首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Background: The investigation of mutation patterns in oncogenes potentially can make available a reliable mechanism for management and treatment decisions for patients with colorectal cancer (CRC). This study concerns the rate of KRAS and BRAF genes mutations in Iranian metastatic colorectal cancer (mCRC) patients, as well as associations of genotypes with clinicopathological features. Materials and Methods: A total of 1,000 mCRC specimens collected from 2008 to 2012 that referred to the Mehr Hospital and Partolab center, Tehran, Iran enrolled in this cross sectional study. Using HRM, Dxs Therascreen and Pyrosequencing methods, we analyzed the mutational status of KRAS and BRAF genes in these. Results: KRAS mutations were present in 33.6% cases (n=336). Of KRAS mutation positive cases, 85.1% were in codon 12 and 14.9% were in codon 13. The most frequent mutation at KRAS codon 12 was Gly12Asp; BRAF mutations were not found in any mCRC patients (n=242). In addition, we observed a strong correlation of KRAS mutations with some clinicopathological characteristics. Conclusions: KRAS mutations are frequent in mCRCs while presence of BRAF mutations in these patients is rare. Moreover, associations of KRAS genotypes with non mucinous adenocarcinoma and depth of invasion (pT3) were remarkable.  相似文献   

2.
Patients with metastatic colorectal carcinoma (mCRC) carrying activating mutations of the KRAS gene do not benefit from treatment with anti-epidermal growth factor receptor (EGFR) monoclonal antibodies. Therefore, KRAS mutation testing of mCRC patients is mandatory in the clinical setting for the choice of the most appropriate therapy. Co-amplification-at-lower denaturation-temperature PCR (COLD-PCR) is a novel modification of the conventional PCR method that selectively amplifies minority alleles from a mixture of wild-type and mutant sequences irrespective of the mutation type or position within the sequence. In this study, we compared the sensitivity of a COLD-PCR method with conventional PCR/sequencing and the real-time PCR-based Therascreen kit to detect KRAS mutations. By using dilutions of KRAS mutant DNA in wild-type DNA from colon cancer cell lines with known KRAS status, we found that Fast COLD-PCR is more sensitive than the conventional PCR method, showing a sensitivity of 2.5% in detecting G>A and G>T mutations. The detection of G>C transversions was not improved by either Fast COLD-PCR or Full COLD-PCR. We next analyzed by COLD-PCR, conventional PCR and Therascreen 52 formalin-fixed paraffin-embedded samples from mCRC patients. Among 36 samples with >30% tumor cells, 8 samples were negative by conventional PCR, Therascreen and Fast COLD-PCR; 20 mutations identified by conventional PCR were confirmed by Therascreen and Fast COLD-PCR; 8 cases undetermined by conventional PCR were all confirmed to carry KRAS G>A or G>T mutations by using either Therascreen or Fast COLD-PCR. Conventional PCR was able to detect only 2 KRAS mutations among 16 samples with <30% tumor cells (12.5%), whereas Therascreen and Fast COLD-PCR identified 6 mutants (37.5%). These data suggest that Fast COLD-PCR has a higher clinical sensitivity as compared with conventional PCR in detecting G>C to A>T changes in the KRAS gene, which represent >90% of the mutations of this oncogene in CRC.  相似文献   

3.
We previously reported that colon carcinomas, adenomas, and hyperplastic polyps exhibiting a serrated histology were very likely to possess BRAF mutations, whereas when these same advanced colonic lesions exhibited non-serrated histology, they were wild type for BRAF; among hyperplastic polyps, KRAS mutations were found mainly in a non-serrated variant. On this basis, we predicted that hyperplastic aberrant crypt foci (ACF), a putative precancerous lesion found in the colon, exhibiting a serrated phenotype would also harbor BRAF mutations and that non-serrated ACF would not. In contrast, KRAS mutations would be found more often in the non-serrated ACF. We examined 55 ACF collected during screening colonoscopy from a total of 28 patients. Following laser capture microdissection, DNA was isolated, and mutations in BRAF and KRAS were determined by direct PCR sequencing. When hyperplastic lesions were further classified into serrated and non-serrated histologies, there was a strong inverse relationship between BRAF and KRAS mutations: a BRAF(V600E) mutation was identified in 10 of 16 serrated compared with 1 of 33 non-serrated lesions (P = 0.001); conversely, KRAS mutations were present in 3 of 16 serrated compared with 14 of 33 non-serrated lesions. Our finding of a strong association between BRAF mutations and serrated histology in hyperplastic ACF supports the idea that these lesions are an early, sentinel, or a potentially initiating step on the serrated pathway to colorectal carcinoma.  相似文献   

4.
Characterization of genetic alterations in tumor biopsies serves as useful biomarkers in prognosis and treatment management. Circulating tumor cells (CTCs) obtained non‐invasively from peripheral blood could serve as a tumor proxy. Using a label‐free CTC enrichment strategy that we have established, we aimed to develop sensitive assays for qualitative assessment of tumor genotype in patients. Blood consecutively obtained from 44 patients with local and advanced colorectal cancer and 18 healthy donors were enriched for CTCs using a size‐based microsieve technology. To screen for CTC mutations, we established high‐resolution melt (HRM) and allele‐specific PCR (ASPCR) KRAS‐codon 12/13‐ and BRAF‐codon 600‐ specific assays, and compared the performance with pyrosequencing and Sanger sequencing. For each patient, the resulting CTC genotypes were compared with matched tumor and normal tissues. Both HRM and ASPCR could detect as low as 1.25% KRAS‐ or BRAF‐mutant alleles. HRM detected 14/44 (31.8%) patients with KRAS mutation in CTCs and 5/44 (11.3%) patients having BRAF mutation in CTCs. ASPCR detected KRAS and BRAF mutations in CTCs of 10/44 (22.7%) and 1/44 (2.3%) patients respectively. There was an increased detection of mutation in blood using these two methods. Comparing tumor tissues and CTCs mutation status using HRM, we observed 84.1% concordance in KRAS genotype (p = 0.000129, Fishers'' exact test; OR = 38.7, 95% CI = 4.05–369) and 90.9% (p = 0.174) concordance in BRAF genotype. Our results demonstrate that CTC enrichment, coupled with sensitive mutation detection methods, may allow rapid, sensitive and non‐invasive assessment of tumor genotype.  相似文献   

5.
Background: The aim of our study was to establish COLD-PCR combined with an unlabeled-probe HRMapproach for detecting KRAS codon 12 and 13 mutations in plasma-circulating DNA of pancreatic adenocarcinoma(PA) cases as a novel and effective diagnostic technique. Materials and Methods: We tested the sensitivity andspecificity of this approach with dilutions of known mutated cell lines. We screened 36 plasma-circulating DNAsamples, 24 from the disease control group and 25 of a healthy group, to be subsequently sequenced to confirmmutations. Simultaneously, we tested the specimens using conventional PCR followed by HRM and then usedtarget-DNA cloning and sequencing for verification. The ROC and respective AUC were calculated for KRASmutations and/or serum CA 19-9. Results: It was found that the sensitivity of Sanger reached 0.5% with COLDPCR,whereas that obtained after conventional PCR did 20%; that of COLD-PCR based on unlabeled-probeHRM, 0.1%. KRAS mutations were identified in 26 of 36 PA cases (72.2%), while none were detected in thedisease control and/or healthy group. KRAS mutations were identified both in 26 PA tissues and plasma samples.The AUC of COLD-PCR based unlabeled probe HRM turned out to be 0.861, which when combined with CA19-9 increased to 0.934. Conclusions: It was concluded that COLD-PCR with unlabeled-probe HRM can be asensitive and accurate screening technique to detect KRAS codon 12 and 13 mutations in plasma-circulatingDNA for diagnosing and treating PA.  相似文献   

6.
Background: Mutations in RAS (KRAS, NRAS) and BRAF genes are the main biomarker predicting response to anti-EGFR monoclonal antibodies in targeted therapy in colorectal cancer (CRC). Objective: Our study aims to evaluate the frequencies of KRAS, NRAS and BRAF mutations and their possible associations with clinico-pathological features in CRC patients from Morocco. Methods: DNA was extracted from 80 FFPE samples using the QIAamp DNA FFPE-kit. RAS and BRAF mutations were assessed by pyrosequencing assays using Qiagen, KRAS Pyro®kit 24.V1, Ras-Extension Pyro®kit 24.V1 and BRAF Pyro®Kit 24.V1, respectively, and carried out in the PyroMark-Q24. Results: RAS mutations were identified in 57.5% (56.2% in KRAS, 8.8% in NRAS). In KRAS gene, exon 2 mutations accounted for 93.3% (68.9% in codon 12, 24.4% in codon 13). Within codon 12, G12D was the most prevalent mutation (37.7%), followed by G12C (13.4%), G12S (8.9%) and G12V (6.6%). Within codon 13, the most frequently observed mutation was G13D (22.3%). The mutation rates of exon 3 and 4 were 15.6% and 13.3%, respectively. In exon 3 codon 61, 2.3% patients were detected with two concurrent mutations (Q61R, Q61H), and 4.4% with three concurrent mutations (Q61R, Q61H, Q61L). In NRAS gene, the mutation rates of exon 2, 3 and 4 were 57.1%, 28.6%, and 14.3%, respectively. G13A and Q61H were the most common mutations, accounting for 42.9% and 28.5%, respectively. There were 13% patients with concurrent KRAS/NRAS mutation and 4.3% wt KRAS with NRAS mutations. No mutations were identified in BRAF gene. In both sexes, KRAS codon 12 mutations were associated with higher stage III/IV tumors. Moreover, Patients whose tumor is in the proximal colon (56.3%) are more likely to harbor KRAS mutations than those tumor located in rectum (25%). Conclusion: RAS mutations could be useful in future target anti-EGFR therapy and molecular CRC screening strategy in Morocco.  相似文献   

7.
目的建立高分辨率熔解曲线(high resolution melting,HRM)分析技术检测表皮生长因子受体(epidermal growth factor receptor,EGFR)基因突变的方法,并探讨其的临床应用价值。方法建立HRM技术检测EGFR基因突变方法,并用其检测200例非小细胞肺癌患者肿瘤石蜡包埋标本,并与测序法的结果进行比较。结果所建HRM检测方法 Tm与ct值的CV值均较小,重复性好。HRM法检测标本EGFR基因突变的结果与测序法相比,突变总检出率分别为40.0%和37.0%,敏感性为100%,特异性>95%。结论 HRM法检测EGFR基因突变,敏感性高,特异性强,重复性好,操作简便,节约时间,成本低,适用于临床。  相似文献   

8.

Background

The approval of vemurafenib in the US 2011 and in Europe 2012 improved the therapy of not resectable or metastatic melanoma. Patients carrying a substitution of valine to glutamic acid at codon 600 (p.V600E) or a substitution of valine to leucine (p.V600K) in BRAF show complete or partial response. Therefore, the precise identification of the underlying somatic mutations is essential. Herein, we evaluate the sensitivity, specificity and feasibility of six different methods for the detection of BRAF mutations.

Methods

Samples harboring p.V600E mutations as well as rare mutations in BRAF exon 15 were compared to wildtype samples. DNA was extracted from formalin-fixed paraffin-embedded tissues by manual micro-dissection and automated extraction. BRAF mutational analysis was carried out by high resolution melting (HRM) analysis, pyrosequencing, allele specific PCR, next generation sequencing (NGS) and immunohistochemistry (IHC). All mutations were independently reassessed by Sanger sequencing. Due to the limited tumor tissue available different numbers of samples were analyzed with each method (82, 72, 60, 72, 49 and 82 respectively).

Results

There was no difference in sensitivity between the HRM analysis and Sanger sequencing (98%). All mutations down to 6.6% allele frequency could be detected with 100% specificity. In contrast, pyrosequencing detected 100% of the mutations down to 5% allele frequency but exhibited only 90% specificity. The allele specific PCR failed to detect 16.3% of the mutations eligible for therapy with vemurafenib. NGS could analyze 100% of the cases with 100% specificity but exhibited 97.5% sensitivity. IHC showed once cross-reactivity with p.V600R but was a good amendment to HRM.

Conclusion

Therefore, at present, a combination of HRM and IHC is recommended to increase sensitivity and specificity for routine diagnostic to fulfill the European requirements concerning vemurafenib therapy of melanoma patients.  相似文献   

9.

Background:

The detection of V600E BRAF mutation in melanoma is fundamental since here BRAF inhibitors represent an effective treatment. Non-V600E BRAF mutations that may also respond are not detected by certain screening methods. Thus, knowledge about detection of these mutations is needed.

Methods:

A total of 276 tumour samples from 174 melanoma patients were investigated for BRAF mutations by pyrosequencing. Rare mutations were confirmed by capillary sequencing and compared with findings from COBAS test and immunohistochemistry using a novel BRAF antibody. Melanoma type, localisation, and survival were summarised.

Results:

BRAF mutations were found in 43% of patients (124 tumours in 75 patients). Among those, 14 patients (18.7%) exhibited rare mutations. The V600EK601del and V600DK601del mutations have never been described before in melanoma. Furthermore, V600K, V600E2, and V600D, V600G, V600R, and L597S mutations were detected. Mutations were not detected by COBAS test in 7 out of these 14 patients and immunohistochemistry only reliably detected patients with the V600E2 and V600EK601del mutation.

Conclusion:

Accurate diagnosis of rare BRAF mutations is crucial. We show that pyrosequencing is accurate, highly sensitive, reliable, and time saving to detect rare BRAF mutations. Missing these rare variant mutations would exclude a subset of patients from available effective BRAF-targeting therapy.  相似文献   

10.
Background: Colorectal cancer (CRC) is one of the most frequent cancers. Genetic mutations in CRC already described can be detected in feces. Microarray methods in feces can represent a new diagnostic tool for CRC and significant improvement at public health. Aim: to analyze stool DNA by human DNA quantify and microarray methods as alternatives to CRC screening. Method: Three methods were analyzed in stool samples: Human DNA Quantify, RanplexCRC and KRAS/BRAF/PIK3CA (KBP) Arrays. Results: KBP array mutations were presented in 60.7% of CRC patients and RanplexCRC Array mutations in 61.1% of CRC patients. Sensitivity and specificity for human DNA quantification was 66% and 82% respectively. Fecal KBP Array had 35% sensitivity and 96% specificity and RanplexCRC Array method had 78% sensitivity and 100% specificity. Conclusion: Microarray methods showed promise as potential biomarkers for CRC screening; however, these methods had to be optimized to improve accuracy and applicability by clinical routine.  相似文献   

11.
BackgroundEpidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices.PurposeDetection of KRAS mutation in Egyptian colorectal cancer (CRC) patients by the KRAS StripAssay.MethodsExamination of 20 colorectal cancer (CRC) patients is done to detect KRAS mutations by KRAS StripAssay. For the StripAssay, a mutant-enriched PCR was followed by hybridization to KRAS-specific probes bound to a nitrocellulose strip.ResultsAmong 20 patients, KRAS mutations were identified in 80% of patients by the KRAS StripAssay.ConclusionsOur preliminary results suggest that KRAS StripAssay is an alternative to protocols currently in use for KRAS mutation detection.  相似文献   

12.
Constitutive activation of the kinase cascade involving RAS, RAF, MEK and ERK is common to human cancers, and mutations of KRAS and BRAF are mutually exclusive and serve as alternatives to activate the RAS/RAF/ERK signaling pathway. RAS mutations are known to occur in prostate adenocarcinomas, but little is known about BRAF mutations in these tumors. In the present study, BRAF and KRAS mutations were characterized in 206 prostate adenocarcinomas by enhanced PCR-RFLP and direct sequencing. The identified KRAS and BRAF mutations were then analyzed with respect to preoperative serum PSA levels, Gleason scores and tumor stages. Mutations in codon 600 of BRAF were identified in 21 (10.2%) of 206 prostate adenocarcinomas. KRAS mutations in codons 12 or 13 were found in 15 (7.3%) of 206 prostate adenocarcinomas. However, no tumor specimen contained both BRAF and KRAS mutations. Prostate adenocarcinomas with a BRAF mutation tended to show higher preoperative serum PSA levels, Gleason scores and tumor stages than prostate adenocarcinomas with a KRAS mutation. The results obtained show that BRAF mutations are as uncommon as KRAS mutations in prostate adenocarcinoma. Although BRAF and KRAS are members of the same RAS/ERK signaling pathway, prostate adenocarcinomas with a BRAF mutation showed clinicopathologic features that differed from those of prostate adenocarcinoma with a KRAS mutation.  相似文献   

13.
The Kirsten Rat Sarcoma (KRAS) oncogene has been introduced recently as a genetic biomarker for metastatic sporadic colorectal cancer prior to anti-EGFR treatment. Identifying patients with KRAS mutations that not respond to EGFR targeted therapies require sensitive, rapid and efficacious routine technique. We have attempted to evaluate the efficiency of three conventional methods: direct sequencing, HRM and DHPLC, to detect mutations in codon 12 and 13 of the KRAS exon2 gene. For this first Tunisian study on KRAS, we detected 45.83% of altered KRAS gene among 48 formalin-fixed paraffin-embedded sporadic colorectal adenocarcinoma patients. The use of HRM-sequencing allowed as enlarging the detected KRAS exon 2 mutations (22/48) in comparison with direct sequencing (17/48). DHPLC was used to confirm results when consensus was not observed between HRM and direct sequencing. This study brings an interesting data concerning an inter-method validation between sequencing and HRM in the investigation of sporadic colorectal cancer biomarker. It also shows that KRAS mutations occur at similar frequencies in Tunisian patients as in other populations; and suggests that the same genes are at play in sporadic CRC cancer, despite ethnic, geographical and environmental differences between countries.  相似文献   

14.
Li HT  Lu YY  An YX  Wang X  Zhao QC 《Oncology reports》2011,25(6):1691-1697
Many abnormal gene expressions and dysregulated signaling pathways have been found in human colorectal cancer. Activating mutations of the KRAS, BRAF or PIK3CA oncogenes are frequently found in colorectal cancer. The aim of the study was to investigate the molecular occurrence of KRAS, BRAF and PIK3CA mutations in the colorectal tumorigenesis and to study the association of these events with clinicopathological parameters. In our study, DNA was extracted from 200 cases of human colorectal cancer tissue samples. KRAS, BRAF and PIK3CA mutation analysis was performed by PCR and pyrosequencing. Using statistical methods, we analyzed the relationships between the gene mutations and clinicopathological parameters. KRAS point mutations were detected in 63/200 patients (31.5%), with codon 12 mutations in 52/200 patients (26%), codon 13 mutations in 10/200 patients (5%) and codon 12.13 bi-mutations in 1/200 patients (0.5%). The V600E mutations of BRAF were detected in 14/200 patients (7%). PIK3CA point mutations (exon 9, exon 20) were detected in 25/200 (12.5%) patients, exon 9 mutatons in 12/200 patients (6%) and exon 20 mutations in 13/200 (6.5%). Our study suggested that both KRAS and BRAF mutations are exclusive, but KRAS and PIK3CA mutations are coexistent. The mutational status of BRAF did not correlate with Dukes' staging, histological type, age and gender. However, strong associations were found between KRAS, PIK3CA mutations and Dukes' staging (staging D, 12/25, 48%). Notably, our data indicated that colorectal cancers with KRAS and PIK3CA bi-mutations are more likely to develop into liver metastasis.  相似文献   

15.
Although anti‐EGFR therapy has established efficacy in metastatic colorectal cancer, only 10‐20% of unselected patients respond. This is partly due to KRAS and BRAF mutations, which are currently assessed in the primary tumor. To improve patient selection, assessing mutation status in circulating tumor cells (CTCs), which possibly better represent metastases than the primary tumor, could be advantageous. We investigated the feasibility of KRAS and BRAF mutation detection in colorectal CTCs by comparing three sensitive methods and compared mutation status in matching primary tumor, liver metastasis and CTCs. CTCs were isolated from blood drawn from 49 patients before liver resection using CellSearch?. DNA and RNA was isolated from primary tumors, metastases and CTCs. Mutations were assessed by co‐amplification at lower denaturation temperature‐PCR (Transgenomic?), real‐time PCR (EntroGen?) and nested Allele‐Specific Blocker (ASB‐)PCR and confirmed by Sanger sequencing. In 43 of the 49 patients, tissue RNA and DNA was of sufficient quantity and quality. In these 43 patients, discordance between primary and metastatic tumor was 23% for KRAS and 7% for BRAF mutations. RNA and DNA from CTCs was available from 42 of the 43 patients, in which ASB‐PCR was able to detect the most mutations. Inconclusive results in patients with low CTC counts limited the interpretation of discrepancies between tissue and CTCs. Determination of KRAS and BRAF mutations in CTCs is challenging but feasible. Of the tested methods, nested ASB‐PCR, enabling detection of KRAS and BRAF mutations in patients with as little as two CTCs, seems to be superior.  相似文献   

16.
Do H  Dobrovic A 《Oncotarget》2012,3(5):546-558
Non-reproducible sequence artefacts are frequently detected in DNA from formalinfixed and paraffin-embedded (FFPE) tissues. However, no rational strategy has been developed for reduction of sequence artefacts from FFPE DNA as the underlying causes of the artefacts are poorly understood. As cytosine deamination to uracil is a common form of DNA damage in ancient DNA, we set out to examine whether treatment of FFPE DNA with uracil-DNA glycosylase (UDG) would lead to the reduction of C>T (and G>A) sequence artefacts. Heteroduplex formation in high resolution melting (HRM)-based assays was used for the detection of sequence variants in FFPE DNA samples. A set of samples that gave false positive HRM results for screening for the E17K mutation in exon 4 of the AKT1 gene were chosen for analysis. Sequencing of these samples showed multiple non-reproducible C:G>T:A artefacts. Treatment of the FFPE DNA with UDG prior to PCR amplification led to a very marked reduction of the sequence artefacts as indicated by both HRM and sequencing analysis, indicating that uracil lesions are the major cause of sequence artefacts. Similar results were shown for the BRAF V600 region in the same sample set and EGFR exon 19 in another sample set. UDG treatment specifically suppressed the formation of artefacts in FFPE DNA as it did not affect the detection of true KRAS codon 12 and true EGFR exon 19 and 20 mutations. We conclude that uracil in FFPE DNA leads to a significant proportion of sequence artefacts. These can be minimised by a simple UDG pretreatment which can be readily carried out, in the same tube, as the PCR immediately prior to commencing thermal cycling. HRM is a convenient way of monitoring both the degree of damage and the effectiveness of the UDG treatment. These findings have immediate and important implications for cancer diagnostics where FFPE DNA is used as the primary genetic material for mutational studies guiding personalised medicine strategies and where simple effective strategies to detect mutations are required.  相似文献   

17.
The RAF/MEK/ERK (MAPK) signal transduction cascade is an important mediator of a number of cellular fates including growth, proliferation and survival. The BRAF gene, one of the human isoforms of RAF, is activated by oncogenic RAS, leading to cooperative effects in cells responding to growth factor signals. This study was performed to elucidate a possible function of BRAF in squamous cell carcinoma of the head and neck (HNSCC). Mutations of BRAF and KRAS2 were evaluated in 89 HNSCC and corresponding normal mucosa by direct DNA sequencing analyses after microdissection. The results obtained were correlated with histopathological variables. Activating BRAF missense mutations were identified in 3/89 HNSCC (3%). KRAS2 mutations were found in five out of 89 (6%) HNSCC examined. There were no mutations of KRAS2 and BRAF in non-neoplastic mucosa. We failed to observe a correlation between BRAF or KRAS2 mutations and histopathological factors. Our data indicate that BRAF gene mutations are relatively rare events in HNSCC. Although uncommon, BRAF mutations may identify a subset of patients with HNSCC sensitive to targeted therapy.  相似文献   

18.
目的:比较晚期胃癌患者外周血循环肿瘤DNA(circulating tumor DNA,ctDNA)与组织学基因检测的一致性,讨论ctDNA的临床应用价值。方法:根据纳排标准最终收集30例晚期初诊初治胃癌患者的实体组织标本及血浆标本,并用二代测序(next generationg sequencing,NGS)技术分别检测68个基因在其中的表达状况。对比ctDNA与组织学检测基因的检出一致性及差异,评估其用于诊断胃癌的敏感度、特异度。并按胃癌突变基因分层进一步评估ctDNA的检出率。结果:30例患者中检出的基因突变总共138个,其中组织学标本中总共检出71个,ctDNA中总共检出67个。ctDNA对比组织学检测基因诊断胃癌的灵敏度为31.5%,特异度为63.6%,一致率为43.3%。单基因检测分析突变最多的基因前三位为TP53、PIK3CA、HER-2。其中对PIK3CA的检测,组织学和ctDNA两种方法差异有统计学意义(P<0.05)。TP53、PIK3CA、HER-2、EGFR、KRAS在组织学中检出丰度大于1,但在ctDNA中小于1。有PIK3CA突变的患者中,共存的其他致癌基因突变位点包括KRAS 2例、BRAF 2例、EGFR 4例。有HER-2突变的患者中,共存PIK3CA突变者4例,共存KRAS突变者3例。结论:ctDNA检测虽然在晚期胃癌患者的诊断中敏感度、特异度低于组织标本基因检测,但其标本易获、接受度高,可作为基因检测的补充、备选。实体组织检出相同基因的突变丰度总体高于ctDNA。TP53、PIK3CA、HER-2、EGFR等基因在ctDNA中的检出有利于指导胃癌治疗及预后评估,尤其PIK3CA在ctDNA中高于组织中的检出率。ctDNA检测可为胃癌患者的精准靶向治疗提供依据。  相似文献   

19.
The results of this study demonstrate the potential prognostic and predictive values of KRAS and BRAF gene mutations in patients with colorectal cancer (CRC). It has been proven that KRAS and BRAF mutations are predictive biomarkers for resistance to anti-EGFR monoclonal antibody treatment in patients with metastatic CRC (mCRC). We demonstrated the distribution of KRAS (codons 12, 13 and 61) and BRAF (codon 600) gene mutations in 50 mCRCs using direct sequencing and compared the results with clinicopathological data. KRAS and BRAF mutations were identified in 15 (30%) and 1 (2%) patients, respectively. We identified KRAS mutations in codon 12, 13 and 61 in 73.3% (11/15), 20% (3/15) and 6.67% (1/15) of the positive patients, respectively. The KRAS mutation frequency was significantly higher in tumors located in the ascending colon (p=0.043). Thus, we found that approximately 1/3 of the patients with mCRC had KRAS mutations and the only clinicopathological factor related to this mutation was tumor location. Future studies with larger patient groups should yield more accurate data regarding the molecular mechanism of CRC and the association between KRAS and BRAF mutations and clinicopathological features.  相似文献   

20.
Colorectal cancer is a multi-step process characterized by a sequence of genetic alterations in cell growth regulatory genes, such as the adenomatous polyposis coli, KRAS, p53 and DCC genes. In the present study mutation analysis was performed with SSCA/direct sequencing of the hot-spot regions in exons 11 and 15 for the BRAF gene and exons 1-2 for the KRAS gene in 130 primary colorectal cancer tumors and correlated with clinico-pathological and mutational data. We also performed mutation analysis of the corresponding conserved regions in the ARAF and RAF-1 genes. Mutations in the BRAF and KRAS genes were found in 11.5 and 40% of the tumors, respectively. One germline exonic and nine germline intronic genetic variants were found in the ARAF and RAF-1 genes. All of the BRAF mutations were located in the kinase domain of the conserved region 3 in exon 15 of the BRAF gene. One novel somatic mutation was also identified in the BRAF gene. The majority of the BRAF mutations were found in colon compared with rectal tumors (P = 0.014). In agreement with others, a statistically significant correlation between BRAF mutations and microsatellite instability could be found. A negative correlation was also evident between mutations in the BRAF and KRAS genes, which supports earlier studies where somatic mutations in these genes are mutually exclusive. Collectively, our results provide support for the idea that activation of the MAP kinase pathway, especially via BRAF and KRAS mutations, is of critical importance for the development of colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号