首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Re‐expression of recombinase activating genes (RAG) in mature B cells may support autoreactivity by enabling revision of the B‐cell receptor (BCR). Recent reports suggest that administration of Toll‐like receptor 9 (TLR9) ‐stimulating CpG oligodeoxynucleotides (ODN) could trigger the manifestation of autoimmune disease and that TLR are involved in the selection processes eliminating autoreactive BCR. The mechanisms involved remain to be elucidated. This prompted us to ask, whether TLR9 could be involved in receptor revision. We found that phosphorothioate‐modified CpG ODN (CpGPTO) induced expression of Ku70 and re‐expression of RAG‐1 in human peripheral blood B lymphocytes and Igλ expression in sorted Igκ+ B cells. Further results revealed unselective binding specificity of CpGPTO‐induced immunoglobulin and suggested that CpGPTO engage and/or mimic IgM receptor signalling, an important prerequisite for the initialization of receptor editing or revision. Altogether, our data describe a potential role for TLR9 in receptor revision and suggest that CpGPTO could mimic chromatin‐bearing autoantigens by simultaneously engaging the BCR and TLR9 on IgM+ B cells.  相似文献   

2.
B‐cell expression of certain Toll‐like receptors (TLRs) is important in linking innate and adaptive immune responses in normal and pathological conditions. The expression of TLR9 plays a role in the recognition of conserved pathogen motifs in a manner that is dependent on B‐cell localization, deduced from B‐cell phenotype. The nature of TLR9 function is unclear. A first step in unravelling the function of this pattern recognition receptor is to discover the precise nature of the cell types that express TLR9. This study used three‐colour flow cytometry to characterize the B lymphocytes from human peripheral blood mononuclear cells (PBMCs) that express TLR9 on the surface. We sorted TLR9‐positive B and non‐B cells from the PBMC population and detected TLR9 expression on naïve and memory B cells. Moreover, we identified two discrete subpopulations of B cells: CD19+ CD27? CD23+ cells and CD19+ CD27high CD80+ cells. These subpopulations expressed high levels of membrane TLR9 and exhibited a strong in vitro response to binding a relevant CpG motif by secreting high levels of interleukin‐6 (compared to controls). Our finding that this pattern recognition receptor is expressed on a variety of cell subsets adds to the current understanding of the functional complexity of B‐cell membrane TLR9.  相似文献   

3.
Dalpke AH  Lehner MD  Hartung T  Heeg K 《Immunology》2005,116(2):203-212
Lipopolysaccharide (LPS) tolerance is a state of refractoriness towards a second stimulation by LPS after a preceding stimulation. LPS is recognized by Toll-like receptor-4 (TLR-4), which belongs to a group of pattern recognition receptors mediating activation of innate immunity by microbial components. To date, it is not known in detail to what extent other TLR-dependent stimuli also induce tolerance and whether preceding and challenging stimuli are interchangeable. We have examined tolerance induction in detail for lipoteichoic acid (LTA), LPS and CpG-DNA, which are recognized by TLR-2, -4 and -9, respectively. In RAW264.7 macrophages, all three stimuli induced tolerance towards a subsequent challenge with the same stimulus used for priming, as well as cross-tolerance towards subsequent challenge with other stimuli signalling via different TLRs. However, whereas LPS/LTA cross-tolerance was also functional in an in vivo model of galactosamine (GalN)-primed liver damage, pretreatment with CpG only protected against GalN/CpG challenge and failed to induce cross-tolerance for LPS and LTA. CpG-DNA pretreatment even enhanced tumour necrosis factor (TNF)-alpha production and liver damage upon subsequent challenge with LPS or LTA. Stimulation with CpG-DNA resulted in a peculiar sensitization for interferon (IFN)-gamma secretion. The data indicate that, in contrast to in vitro macrophage desensitization, the in vivo consequences of repeated TLR stimulation greatly differ amongst different TLR ligands.  相似文献   

4.
5.
The present study addressed the modulatory role of CC chemokine receptor 4 (CCR4) in Toll-like receptor (TLR) 9-mediated innate immunity and explored the underlying molecular mechanisms. Our results demonstrated that CCR4-deficient mice were resistant to both septic peritonitis induced by cecal ligation and puncture (CLP) and CpG DNA/D-galactosamine-induced shock. In bone marrow-derived macrophages (BMMPhi) from CLP-treated CCR4-deficient mice, TLR9-mediated pathways of MAPK/AP-1, PI3K/Akt, and IkappaB kinase (IKK)/NF-kappaB were impaired compared to wild-type (WT) cells. While TLR9 expression was not altered, the intensity of internalized CpG DNA was increased in CCR4-deficient macrophages when compared to WT macrophages. Pharmacological inhibitor studies revealed that impaired activation of JNK, PI3K/Akt, and/or IKK/NF-kappaB could be responsible for decreased proinflammatory cytokine expression in CCR4-deficient macrophages. Interestingly, the CCR4-deficient BMMPhi exhibited an alternatively activated (M2) phenotype and the impaired TLR9-mediated signal transduction responses in CCR4-deficient cells were similar to the signaling responses observed in WT BMMPhi skewed to an alternatively activated phenotype. These results indicate that macrophages deficient in CCR4 impart a regulatory influence on TLR9-mediated innate immunity.  相似文献   

6.
Toll‐like receptors (TLRs) recognize specific pathogen‐associated molecular patterns (PAMPs), which subsequently trigger innate immunity. Recent data also suggest a role for TLRs in the direct activation of adaptive immune cells. In the present study, the expression and function of TLR1–TLR10 were characterized in purified human tonsillar B cells, focusing on differences among CD19+ CD38 CD27 (naïve B cells), CD19+ IgD CD27[germinal centre (GC) B cells] and CD19+ CD38 CD27+ (memory B cells) cells. The study was also designed to compare the TLR expression in B cells obtained from infected and hyperplastic tonsils that served as controls. The results demonstrated a distinct repertoire of TLRs, in which TLR1, TLR2, TLR7, TLR9 and TLR10 predominated. No differences were found among naïve, GC and memory B cells. Tonsillar infection did not substantially alter the TLR expression profile in ex vivo‐isolated B‐cell subsets. Purified CD19+ B cells stimulated with Pam3CSK4, R‐837 and CpG oligodeoxynucleotide (ODN) 2006, via TLR1/TLR2, TLR7 and TLR9, respectively, showed an induction of interleukin‐6 secretion and an up‐regulated expression of human leucocyte antigen (HLA)‐DR. Collectively, the present study demonstrates that B cells exhibit constitutively high levels of specific TLRs, which are not developmentally regulated during the B‐cell differentiation process. Ongoing microbial infections, such as chronic tonsillitis, do not appear to affect the TLR profile in B cells. Furthermore, the distinct expression of TLRs allows B cells to respond directly to the cognate PAMPs. This further emphasizes the role of TLRs in directly activating adaptive immune cells.  相似文献   

7.
Interferon-α (IFN-α) produced at high levels by human plasmacytoid dendritic cells (pDCs) can specifically regulate B-cell activation to Toll-like receptor (TLR) 7/8 stimulation. To explore the influence of IFN-α and pDCs on B-cell functions in vivo, studies in non-human primates that closely resemble humans in terms of TLR expression on different subsets of immune cells are valuable. Here, we performed a side-by side comparison of the response pattern between human and rhesus macaque B cells and pDCs in vitro to well-defined TLR ligands and tested whether IFN-α enhanced B-cell function comparably. We found that both human and rhesus B cells proliferated while pDCs from both species produced high levels of IFN-α in response to ligands targeting TLR7/8 and TLR9. Both human and rhesus B-cell proliferation to TLR7/8 ligand and CpG class C was significantly increased in the presence of IFN-α. Although both human and rhesus B cells produced IgM upon stimulation, only human B cells acquired high expression of CD27 associated with plasmablast formation. Instead, rhesus B-cell differentiation and IgM levels correlated to down-regulation of CD20. These data suggest that the response pattern of human and rhesus B cells and pDCs to TLR7/8 and TLR9 is similar, although some differences in the cell surface phenotype of the differentiating cells exist. A more thorough understanding of potential similarities and differences between human and rhesus cells and their response to potential vaccine components will provide important information for translating non-human primate studies into human trials.  相似文献   

8.
There has been no systematic study of the immune response of individuals aged over 60 years living in Schistosomiasis mansoni-endemic areas, although senescence is reportedly associated with susceptibility to infection and progressive decline in immune function. We have shown previously, in two endemic areas in Minas Gerais, Brazil, that the frequency of individuals aged over 60 years with chronic schistosomiasis is no longer negligible. Moreover, several elderly individuals who have always lived in these endemic areas stay protected from infection. An important question for studies of ageing and disease control in developing countries is which differences in the immunological profile of these negatively tested (non-infected) individuals can account for their resistance to either infection or reinfection. We show, in the present study, that non-infected (negative) elderly individuals develop innate immune mechanisms of protection that replace the age-associated decline in T cell function. Non-infected elderly individuals from endemic areas of schistosome infection present an increase in the frequency of the natural killer (NK) CD56(low) subset of NK cells expressing Toll-like receptors (TLR)-1, -2, -3 and -4 as determined by flow cytometry analysis. In addition, the proportion of dendritic cells expressing TLR-1 is elevated as well as the frequency of monocytes expressing TLR-1 and -4. These results suggest that TLR expression by cells of the innate immune system may be related to the negative status of infection in some elderly individuals who are constantly exposed to S. mansoni. Developing mechanisms of protection from infection may represent a biomarker for healthy ageing in this population.  相似文献   

9.
Dendritic cells (DCs) are required for the initiation of primary immune responses. The pattern of Toll-like receptor (TLR) expression on various subsets of these cells has been shown to differ, suggestive of distinct roles in influencing immune responses. We have examined here the responses of immature DCs derived from murine bone marrow (BMDCs) to a range of TLR ligands. BMDCs cultured for 6 days in the presence of granulocyte-macrophage colony-stimulating factor were stimulated for 24 hr with ligands to TLR1-2 [Pam(3)Cys-Ser-(Lys)(4) (PAM)], TLR2-6 (macrophage-activating lipopeptide-2 (MALP-2); zymosan or peptidoglycan (PG)], TLR3 (polyinosinic-polycytidylic acid), TLR4 [lipopolysaccharide R515 (LPS)], TLR5 (flagellin), TLR7 (polyuridylic acid) and TLR9 [CpG ODN2395 (CpG)]. DC activation was monitored using membrane marker expression and analysis of culture supernatants for cytokine/chemokine release. Ligands to TLR3 and TLR7 failed to activate BMDCs. All other TLR ligands caused elevated expression of membrane markers. PAM, MALP-2 and LPS induced high-level expression of proinflammatory cytokines and chemokines. Treatment with CpG was associated with a preferential type 1 cytokine and chemokine profile. Zymosan and PG were proinflammatory but also skewed towards a type 2 pattern of cytokines and chemokines. In contrast, flagellin did not cause marked secretion by BMDCs of cytokines or chemokines. These data for BMDCs are largely consistent with the reported TLR repertoire of freshly isolated murine Langerhans cells. In addition, murine BMDCs show selective responses to TLR ligands with respect to general activation, with differentiated cytokine patterns suggestive of potential priming for divergent immune responses.  相似文献   

10.
According to the current model, naive B cell activation is dependent on the sequential integration of two signals: B cell receptor (BCR) cross-linking by antigen, followed by cognate interaction with helper T cells through an immunological synapse. Using an improved method to purify human naive B cells we found that BCR stimulation and T cell help induced initial cell division but were not sufficient to promote survival and differentiation thus leading to abortive proliferation of naive B cells. Extensive B cell proliferation, isotypic switch and differentiation to immunoglobulin (Ig)-secreting cells was induced by addition of microbial products that trigger any of the Toll-like receptors (TLR) that are up-regulated in naive B cells upon BCR triggering. TLR agonists acted directly on B cells and were required irrespective of the nature of the T helper cells present. Supernatants of dendritic cells (DC) stimulated by DC-specific TLR agonists were also capable of enhancing B cell responses although to a much lower and variable extent. These results indicate that human naive B cell activation is critically dependent on innate stimuli acting optimally on TLR expressed by B cells. The coupling of BCR stimulation to TLR expression endows the human system with a high degree of specificity since it allows focusing of innate signals only on antigen-stimulated B cells.  相似文献   

11.
Nucleic acid sensors of the Toll-like receptor (TLR) family play a well-established role in the pathogenesis of lupus. This is particularly true for a single-stranded RNA-sensing TLR-7 receptor, as lupus mice lacking TLR-7 show ameliorated disease. Cytosine-guanosine dinucleotide (CpG)-DNA-sensing TLR-9, conversely, has a complex regulatory role in systemic lupus erythematosus (SLE). Much less is known about whether signals through the B cell receptor for antigen (BCR) may affect the ability of B cells to respond to suboptimal TLR-7 agonists and antagonists. We studied this question in prediseased BXSB male and female B cells. We found that male B cells responded more vigorously to numerous TLR-7 ligands and this responsiveness was enhanced further upon co-engagement of the BCR. This synergy was seen primarily with the interleukin (IL)-6 secretion. A number of 32-mer inhibitory oligonucleotides (INH-ODNs) with a nuclease-resistant phosphorothioate backbone were capable of blocking TLR-7, but not BCR-induced B cell activation, with an inhibitory concentration (IC)(50) of approximately 100 nm. Surprisingly, while the presence of a single TGC motif at the 5' end of an ODN did not increase its inhibitory capacity, INH-ODNs containing multiple TGC motifs had greater inhibitory potency. When BCR and TLR-7 were co-engaged, INH-ODNs showed a differential effect on B cell activation. Whereas apoptosis protection and G1-M entry completely escaped suppression, IL-6 secretion remained sensitive to inhibition, although with a 10-fold lower potency. Our results suggest that while TLR-7 antagonists may be considered as lupus therapeutics, simultaneous co-engagement of the TLR-7 and BCR might favour autoreactive B cell survival. This hypothesis needs further experimental validation.  相似文献   

12.
DiC14-amidine cationic liposomes were recently shown to promote Th1 responses when mixed with allergen. To further define the mode of action of diC14-amidine as potential vaccine adjuvant, we characterized its effects on mouse and human myeloid dendritic cells (DC). First, we observed that, as compared with two other cationic liposomes, only diC14-amidine liposomes induced the production of IL-12p40 and TNF-alpha by mouse bone marrow-derived DC. DiC14-amidine liposomes also activated human DC, as shown by synthesis of IL-12p40 and TNF-alpha, accumulation of IL-6, IFN-beta and CXCL10 mRNA, and up-regulation of membrane expression of CD80 and CD86. DC stimulation by diC14-amidine liposomes was associated with activation of NF-kappaB, ERK1/2, JNK and p38 MAP kinases. Finally, we demonstrated in mouse and human cells that diC14-amidine liposomes use Toll-like receptor 4 to elicit both MyD88-dependent and Toll/IL-1R-containing adaptor inducing interferon IFN-beta (TRIF)-dependent responses.  相似文献   

13.
Leishmania major is an obligate intracellular eukaryotic pathogen of mononuclear phagocytes. Invasive promastigotes gain entry into target cells by receptor-mediated phagocytosis, transform into non-motile amastigotes and establish in the phagolysosome. Glycosylphosphatidylinositol-anchored lipophosphoglycan (LPG) is a virulence factor and a major parasite molecule involved in this process. We observed that mice lacking the Toll-like receptor (TLR) pathway adaptor protein MyD88 were more susceptible to infection with L. major than wild-type C57BL/6 mice, demonstrating a central role for this innate immune recognition pathway in control of infection, and suggesting that L. major possesses a ligand for TLR. We sought to identify parasite molecules capable of activating the protective Toll pathway, and found that purified Leishmania LPG, but not other surface glycolipids, activate innate immune signaling pathways via TLR2. Activation of cytokine synthesis by LPG required the presence of the lipid anchor and a functional MyD88 adaptor protein. LPG also induced the expression of negative regulatory pathways mediated by members of thesuppressors of cytokine signaling family SOCS-1 and SOCS-3. Thus, the Toll pathway is required for resistance to L. major and LPG is a defined TLR agonist from this important human pathogen.  相似文献   

14.
Sabroe I  Jones EC  Whyte MK  Dower SK 《Immunology》2005,115(1):90-98
Neutrophil chemokine receptor expression can be altered by exposure to Toll-like receptor (TLR) agonists, a process that is thought to have the potential to localize neutrophils to sites of infection. In order to investigate this process in more detail, we examined the regulation of highly pure neutrophil CXCR1 and CXCR2 expression and function by selective agonists of TLR2 (Pam(3)CSK(4)) and TLR4 (lipopolysaccharide, LPS). CXCR1 and CXCR2 were down-regulated by TLR engagement. CXCR2 loss was more rapid and showed a dependence upon soluble helper molecules (LPS binding protein and CD14) that was not evident for CXCR1, suggesting differential coupling of LPS signalling to CXCR1 and CXCR2 loss. However, TLR engagement in highly pure neutrophils did not result in complete loss of chemokine receptors, and LPS-treated neutrophils remained able to mount a respiratory burst to CXCL8 and CXCL1, and were able to migrate towards CXCL8 in assays of under-agarose chemotaxis. Thus, although treatment of purified human neutrophils with TLR2 and TLR4 agonists modifies chemokine receptor expression, remaining receptors remain functionally competent.  相似文献   

15.
Autoreactive B cells are the source of pathogenic autoantibodies (autoAb) in systemic lupus erythematosus (SLE). Previous studies have demonstrated that anti-small nuclear ribonucleoprotein particles (snRNP) B cells from normal background mice tolerize T cells in the periphery and do not secrete autoAb. In this study, we examined whether these anti-snRNP B cells can be activated for autoAb production by the engagement of Toll-like receptors (TLR). Anti-snRNP B cells proliferated vigorously and secreted abundant anti-snRNP autoAb upon exposure to CpG or polyriboinosinic polyribocytidylic acid [poly (I:C)] in vitro. In addition, the costimulatory molecules CD80 and CD86 were up-regulated. While both anti-snRNP B cells and wild-type B cells produced similar levels of IL-6 and IL-10, anti-snRNP B cells secreted predominately IFN-gamma in response to CpG or poly (I:C) stimulation. Furthermore, we showed that in vivo engagement of TLR stimulated immature anti-snRNP B cells to further differentiate and produce autoAb and form germinal centers. The activated anti-snRNP B cells became expanded and migrated into the T-B cell interface. Moreover, TLR engagement directly or indirectly activated autoreactive B cells via a CD4 T cell-independent manner. These results provide in vitro and in vivo evidence that BCR/TLR co-engagement promotes the activation of anti-snRNP B cells for autoAb production.  相似文献   

16.
17.
Regulation of B-cell responses by Toll-like receptors   总被引:1,自引:0,他引:1  
Browne EP 《Immunology》2012,136(4):370-379
  相似文献   

18.
Kauppila J H, Takala H, Selander K S, Lehenkari P P, Saarnio J & Karttunen T J
(2011) Histopathology 59 , 643–649 Increased Toll‐like receptor 9 expression indicates adverse prognosis in oesophageal adenocarcinoma Aims: Toll‐like receptor 9 (TLR‐9) is a cellular DNA receptor that has been linked previously to invasion in various cancers. The aim of this study was to investigate TLR‐9 expression and its possible association with prognosis in oesophageal adenocarcinoma. Methods and results: Immunohistochemical TLR‐9 expression was graded in clinical specimens (n = 76) of oesophageal adenocarcinoma. The TLR‐9 immunostaining intensity was compared with tumour grade, stage and indicators of proliferation, apoptosis and tumour vascular supply. High TLR‐9 expression correlated with advanced tumour stage, tumour unresectability, poor differentiation and high proliferation. Strong immunoreactivity of TLR‐9 also indicated poor overall survival. Conclusions: High TLR‐9 expression is associated with poor differentiation, a high proliferation rate and disseminated disease. Accordingly, increased TLR‐9 expression may contribute to the growth and metastatic properties of oesophageal adenocarcinoma.  相似文献   

19.
T helper type 2 (Th2)-characterized inflammatory responses are highly dynamic processes initiated by epithelial cell damage resulting in remodelling of the tissue architecture to prevent further harm caused by a dysfunctional epithelial barrier or migrating parasites. This process is a temporal and spatial response which requires communication between immobile cells such as epithelial, endothelial, fibroblast and muscle cells and the highly mobile cells of the innate and adaptive immunity. It is further characterized by a high cellular plasticity that enables the cells to adapt to a specific inflammatory milieu. Incipiently, this milieu is shaped by cytokines released from epithelial cells, which stimulate Th2, innate lymphoid and invariant natural killer (NK) T cells to secrete Th2 cytokines and to activate dendritic cells which results in the further differentiation of Th2 cells. This milieu promotes wound-healing processes which are beneficial in parasitic infections or toxin exposure but account for increasingly dysfunctional vital organs, such as the lung in the case of asthma and the colon in ulcerative colitis. A better understanding of the dynamics underlying relapses and remissions might lead ultimately to improved therapeutics for chronic inflammatory diseases adapted to individual needs and to different phases of the inflammation.  相似文献   

20.
Microbial components, such as DNA containing immunostimulatory CpG motifs (CpG-DNA) and lipopolysaccharides (LPS), elicit the cell surface expression of MHC class II (MHC-II) through Toll-like receptor (TLR)/IL-1R. Here, we show that CpG-DNA and LPS induce expression of the HLA-DRA in the human B cell line, RPMI 8226. Ectopic expression of the dominant negative mutant of CIITA and RNA interference targeting the CIITA gene indicate that CIITA activation is not enough for the maximal MHC-II expression induced by CpG-DNA and LPS. Additionally, nuclear factor (NF)-kappaB activation is required for the CpG-DNA-activated and LPS-activated HLA-DRA expression, whereas IFN-gamma-induced MHC-II expression depends on CIITA rather than on NF-kappaB. Comprehensive mutant analyses, electrophoretic mobility shift assays and chromatin immunoprecipitation assays, reveal that the functional interaction of NF-kappaB with the promoter element is necessary for the TLR-mediated HLA-DRA induction by CpG-DNA and LPS. This novel mechanism provides the regulation of MHC-II gene expression with complexity and functional diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号