首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes the development of a real-time LightCycler assay for the detection and identification of Candida and Aspergillus spp., using the MagNa Pure LC Instrument for automated extraction of fungal DNA. The assay takes 5-6 h to perform. The oligonucleotide primers and probes used for species identification were derived from the DNA sequences of the 18S rRNA genes of various fungal pathogens. All samples were screened for Aspergillus and Candida to the genus level in the real-time PCR assay. If a sample was Candida-positive, typing to species level was performed using five species-specific probes. The assay detected and identified most of the clinically relevant Aspergillus and Candida spp. with a sensitivity of 2 CFU/mL blood. Amplification was 100% specific for all Aspergillus and Candida spp. tested. To assess clinical applicability, 1,650 consecutive samples (1,330 blood samples, 295 samples from other body fluids and 25 biopsy samples) from patients with suspected invasive fungal infections were analysed. In total, 114 (6.9%) samples were PCR-positive, 5.3% for Candida and 1.7% for Aspergillus spp. In patients with positive PCR results for Candida and Aspergillus, verification with conventional methods was possible in 83% and 50% of cases, respectively. In conclusion, the real-time PCR assay allows sensitive and specific detection and identification of fungal pathogens in vitro and in vivo.  相似文献   

2.
Zygomycete infections can be devastating in immunocompromised hosts. Difficulties in the histopathologic differentiation of this class from other filamentous fungi (e.g., Aspergillus spp., Fusarium spp.) may lead to delays in diagnosis and initiation of appropriate treatment, thereby significantly affecting patient outcome. A real-time PCR assay was developed to detect species of the zygomycete genera Absidia, Apophysomyces, Cunninghamella, Mucor, Rhizopus, and Saksenaea in culture and tissue samples. Primers and fluorescence resonance energy transfer hybridization probes were designed to detect a 167-bp conserved region of the multicopy zygomycete cytochrome b gene. A plasmid containing target sequence from Mucor racemosus was constructed as a positive control. The analytical sensitivity of the assay is 10 targets/mul, and a specificity panel consisting of other filamentous fungi, yeasts (Candida spp.), and bacteria demonstrated no cross-reactivity in the assay. The clinical sensitivity and specificity of the assay from culture isolates were 100% (39/39) and 92% (59/64), respectively. Sensitivity and specificity determined using a limited number of fresh tissue specimens were both 100% (2/2). The sensitivity seen with formalin-fixed, paraffin-embedded tissues was 56% (35/62), and the specificity was 100% (19/19). The speed, sensitivity, and specificity of the PCR assay indicate that it is useful for the rapid and accurate detection of zygomycetes.  相似文献   

3.
In the present study, novel real-time PCR assays targeting the fungal ITS2 region were developed for the detection and differentiation of medically important Aspergillus species (Aspergillus fumigatus, Aspergillus flavus, Aspergillus nidulans, Aspergillus niger, and Aspergillus terreus) and Candida species (Candida albicans, Candida dubliniensis, Candida glabrata, Candida krusei, Candida parapsilosis, and Candida tropicalis) using a LightCycler instrument. The combination of a group-specific and a universal primer with five Aspergillus or six Candida species-specific biprobes in one reaction mixture facilitated rapid screening and species differentiation by the characteristic peak melting temperatures of the biprobes. Both assays can be performed either as single assays or simultaneously in the same LightCycler run. The analytical sensitivity using pure cultures and EDTA-anticoagulated blood, cerebrospinal fluid (CSF), and tissue samples spiked with A. fumigatus and C. albicans cell suspensions was shown to be at least 1 CFU per PCR, corresponding to 5 to 10 CFU/ml blood and 10 CFU/200 microl CSF or 0.02 g tissue. To assess the clinical applicability, 26 respiratory samples, 4 tissue samples from the maxillary sinus, and 1 blood sample were retrospectively tested and real-time PCR results were compared with results from culture, histology, or a galactomannan enzyme-linked immunosorbent assay (ELISA). Twenty samples (64.5%) were both culture positive and positive by real-time PCR. Six samples (19.4%) showed no growth of fungi but were positive by real-time PCR. However, all of the tissue samples were positive by both PCR and histology. The blood sample showed no growth of Aspergillus, but aspergillosis was confirmed by positive galactomannan ELISA, histology, and PCR results. The remaining samples (16.1%) were culture and PCR negative; also, no other signs indicating fungal infection were observed. Our data suggest that the Aspergillus and Candida assays may be appropriate for use in clinical laboratories as simple and rapid screening tests for the most frequently encountered Aspergillus and Candida species and might become an important tool in the early diagnosis of fungal infections in the future.  相似文献   

4.
Broad-range real-time PCR and sequencing of the 16S rRNA gene region is a widely known method for the detection and identification of bacteria in clinical samples. However, because of the need for sequencing, such identification of bacteria is time-consuming. The aim of our study was to develop a more rapid 16S real-time PCR-based identification assay using species- or genus-specific probes. The Gram-negative bacteria were divided into Pseudomonas species, Pseudomonas aeruginosa, Escherichia coli, and other Gram-negative species. Within the Gram-positive species, probes were designed for Staphylococcus species, Staphylococcus aureus, Enterococcus species, Streptococcus species, and Streptococcus pneumoniae. The assay also included a universal probe within the 16S rRNA gene region for the detection of all bacterial DNA. The assay was evaluated with a collection of 248 blood cultures. In this study, the universal probe and the probes targeting Pseudomonas spp., P. aeruginosa, E. coli, Streptococcus spp., S. pneumoniae, Enterococcus spp., and Staphylococcus spp. all had a sensitivity and specificity of 100%. The probe specific for S. aureus showed eight discrepancies, resulting in a sensitivity of 100% and a specificity of 93%. These data showed high agreement between conventional testing and our novel real-time PCR assay. Furthermore, this assay significantly reduced the time needed for identification. In conclusion, using pathogen-specific probes offers a faster alternative for pathogen detection and could improve the diagnosis of bloodstream infections.  相似文献   

5.
Screening assays for Neisseria gonorrhoeae exhibit low positive predictive values, particularly in low-prevalence populations. A new real-time PCR assay that detects and identifies individual Neisseria spp. using melt curve analysis was compared to two previously published supplementary assays. NsppID, a 16S rRNA real-time PCR/melt curve assay developed to distinguish N. gonorrhoeae from other Neisseria spp., was compared to real-time PCR assays targeting genes reportedly specific for N. gonorrhoeae, the cppB gene and the porA pseudogene. A total of 408 clinical specimens (324 female endocervical swabs and 84 male urine or urogenital swab specimens) were screened using the COBAS Amplicor assay for Chlamydia trachomatis and N. gonorrhoeae (CT/NG) (Roche Diagnostics, Indianapolis, IN) followed by confirmatory testing via real-time PCR. The NsppID assay detected Neisseria spp. in 150/181 COBAS-positive specimens (82%), including six dual infections, and identified N. gonorrhoeae in 102 (56%) specimens. Sixty-nine of 181 (38%) specimens were positive for N. gonorrhoeae by porA pseudogene, and 115/181 (64%) were positive for cppB. However, cppB was also positive in 15% of COBAS-negative specimens, more than either NsppID (4%) or porA pseudogene (2%) assays. The porA pseudogene assay had the highest specificity for both genders but the lowest sensitivity, especially in female specimens. NsppID had a slightly lower specificity but greater sensitivity and overall accuracy. The least desirable confirmatory assay was cppB, due to poor specificity. The NsppID assay is an accurate confirmatory assay for N. gonorrhoeae detection. In addition, the NsppID assay can identify the non-N. gonorrhoeae species responsible for the majority of false-positive results from the COBAS Amplicor CT/NG assay.  相似文献   

6.
目的建立、优化快速检测临床标本中热带假丝酵母菌的实时荧光定量PCR方法 ,并对其临床应用进行初步评价。方法用自行设计的高效引物、探针检测5种临床标本中的热带假丝酵母菌,对该方法的敏感性、特异性进行评价,并与真菌培养法进行比较。结果检测临床标本中热带假丝酵母菌的灵敏度可达10 copies/ml,与人类基因组、细菌及其他真菌无交叉阳性反应。与真菌培养法的检测一致性好(Kappa值为0.916,P〈0.01)。结论实时荧光定量PCR检测热带假丝酵母菌灵敏度高、特异性强,可直接用于各种临床标本中热带假丝酵母菌的检测,而且可大大缩短报告时间,为临床诊断提供可靠依据。  相似文献   

7.
Early detection of bloodstream infections (BSI) is crucial in the clinical setting. Blood culture remains the gold standard for diagnosing BSI. Molecular diagnostic tools can contribute to a more rapid diagnosis in septic patients. Here, a multiplex real-time PCR-based assay for rapid detection of 25 clinically important pathogens directly from whole blood in <6 h is presented. Minimal analytical sensitivity was determined by hit rate analysis from 20 independent experiments. At a concentration of 3 CFU/ml a hit rate of 50% was obtained for E. aerogenes and 100% for S. marcescens, E. coli, P. mirabilis, P. aeruginosa, and A. fumigatus. The hit rate for C. glabrata was 75% at 30 CFU/ml. Comparing PCR identification results with conventional microbiology for 1,548 clinical isolates yielded an overall specificity of 98.8%. The analytical specificity in 102 healthy blood donors was 100%. Although further evaluation is warranted, our assay holds promise for more rapid pathogen identification in clinical sepsis.  相似文献   

8.
Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method that amplifies DNA with high specificity, efficiency, and speed under isothermal conditions. To evaluate the usefulness of LAMP for diagnosing central nervous system infection with herpes simplex virus (HSV), we compared the LAMP method with real-time PCR, using samples that were previously tested by nested PCR. We examined 69 cerebrospinal fluid (CSF) samples from patients suspected of having HSV infection of the central nervous system. The results of the real-time PCR analysis and nested PCR assay were in complete accord. When nested PCR was regarded as standard, the sensitivity of LAMP was 81%, the specificity was 100%, the positive predictive value was 100%, and the negative predictive value was 90%. Although further improvement is necessary for the wide spread use, the LAMP method might be applicable to diagnosis of HSV infection of the central nervous system.  相似文献   

9.
Although opportunistic infection including fungal infection is often associated with living donor liver transplantation followed by immunosuppressive therapy, antifungal agents are empirically given to most patients without a definitive diagnosis of fungal infection. Indeed, there is no diagnostic test available, that shows both high sensitivity and specificity for fungal infection. In this study, we developed a polymerase chain reaction(PCR)-based system for rapid diagnosis of fungal infection. This system consisted of two PCR steps: the first PCR for most species of fungi and 4 kinds of nested PCR for Aspergillus or Penicillium (ASP/PEN), Candida glabrata (C. glab), other Candida species including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida guiliermondii (CAN), and a broad spectrum of fungi (Broad). The newly developed PCR-based system was applied to 28 recipients of with living donor liver transplantation to determine its clinical usefulness in early and differential diagnosis of fungal infection. A total of 514 blood samples from 28 patients ware analyzed. Nested PCR assays were positive in 118 samples from 19 patients: 4 patients (30 samples) with ASP/PEN, 5 patients (29 samples) with C. glab, 12 patients (61 samples) with CAN. All of these samples were positive with nested PCR for Broad as well. Even in samples that were negative on blood culture or ELISA for Aspergillus antigen, nested PCR assays were able to amplify the fungal DNA. Furthermore, all samples positive for Aspergillus antigen tested positive on nested PCR. In conclusion, the PCR-based system we developed was thought to be useful for early diagnosis of fungal infection.  相似文献   

10.
The rapid identification of bacteria and fungi directly from the blood of patients with suspected bloodstream infections aids in diagnosis and guides treatment decisions. The development of an automated, rapid, and sensitive molecular technology capable of detecting the diverse agents of such infections at low titers has been challenging, due in part to the high background of genomic DNA in blood. PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) allows for the rapid and accurate identification of microorganisms but with a sensitivity of about 50% compared to that of culture when using 1-ml whole-blood specimens. Here, we describe a new integrated specimen preparation technology that substantially improves the sensitivity of PCR/ESI-MS analysis. An efficient lysis method and automated DNA purification system were designed for processing 5 ml of whole blood. In addition, PCR amplification formulations were optimized to tolerate high levels of human DNA. An analysis of 331 specimens collected from patients with suspected bloodstream infections resulted in 35 PCR/ESI-MS-positive specimens (10.6%) compared to 18 positive by culture (5.4%). PCR/ESI-MS was 83% sensitive and 94% specific compared to culture. Replicate PCR/ESI-MS testing from a second aliquot of the PCR/ESI-MS-positive/culture-negative specimens corroborated the initial findings in most cases, resulting in increased sensitivity (91%) and specificity (99%) when confirmed detections were considered true positives. The integrated solution described here has the potential to provide rapid detection and identification of organisms responsible for bloodstream infections.  相似文献   

11.
Management of complicated bloodstream infections requires more aggressive treatment than uncomplicated bloodstream infections. We assessed the value of follow-up blood culture in bloodstream infections caused by Staphylococcus aureus, Enterococcus spp., Streptococcus spp., and Candida spp. and studied the value of persistence of DNA in blood (using SeptiFast) for predicting complicated bloodstream infections. Patients with bloodstream infections caused by these microorganisms were enrolled prospectively. After the first positive blood culture, samples were obtained every third day to perform blood culture and SeptiFast analyses simultaneously. Patients were followed to detect complicated bloodstream infection. The study sample comprised 119 patients. One-third of the patients developed complicated bloodstream infections. The values of persistently positive tests to predict complicated bloodstream infections were as follows: SeptiFast positive samples (sensitivity, 56%; specificity, 79.5%; positive predictive value, 54%; negative predictive value, 80.5%; accuracy, 72.3%) and positive blood cultures (sensitivity, 30.5%; specificity, 92.8%; positive predictive value, 64%; negative predictive value, 75.5%; accuracy, 73.9%). Multivariate analysis showed that patients with a positive SeptiFast result between days 3 and 7 had an almost 8-fold-higher risk of developing a complicated bloodstream infection. In S. aureus, the combination of both techniques to exclude endovascular complications was significantly better than the use of blood culture alone. We obtained a score with variables selected by the multivariate model. With a cutoff of 7, the negative predictive value for complicated bloodstream infection was 96.6%. Patients with a positive SeptiFast result between days 3 and 7 after a positive blood culture have an almost 8-fold-higher risk of developing complicated bloodstream infections. A score combining clinical data with the SeptiFast result may improve the exclusion of complicated bloodstream infections.  相似文献   

12.
Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene.  相似文献   

13.
目的 建立一种快速、灵敏、特异的鉴定克柔念珠菌和光滑念珠菌的双重实时荧光定量PCR方法.方法 以核糖体基因内转录间隔区Ⅱ(ITSⅡ)为靶目标,设计并合成分别针对克柔念珠菌、光滑念珠菌的种特异引物和探针.建立双重实时荧光定量PCR反应体系,并用该体系对呼吸道相关致病菌进行检测.鉴定结果与临床常规鉴定方法对照,评价其敏感度、特异度及重复性.结果 通过对100例样品的检测,结果显示该双重实时荧光定量PCR法检测标本的鉴定结果与常规鉴定方法的结果对照,特异度为100%,敏感度为100%;最小能检测到10个拷贝数的重组质粒;批内重复实验和批间重复实验结果均与常规鉴定方法结果相符.结论 双重荧光定量PCR法鉴定克柔念珠菌和光滑念珠菌,特异度和敏感度高,重复性好,且快速、简便,该方法将有助于念珠菌病的早期诊断和针对性治疗.  相似文献   

14.
Traditional histological diagnosis of mycobacterial infection in formalin-fixed and paraffin-embedded (FFPE) tissues is insensitive and poorly specific. To improve this, we developed nested polymerase chain reaction (PCR) protocols for detecting a Mycobacterium genus-specific 65-kDa heat shock protein (HSP65) sequence and the M. tuberculosis complex-specific insertion sequence IS6110 in FFPE sections. Protocols were optimized on tissues from 20 patients with a final clinical diagnosis of mycobacterial infection. Amplicons were controlled by sequencing and restriction endonuclease digestion. PCR could detect as few as three mycobacterial genomes per reaction. Assays showed 100% sensitivity and specificity for both M. tuberculosis complex and M. avium complex infection. Paraffin blocks from a second group of 26 patients with histological evidence of necrotizing granulomas of unknown etiology were then analyzed as a surrogate group to test the assay under conditions similar to those applying during routine diagnosis. Twenty-three of these blocks contained amplifiable DNA; nine were positive for M. tuberculosis complex DNA and four for other types of mycobacterial DNA. Furthermore, digestion of HSP65 amplicons with NarI could distinguish M. tuberculosis from M. avium complex. In conclusion, our nested PCR assays can be used as reliable tools for the detection of mycobacterial infections in FFPE tissues. The assays are simple and rapid to perform and show improved sensitivity and specificity compared to previously reported protocols.  相似文献   

15.
Loop-mediated isothermal amplification (LAMP) is known as a rapid and reliable alternative to conventional single-step or nested PCR for detection of genomic DNA of various pathogens in clinical samples. In this study, LAMP assay was developed for canine parvovirus (CPV) and compared with single-step and nested PCR assays. Out of 50 fecal samples from dogs clinically suspected for CPV infections, 19 were found positive by single-step PCR, 22 by nested PCR and 26 by LAMP. LAMP products were subjected to restriction analysis and sequencing to check their specificity. LAMP assay turned out to be a rapid and fairly reproducible method, did not amplify other common canine pathogens and was more sensitive than nested PCR assay. Therefore, it can be regarded as a highly reliable method for routine field diagnosis of CPV infection. Keywords: canine parvovirus; nested polymerase chain reaction; loop-mediated isothermal amplification; sensitivity; specificity.  相似文献   

16.
A rapid, sensitive, and specific assay, RAPID-BAP assay, was developed to detect and quantify the G protein-encoding gene of bovine ephemeral fever virus (BEFV). This new technique uses a nested PCR and magnetic bead-based DNA probing assay. The optimal conditions for the assay were examined. By applying a nested PCR, a minimum of 1 copy/mul of the BEFV plasmid DNA could be detected by the assay. The optimal hybridization conditions at 50 degrees C in 5x SSC and 0.5% SDS with a 20-min incubation allowed clear discrimination between negative and positive controls. The assay was also highly specific as all negative controls failed to show any positive detection. The diagnostic sensitivity of the RAPID-BAP assay, real-time RT-PCR, and conventional RT-PCR in the detection of 34 clinical blood samples suspected to have BEFV infections were 72.73, 36.36, and 18.18%, respectively. The results indicated that the RAPID-BAP assay developed in this study was more sensitive than the conventional RT-PCR and real-time RT-PCR assays for the detection of BEFV. The novel RAPID-BAP assay is an excellent diagnostic tool with high sensitivity, specificity, and fast turnaround time.  相似文献   

17.
Sepsis is a major health problem in newborns and children. Early detection of pathogens allows initiation of appropriate antimicrobial therapy that strongly correlates with positive outcomes. Multiplex PCR has the potential to rapidly identify bloodstream infections, compensating for the loss of blood culture sensitivity. In an Italian pediatric hospital, multiplex PCR (the LightCycler SeptiFast test) was compared to routine blood culture with 1,673 samples obtained from 803 children with suspected sepsis; clinical and laboratory information was used to determine the patient infection status. Excluding results attributable to contaminants, SeptiFast showed a sensitivity of 85.0% (95% confidence interval [CI] = 78.7 to 89.7%) and a specificity of 93.5% (95% CI = 92.1 to 94.7%) compared to blood culture. The rate of positive results was significantly higher with SeptiFast (14.6%) than blood culture (10.3%) (P < 0.0001), and the overall positivity rate was 16.1% when the results of both tests were combined. Staphylococcus aureus (11.6%), coagulase-negative staphylococci (CoNS) (29.6%), Pseudomonas aeruginosa (16.5%), and Klebsiella spp. (10.1%) were the most frequently detected. SeptiFast identified 97 additional isolates that blood culture failed to detect (24.7% P. aeruginosa, 23.7% CoNS, 14.4% Klebsiella spp., 14.4% Candida spp.). Among specimens taken from patients receiving antibiotic therapy, we also observed a significantly higher rate of positivity of SeptiFast than blood culture (14.1% versus 6.5%, respectively; P < 0.0001). On the contrary, contaminants were significantly more frequent among blood cultures than SeptiFast (n = 97 [5.8%] versus n = 26 [1.6%]), respectively; P < 0.0001). SeptiFast served as a highly valuable adjunct to conventional blood culture in children, adding diagnostic value and shortening the time to result (TTR) to 6 h.  相似文献   

18.
Coccidioides spp. are dimorphic fungal pathogens endemic to the semiarid regions of North, Central, and South America. Currently, direct smear and culture are the most common means of identifying Coccidioides spp. While these methods offer relatively sensitive and specific means of detecting Coccidioides spp., growth in culture may take up to 3 weeks, potentially delaying the diagnosis and initiation of appropriate antifungal therapy. In addition, growth of the organism represents a significant safety risk to laboratory personnel. The need for a rapid and safe means of diagnosing coccidioidomycosis prompted us to develop a real-time PCR assay to detect Coccidioides spp. directly from clinical specimens. Primers and fluorescent resonance energy transfer (FRET) probes were designed to target the internal transcribed spacer 2 region of Coccidioides. The assay's limit of detection is below 50 targets per reaction. An analysis of 40 Coccidioides sp. clinical isolates grown in culture demonstrated 100% sensitivity of the assay. A cross-reactivity panel containing fungi, bacteria, mycobacteria, and viruses was tested and demonstrated 100% specificity for Coccidioides spp. An analysis of 266 respiratory specimens by LightCycler PCR demonstrated 100% sensitivity and 98.4% specificity for Coccidioides spp. compared with culture. Analysis of 66 fresh tissue specimens yielded 92.9% sensitivity and 98.1% specificity versus those of the culture method. The sensitivity of the assay testing 148 paraffin-embedded tissue samples is 73.4%. A rapid method for the detection of Coccidioides spp. directly from clinical material will greatly assist in the timely diagnosis and treatment of patients, while at the same time decreasing the risk of accidental exposure to laboratory personnel.  相似文献   

19.
PCR-based methods have advantages over traditional microscopic methods for the diagnosis of malaria, especially in cases of low parasitemia and mixed infections. However, current PCR-based assays are often labor-intensive and not readily quantifiable and have the potential for contamination due to a requirement for postamplification sample handling. Real-time PCR can address these limitations. This study evaluated the performance characteristics of a commercial malaria real-time PCR assay (RealArt Malaria LC Assay; Artus GmbH, Hamburg, Germany) on the LightCycler platform for the detection of malaria parasites in 259 febrile returned travelers. Compared to nested PCR as the reference standard, the real-time assay had a sensitivity of 99.5%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 99.6% for the detection of malaria. Our results indicate that the RealArt assay is a rapid (<45 min), sensitive, and specific method for the detection of malaria in returned travelers.  相似文献   

20.
The herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2) and varicella-zoster virus (VZV) can cause life-threatening infections of the central nervous system and lead to severe infections in immunocompromised subjects and newborns. In these cases, rapid diagnosis is crucial. We developed three different real-time PCR assays based on TaqMan chemistry for the LightCycler instrument to detect HSV-1, HSV-2, and VZV. When the TaqMan assays were compared to our in-house nested PCR assays, the test systems had equal sensitivities of 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号