the calcium channel blocker, nimodipine, thus demonstrating a link to excitatory amino acids. Cortical cyclic GMP concentration was increased due to CO poisoning and shown to be related to NO, versus CO, mediated guanylate cyclase activation. Elevations of NO were inhibited when rats were infused with superoxide dismutase and in rats depleted of platelets or neutrophils. When injected with MK 801 or 7-nitroindazole, a selective nNOS inhibitor, rats did not exhibit CO-mediated nitrotyrosine formation, myeloperoxidase (MPO) elevation (indicative of neutrophil sequestration), or impaired learning. Similarly, whereas CO-poisoned wild-type mice exhibited elevations in nitrotyrosine and myeloperoxidase, these changes did not occur in nNOS knockout mice. We conclude that CO exposure initiates perivascular processes including oxidative stress that triggers activation of NMDA neuronal nNOS, and these events are necessary for the progression of CO-mediated neuropathology.  相似文献   

6.
Arginase1 and nitric oxide synthase2 (NOS2) utilize l-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor Nω-hydroxy-nor-l-arginine (nor-NOHA) significantly increased total l-arginine content in the airway compartment. We hypothesized that such an increase in l-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2−/−) mice would be unable to up-regulate NO production in response to allergen exposure and would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2−/− mice.Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2−/− mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2−/− mice.We conclude that l-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to NOS2, which is a major source of NO production in the inflamed airway, although arginase inhibition may also be affecting the turnover of arginine by the other NOS isoforms, NOS1 and NOS3. The increased l-arginine content in the airway compartment of mice treated with nor-NOHA may directly or indirectly, through NOS2, control arginase expression both in response to OVA exposure and at a basal level.  相似文献   

7.
Effects of intra-central amygdala injections of L-arginine, a nitric oxide (NO) precursor, and N(G)-nitro-L-arginine methyl ester (L-NAME), a NO synthase (NOS) inhibitor, on morphine-induced conditioned place preference in rats were investigated by using an unbiased 3-day schedule of place conditioning design. Animals receiving once daily injections of morphine (0.5-7.5 mg/kg, subcutaneously, s.c.) or saline (1.0 ml/kg, s.c.) showed a significant place preference in a dose-dependent manner. The maximum response was observed with 5.0 mg/kg of the opioid. Co-administration of morphine (5.0 mg/kg) with L-arginine (0.3, 1.0 and 3.0 microg/rat), but not with L-NAME (0.3, 1.0 and 3.0 microg/rat), during the acquisition of morphine-induced conditioned place preference increased morphine-induced conditioned place preference. The response to L-arginine was blocked by L-NAME preadministration. L-arginine and L-NAME by themselves did not induce conditioned place preference. When L-arginine or L-NAME at 0.3-3.0 microg/rat was administered 1 min before conditioned place preference testing, L-arginine but not L-NAME caused an increase in the expression of morphine-induced conditioned place preference, the effect that was blocked by L-NAME preadministration. A dose of L-arginine (0.3 microg/rat), but not L-NAME, during expression of morphine-induced conditioned place preference produced an increase in locomotion compared with that in the control group. It may be concluded that an increase in the NO levels in the central amygdala may have an effect on the acquisition and expression of morphine-induced conditioned place preference.  相似文献   

8.
In a recent paper, it was shown that stimulation of endothelial cells with bradykinin (BK) leads to phosphorylation of endothelial nitric oxide synthase (eNOS) mediated by extracellular signal-regulated kinase (ERK) (J. Biol. Chem. 275 (2000) 30707). Since in vitro phosphorylation by ERK reduced the catalytic activity of eNOS, it was suggested that this mechanism may be an important determinant of nitric oxide signalling in endothelial cells. To explore the physiological role of ERK as regulator of nitric oxide synthesis in intact cells, we measured the effects of the kinase inhibitor PD 98059 on BK- and ATP-induced nitric oxide formation in cultured endothelial cells and isolated vascular smooth muscle strips. PD 98059 completely inhibited ERK activation by BK and ATP in porcine aortic endothelial cells without affecting eNOS activation. Moreover, PD 98059 did not potentiate relaxation of isolated porcine pulmonary arteries to BK or ATP, indicating that ERK-catalysed eNOS phosphorylation does not contribute to the regulation of nitric oxide formation in intact cells or tissues.  相似文献   

9.
Chronic blockade of nitric oxide (NO) synthesis attenuates the eosinophil infiltration into airways of allergic rats. This study was designed to investigate whether the inhibition of eosinophil influx to the lung of allergic rats reflects modifications in the pattern of cell mobilization from the bone marrow to peripheral blood and/or to lung. Male Wistar rats were treated with N(omega)-nitro-l-arginine methyl ester (l-NAME; 20mg/rat per day) for 4 weeks and sensitized with ovalbumin (OVA). In control rats, the pulmonary OVA-challenge promoted an early (24h) increase in the bone marrow eosinophil population that normalized at 48 h after OVA-challenge, at which time the eosinophils disappeared from the blood and reached the lungs in mass. In l-NAME-treated rats, an accumulation of eosinophils in bone marrow was observed at 24 and 48 h post-OVA-challenge. No variation in this cell type number was observed in peripheral blood and bronchoalveolar lavage throughout the time-course studied. In control rats, the adhesion of bone marrow eosinophils to fibronectin-covered wells was significantly increased at 24h after OVA-challenge, whereas in l-NAME-treated rats the increased adhesion was detected at 48 h. A 32% decrease in the expression of inducible nitric oxide synthase (iNOS) (but not endothelial nitric oxide synthase; eNOS) in eosinophils from l-NAME-treated rats was observed. The levels of IgE, IgG(1) and IgG(2a) were not affected by the l-NAME treatment. Our findings suggest that inhibition of NO synthesis upregulates the binding of eosinophils to extracellular matrix proteins such as fibronectin, producing a delayed efflux of eosinophils from bone marrow to peripheral blood and lungs.  相似文献   

10.
11.
Lindane is an organochloride pesticide and scabicide. It evokes convulsions mainly trough the blockage of GABAA receptors. Nitric oxide (NO), gaseous neurotransmitter, has contradictor role in epileptogenesis due to opposite effects of l-arginine, precursor of NO syntheses (NOS), and L-NAME (NOS inhibitor) observed in different epilepsy models. The aim of the current study was to determine the effects of NO on the behavioral and EEG characteristics of lindane-induced epilepsy in male Wistar albino rats.The administration of l-arginine (600, 800 and 1000 mg/kg, i.p.) in dose-dependent manner significantly increased convulsion incidence and severity and shortened latency time to first convulsion elicited by lower lindane dose (4 mg/kg, i.p.). On the contrary, pretreatment with L-NAME (500, 700 and 900 mg/kg, i.p.) decreased convulsion incidence and severity and prolonged latency time to convulsion following injection with a convulsive dose of lindane (8 mg/kg, i.p.). EEG analyses showed increase of number and duration of ictal periods in EEG of rats receiving l-arginine prior to lindane and decrease of this number in rats pretreated with L-NAME.These results support the conclusion that NO plays a role of endogenous convulsant in rat model of lindane seizures.  相似文献   

12.
In the present study, the interaction of nitric oxide synthase (NOS) inhibitors, L-NAME (N(G)-nitro-L-arginine methyl ester HCl) and L-NA (N(omega)-nitro-L-arginine), and its precursor, L-arginine (2-(S)-2-amino-5-[(aminoiminomethyl)amino] pentatonic acid), with theophylline on mouse body temperature was studied. Intraperitoneal (i.p.) injection of different doses of theophylline altered body temperature. Lower doses of theophylline (12.5 and 25 mg/kg) increased, but a higher dose (100 mg/kg) reduced, the animals' body temperature. The combination of L-arginine (20 and 40 mg/kg) with the highest dose of theophylline potentiated the hypothermic effect induced by the latter drug, while L-arginine by itself did not alter body temperature. L-NAME (10-80 mg/kg) or L-NA (10 mg/kg) plus a lower dose of theophylline (12.5 mg/kg) reduced the theophylline-induced hyperthermic response. L-NA (1, 5, and 10 mg/kg) in combination with the high dose of theophylline (100 mg/kg) also induced greater hypothermia. Both L-NAME and L-NA by themselves reduced body temperature. It is concluded that nitric oxide (NO) may be involved in the effects of theophylline on body temperature in mice.  相似文献   

13.
Nociceptin/orphanin FQ (N/OFQ) was earlier shown to be involved in the maintenance of neuropathic pain by activating neuronal nitric oxide synthase (nNOS). We recently established an ex vivo system to elucidate biochemical and molecular mechanisms for nNOS activation by the use of a combination of isolated intact spinal cord preparations and NADPH-diaphorase histochemistry. Here we examined the N/OFQ signal pathways coupled to nNOS activation in the spinal cord by using this ex vivo system. N/OFQ enhanced nNOS activity in the superficial layer of the spinal cord, as assessed by NADPH-diaphorase histochemistry, in a time- and dose-dependent manner. The maximum effect was observed at 3-10 nM. The N/OFQ-stimulated nNOS activity was inhibited by NMDA receptor antagonists MK-801 and D-AP5, but not by the NR2B-selective antagonist CP-101,606; and the stimulated activity was observed in NR2D(-/-) mice, but not in NR2A(-/-) or NR2A(-/-)/NR2D(-/-) mice. N/OFQ receptor antagonists attenuated the nNOS activity stimulated by N/OFQ, but not that by NMDA. Furthermore, the potentiation of nNOS by N/OFQ was inhibited by calphostin C and Ro 31-8220, PP2, and KN-62, but not by H-89. These results suggest that N/OFQ stimulated nNOS activity by a biochemical cascade initiated by activation of NMDA receptors containing NR2A.  相似文献   

14.
The effect of agmatine, an endogenous polyamine metabolite, on seizure susceptibility was investigated in mice. Acute intraperitoneal administration of agmatine (5, 10, 20, 40 mg/kg) had a significant and dose-dependent inhibitory effect on pentylenetetrazole (PTZ)-induced seizures. The peak of this anticonvulsant effect was 45 min after agmatine administration. We further investigated the possible involvement of the alpha(2)-adrenoceptors and L-arginine/NO pathway in this effect of agmatine. The alpha(2)-adrenoceptor antagonist, yohimbine (0.5-2 mg/kg), induced a dose-dependent blockade of the anticonvulsant effect of agmatine. The nitric oxide synthase (NOS) substrate, L-arginine (60 mg/kg), inhibited the anticonvulsant property of agmatine and this effect was significantly reversed by NOS inhibitor N(G)-nitro-L-arginine (L-NAME, 30 mg/kg), implying an NO-dependent mechanism for L-arginine effect. We further examined a possible additive effect between agmatine (1 or 5 mg/kg) and L-NAME (10 mg/kg). The combination of L-NAME (10 mg/kg) with agmatine (5 but not 1 mg/kg) induced a significantly higher level of seizure protection as compared with each drug alone. Moreover, a combination of lower doses of yohimbine (0.5 mg/kg) and L-arginine (30 mg/kg) also significantly decreased the anticonvulsant effect of agmatine. In conclusion, the present data suggest that agmatine may be of potential use in seizure treatment.  相似文献   

15.
Context: Chronic stress results from repeated exposure to one or more types of stressors over a period, ranging from days to months, and can be associated with physical, behavioral, and neuropsychiatric manifestations. Some physiological alterations resulting from chronic stress can potentially cause deficits on spatial learning and memory.

Objective: This study investigated the effects of chronic variable stress (CVS) and administration of l-arginine and creatine on spatial memory in rats. Furthermore, body, heart, adrenal weight, and plasma glucose and corticosterone levels were analyzed.

Material and methods: Male Wistar rats were subjected to a CVS model for 40 days and evaluated for spatial memory after the stress period. Chronically stressed animals were treated daily by gavage with: 0.5% carboxymethylcellulose (Group Cs), 500?mg/kg l-arginine (Group Cs/La), 300?mg/kg creatine (Group Cs/Cr); and 500?mg/kg l-arginine and 300?mg/kg creatine (Group Cs/La + Cr) during the entire experimental period.

Results: Our results showed that animals in the Cs/Cr and Cs/La + Cr groups presented significantly decreased corticosterone levels compared to group Cs (p?p?0.01); and animals in group Cs/La + Cr significantly improved in reference memory retention compared to controls (p?0.05).

Discussion and conclusion: Overall, these results demonstrated that a single administration of creatine improves working memory efficiency, and, when co-administrated with l-arginine, improves reference memory retention, a phenomenon that is possibly associated with increased creatine/phosphocreatine levels and l-arginine-derived NO synthesis.  相似文献   

16.
A brief exposure of hippocampal slices to L-quisqualic acid (QUIS) sensitizes CA1 pyramidal neurons 30- to 250-fold to depolarization by certain excitatory amino acids analogues, e.g., L-2-amino-6-phosphonohexanoic acid (L-AP6), and by the endogenous compound, L-cystine. This phenomenon has been termed QUIS sensitization. A mechanism similar to that previously described for QUIS neurotoxicity has been proposed to describe QUIS sensitization. Specifically, QUIS has been shown to be sequestered into GABAergic interneurons by the System x(c)(-) and subsequently released by heteroexchange with cystine or L-AP6, resulting in activation of non-NMDA receptors. We now report two additional neurotoxins, the Lathyrus excitotoxin, beta-N-oxalyl-L-alpha,beta-diaminopropionic acid (ODAP), and the endogenous compound, L-homocysteic acid (HCA), sensitize CA1 hippocampal neurons >50-fold to L-AP6 and >10-fold to cystine in a manner similar to QUIS. While the cystine- or L-AP6-mediated depolarization can be inhibited by the non-NMDA receptor antagonist CNQX in ODAP- or QUIS-sensitized slices, the NMDA antagonist D-AP5 inhibits depolarization by cystine or L-AP6 in HCA-sensitized slices. Thus, HCA is the first identified NMDA agonist that induces phosphonate or cystine sensitization. Like QUIS sensitization, the sensitization evoked by either ODAP or HCA can be reversed by a subsequent exposure to 2 mM alpha-aminoadipic acid. Finally, we have demonstrated that there is a correlation between the potency of inducers for triggering phosphonate or cystine sensitivity and their affinities for System x(c)(-) and either the non-NMDA or NMDA receptor. Thus, the results of this study support our previous model of QUIS sensitization and have important implications for the mechanisms of neurotoxicity, neurolathyrism and hyperhomocystinemia.  相似文献   

17.
Insulin exerts a vasodilator effect by stimulating endothelial nitric oxide (NO) production. Studies in cultured cells suggest that insulin might activate endothelial nitric oxide synthase (eNOS) by an atypical, calcium-independent mechanism. This study investigates the mechanism of insulin-stimulated endothelial NO production in intact aortic wall. Real time fluorescence imaging with 4,5-diaminofluorescin diacetate (DAF-2 DA) or 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) and FURA 2-AM was used to simultaneously visualise NO and intracellular calcium concentrations at multiple locations in the endothelium and vascular smooth muscle of isolated rat and mouse aorta after exposure to insulin. Inhibitors of intracellular insulin signalling were used to determine the pathway for insulin-stimulated NO production. Unlike acetylcholine, which stimulated endothelial NO production with a typical increase in free intracellular calcium, insulin (10(-8) to 10(-6)M) stimulated endothelial NO production without elevating intracellular calcium levels. Insulin-stimulated NO production was concentration dependent and detected within 30s of application. Peak increases in NO occurred between 60 and 120 s and declined slowly thereafter. Separate measurements of NO production by fluorescence of 2,3-diaminonaphthalene (DAN) noted that selective inhibitors of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB) inhibited insulin-stimulated NO production, whereas these inhibitors alone did not alter NO production or acetylcholine-stimulated NO production. Insulin-stimulated NO production by endothelium is an acute calcium-independent effect mediated via the PI3K-PKB signalling pathway.  相似文献   

18.
ABSTRACT

Objective: The association of diabetes-related vascular damage and the role of metabolic factors in erectile dysfunction are well known in the literature. The compounds propionyl-l-carnitine (PLC), l-arginine (l-Arg) and nicotinic acid have numerous metabolic actions which have been reported to improve endothelial function. This study investigated the administration of the combination of these three compounds alone and in association with an inhibitor of 5-phosphodiesterase (5PDE), vardenafil, on endothelial function in diabetic patients with erectile dysfunction.

Methods: A total of 40 patients aged between 50 and 60 years with insulin-dependent diabetes (IDDM) for 3–4 years were selected from 509 patients presenting with erectile dysfunction. The patients were randomly subdivided into four groups of ten to be treated for 12 weeks. Group A was administered one sachet each day of test formulation containing PLC, l-Arg and nicotinic acid (Ezerex); group B with one 20 mg capsule of vardenafil (Levitra) twice a week; group C was treated with one sachet each day of the test formulation plus vardenafil 20 mg twice a week. Group D was administered placebo capsules twice weekly. Endothelial function was evaluated by examining flow-mediated dilation (FMD) and erectile function was estimated with the International Index of Erectile Function (IIEF5) questionnaire in all subjects.

Results: At the end of treatment group A showed an increment of 2 points in the IIEF5; group B showed an increment of 4 points; group C, the group which was administered all the treatments, showed an increment of 5 points, and group D, treated with placebo, showed no increment in the IIEF5.

Conclusion: Although there was a small number of subjects in this study the data suggest that the test formulation may improve the endothelial situation in diabetes. The test formulation together with vardenafil was better than the 5PDE inhibitor alone, but further studies are needed to confirm these findings.  相似文献   

19.
Curcumin, a well-known chemopreventive agent, has been shown to suppress the proliferation of a wide variety of tumor cells through a mechanism that is not fully understood. Cyclin E, a proto-oncogene that is overexpressed in many human cancers, mediates the G(1) to S transition, is a potential target of curcumin. We demonstrate in this report a dose- and time-dependent down-regulation of expression of cyclin E by curcumin that correlates with the decrease in the proliferation of human prostate and breast cancer cells. The suppression of cyclin E expression was not cell type dependent as down-regulation occurred in estrogen-positive and -negative breast cancer cells, androgen-dependent and -independent prostate cancer cells, leukemia and lymphoma cells, head and neck carcinoma cells, and lung cancer cells. Curcumin-induced down-regulation of cyclin E was reversed by proteasome inhibitors, lactacystin and N-acetyl-L-leucyl-L-leucyl-L-norleucinal, suggesting the role of ubiquitin-dependent proteasomal pathway. We found that curcumin enhanced the expression of tumor cyclin-dependent kinase (CDK) inhibitors p21 and p27 as well as tumor suppressor protein p53 but suppressed the expression of retinoblastoma protein. Curcumin also induced the accumulation of the cells in G1 phase of the cell cycle. Overall, our results suggest that proteasome-mediated down-regulation of cyclin E and up-regulation of CDK inhibitors may contribute to the antiproliferative effects of curcumin against various tumors.  相似文献   

20.
The effect of Collybia dryophila polysaccharide (CDP), a (1-->3), (1-->4)-beta-D-glucan extracted from the mushroom C. dryophila, was evaluated on nitric oxide (NO) production induced by lipopolysaccharide (LPS) and gamma interferon (IFNgamma) or by LPS alone in RAW 264.7 cells. CDP significantly inhibited NO production in a dose-dependent manner without affecting cell viability. The inhibition of NO by CDP was consistent with decreases in both inducible nitric oxide synthase (iNOS) protein and mRNA expression suggesting that CDP exerts its effect by inhibiting iNOS gene expression. In addition, CDP at concentrations of 400 and 800 microg/ml was shown to significantly increase prostaglandin E2 (PGE2) production in LPS- and IFNgamma-induced macrophages when compared to the control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号