首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:本实验旨在研究CYP2C19基因型人肝微粒体中氟西汀N-去甲基代谢的酶促动力学特点并鉴定参与此代谢途径的细胞色素P-450酶。方法:测定基因型CYP2C19肝微粒体中去甲氟西汀形成的酶促动力学。鉴定氟西汀N-去甲基酶活性与细胞色素P-450 2C9,2C19,1A2和2D6酶活性的相关性,同时应用各种细胞色素P-450酶的选择性抑制剂和化学探针进行抑制实验,从而确定参与氟西汀N-去甲基代谢的细胞色素P-450酶。结果:去甲氟西汀生成的酶促动力学数据符合单酶模型,并具有Michaelis-Menten动力学特征。当底物浓度为氟西汀25μmol/L和100μmol/L时,去甲氟西汀(N-FLU)的生成率分别与甲磺丁脲3-羟化酶活性显著相关(r_1=0.821,P_1=0.001;r_2=0.668,P_2=0.013),当底物浓度为氟西汀100μmol/L时,N-FLU的生成率与S-美芬妥因4’-羟化酶活性显著相关(r=0.717,P=0.006)。PM肝微粒中磺胺苯吡唑和醋竹桃霉素对氟西汀N-去甲基代谢的抑制作用显著大于EM(73%vs 45%,P<0.01)。结论:在生理底物浓度下,CYP2C9是催化人肝微粒体中氟西汀N-去甲基代谢的主要CYP-450酶;而高底物浓度时,以CYP2C19的作用为主。  相似文献   

2.
Three inhibitory monoclonal antibodies specific to cytochrome P450 3A4/5 (CYP3A4/5), CYP2C8/9/19 and CYP2E1, respectively, were used to assess the contribution of the P450s to the metabolism of seven substrates in liver microsomes from 18 human donors, as measured by monoclonal antibody inhibition phenotyping of the substrate conversion to product(s). Metabolism of seven substrates by recombinant cytochromes P450 and human liver microsomes was performed in the presence of monoclonal antibodies and their metabolites were analyzed by high-performance liquid chromatography (HPLC) or gas chromatography-mass spectrophotometry (GC-MS) to measure the magnitude of inhibition. Our results showed that CYP3A4/5 contributes to testosterone 6beta-hydroxylation, taxol phenol formation, diazepam 3-hydroxylation, diazepam N-demethylation, and aflatoxin B1 3-hydroxylation in human liver by 79.2%, 81.5%, 73. 2%, 34.5% and 80%, respectively. CYP2E1 contributes to chlorzoxazone 6-hydroxylation, p-nitroanisole O-demethylation, and toluene hydroxylation by 45.8%, 27.7% and 44.2% respectively, and CYP2C8/9/19 contribute to diazepam N-demethylation by 30.6%. The additive contribution (75.3%) of human CYP3A and CYP2C to diazepam N-demethylation was also observed in the presence of both anti-CYP3A4/5 and anti-CYP2C8/9/19 monoclonal antibodies. The contribution of individual P450s to the specific metabolic reaction in human liver varies greatly in the individual donors and the substrates examined. Thus, inhibitory monoclonal antibodies could play a unique role in defining the single or subfamily of cytochrome P450 that is responsible for the metabolism of specific drugs.  相似文献   

3.
AIMS: To identify the human cytochrome P450 enzyme(s) involved in the in vitro metabolism of rosiglitazone, a potential oral antidiabetic agent for the treatment of type 2 diabetes-mellitus. Method The specific P450 enzymes involved in the metabolism of rosiglitazone were determined by a combination of three approaches; multiple regression analysis of the rates of metabolism of rosiglitazone in human liver microsomes against selective P450 substrates, the effect of selective chemical inhibitors on rosiglitazone metabolism and the capability of expressed P450 enzymes to mediate the major metabolic routes of rosiglitazone metabolism. Result The major products of metabolism following incubation of rosiglitazone with human liver microsomes were para-hydroxy and N-desmethyl rosiglitazone. The rate of formation varied over 38-fold in the 47 human livers investigated and correlated with paclitaxel 6alpha-hydroxylation (P<0.001). Formation of these metabolites was inhibited significantly (>50%) by 13-cis retinoic acid, a CYP2C8 inhibitor, but not by furafylline, quinidine or ketoconazole. In addition, both metabolites were produced by microsomes derived from a cell line transfected with human CYP2C8 cDNA. There was some evidence for CYP2C9 playing a minor role in the metabolism of rosiglitazone. Sulphaphenazole caused limited inhibition (<30%) of both pathways in human liver microsomes and microsomes from cells transfected with CYP2C9 cDNA were able to mediate the metabolism of rosiglitazone, in particular the N-demethylation pathway, albeit at a much slower rate than CYP2C8. Rosiglitazone caused moderate inhibition of paclitaxel 6alpha-hydroxylase activity (CYP2C8; IC50=18 microm ), weak inhibition of tolbutamide hydroxylase activity (CYP2C9; IC50=50 microm ), but caused no marked inhibition of the other cytochrome P450 activities investigated (CYP1A2, 2A6, 2C9, 2C19, 2D6, 2E1, 3A and 4A). Conclusion CYP2C8 is primarily responsible for the hydroxylation and N-demethylation of rosiglitazone in human liver; with minor contributions from CYP2C9.  相似文献   

4.
Ketamine is a widely used drug for its anesthetic and analgesic properties; it is also considered as a drug of abuse, as many cases of ketamine illegal consumption were reported. Ketamine is N-demethylated by liver microsomal cytochrome P450 into norketamine. The identification of the enzymes responsible for ketamine metabolism is of great importance in clinical practice. In the present study, we investigated the metabolism of ketamine in human liver microsomes at clinically relevant concentrations. Liver to plasma concentration ratio of ketamine was taken into consideration. Pooled human liver microsomes and human lymphoblast-expressed P450 isoforms were used. N-demethylation of ketamine was correlated with nifedipine oxidase activity (CYP3A4-specific marker reaction), and it was also correlated with S-mephenytoin N-demethylase activity (CYP2B6-specific marker reaction). Orphenadrine, a specific inhibitor to CYP2B6, and ketoconazole, a specific inhibitor to CYP3A4, inhibited the N-demethylation of ketamine in human liver microsomes. In human lymphoblast-expressed P450, the activities of CYP2B6 were higher than those of CYP3A4 and CYP2C9 at three concentrations of ketamine, 0.005, 0.05, and 0.5 mM. When these results were extrapolated using the average relative content of these P450 isoforms in human liver, CYP3A4 was the major enzyme involved in ketamine N-demethylation. The present study demonstrates that CYP3A4 is the principal enzyme responsible for ketamine N-demethylation in human liver microsomes and that CYP2B6 and CYP2C9 have a minor contribution to ketamine N-demethylation at therapeutic concentrations of the drug.  相似文献   

5.
AIMS: The present study was designed to define the kinetic behaviour of sertraline N-demethylation in human liver microsomes and to identify the isoforms of cytochrome P450 involved in this metabolic pathway. METHODS: The kinetics of the formation of N-demethylsertraline were determined in human liver microsomes from six genotyped CYP2C19 extensive (EM) and three poor metabolisers (PM). Selective inhibitors of and specific monoclonal antibodies to various cytochrome P450 isoforms were also employed. RESULTS: The kinetics of N-demethylsertraline formation in all EM liver microsomes were fitted by a two-enzyme Michaelis-Menten equation, whereas the kinetics in all PM liver microsomes were best described by a single-enzyme Michaelis-Menten equation similar to the low-affinity component found in EM microsomes. Mean apparent Km values for the high-and low-affinity components were 1.9 and 88 microm and V max values were 33 and 554 pmol min-1 mg-1 protein, respectively, in the EM liver microsomes. Omeprazole (a CYP2C19 substrate) at high concentrations and sulphaphenazole (a selective inhibitor of CYP2C9) substantially inhibited N-demethylsertraline formation. Of five monoclonal antibodies to various cytochrome P450 forms tested, only anti-CYP2C8/9/19 had any inhibitory effect on this reaction. The inhibition of sertraline N-demethylation by anti-CYP2C8/9/19 was greater in EM livers than in PM livers at both low and high substrate concentrations. However, anti-CYP2C8/9/19 did not abolish the formation of N-demethylsertraline in the microsomes from any of the livers. CONCLUSIONS: The polymorphic enzyme CYP2C19 catalyses the high-affinity N-demethylation of sertraline, while CYP2C9 is one of the low-affinity components of this metabolic pathway.  相似文献   

6.
Diphenhydramine is widely used as an over-the-counter antihistamine. However, the specific human cytochrome P450 (P450) isozymes that mediate the metabolism of diphenhydramine in the range of clinically relevant concentrations (0.14-0.77 microM) remain unclear. Therefore, P450 isozymes involved in N-demethylation, a main metabolic pathway of diphenhydramine, were identified by a liquid chromatography-mass spectrometry method developed in our laboratory. Among 14 recombinant P450 isozymes, CYP2D6 showed the highest activity of diphenhydramine N-demethylation (0.69 pmol/min/pmol P450) at 0.5 microM. CYP2D6 catalyzed diphenhydramine N-demethylation as a high-affinity P450 isozyme, the K(m) value of which was 1.12 +/- 0.21 microM. In addition, CYP1A2, CYP2C9, and CYP2C19 were identified as low-affinity components. In human liver microsomes, involvement of CYP2D6, CYP1A2, CYP2C9, and CYP2C19 in diphenhydramine N-demethylation was confirmed by using P450 isozyme-specific inhibitors. In addition, contributions of these P450 isozymes estimated by the relative activity factor were in good agreement with the results of inhibition studies. Although an inhibitory effect of diphenhydramine on the metabolic activity of CYP2D6 has been reported previously, the results of the present study suggest that it is not only a potent inhibitor but also a high-affinity substrate of CYP2D6. Therefore, it is worth mentioning that the sedative effect of diphenhydramine might be caused by coadministration of CYP2D6 substrate(s)/inhibitor(s). In addition, large differences in the metabolic activities of CYP2D6 and those of CYP1A2, CYP2C9, and CYP2C19 could cause the individual differences in anti-allergic efficacy and the sedative effect of diphenhydramine.  相似文献   

7.
The role of cytochrome P-450s (CYPs) in S-mephobarbital N-demethylation was investigated by using human liver microsomes and cDNA-expressed CYPs. Among the 10 cDNA-expressed CYPs studied (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4), only CYP2B6 could catalyze S-mephobarbital N-demethylation. The apparent K(m) values of human liver microsomes for S-mephobarbital N-demethylation were close to that of cDNA-expressed CYP2B6 (about 250 microM). The N-demethylase activity of S-mephobarbital in 10 human liver microsomes was strongly correlated with immunodetectable CYP2B6 levels (r = 0.920, p<.001). Orphenadrine (300 microM), a CYP2B6 inhibitor, inhibited the N-demethylase activity of S-mephobarbital in human liver microsomes to 29% of control activity. Therefore, it appears that CYP2B6 mainly catalyzes S-mephobarbital N-demethylation in human liver microsomes.  相似文献   

8.
Identification of cytochrome P-450 isoenzymes (CYPs) involved in perazine 5-sulphoxidation and N-demethylation was carried out using human liver microsomes and cDNA-expressed human CYPs (Supersomes). In human liver microsomes, the formation of perazine metabolites correlated significantly with the level of CYP1A2 and ethoxyrezorufin O-deethylase activity, as well as with the level of CYP3A4 and cyclosporin A oxidase activity. Moreover, the formation of N-desmethylperazine also correlated well with S-mephenytoin 4'-hydroxylase activity (CYP2C19). alpha-Naphthoflavone (a CYP1A2 inhibitor) and ketoconazole (a CYP3A4 inhibitor) significantly decreased the rate of perazine 5-sulphoxidation, while ticlopidine (a CYP2C19 inhibitor) strongly reduced the rate of perazine N-demethylation in human liver microsomes. The cDNA-expressed human CYPs generated different amounts of perazine metabolites, but the preference of CYP isoforms to catalyze perazine metabolism was as follows (pmol of product/pmol of CYP isoform/min): 1A1>2D6>2C19>1A2>2B6>2E1>2A6 approximately 3A4>2C9 for 5-sulphoxidation and 2C19>2D6>1A1>1A2>2B6>3A4>2C9>2A6 for N-demethylation. In the light of the obtained results and regarding the contribution of each isoform to the total amount of CYP in human liver, it is concluded that CYP1A2 and CYP3A4 are the main isoenzymes catalyzing 5-sulphoxidation (32% and 30%, respectively), while CYP2C19 is the main isoform catalyzing perazine N-demethylation (68%). CYP2C9, CYP2E1 CYP2C19 and CYP2D6 are engaged to a lesser degree in 5-sulphoxidation, while CYP1A2, CYP3A4 and CYP2D6 in perazine N-demethylation (6-10%, depending on the isoform).  相似文献   

9.
Nornicotine is an N-demethylated metabolite of nicotine. In the present study, human cytochrome P450 (P450) isoform(s) involved in nicotine N-demethylation were identified. The Eadie-Hofstee plot of nicotine N-demethylation in human liver microsomes was biphasic with high-affinity (apparent K(m) = 173 +/- 70 microM, V(max) = 57 +/- 17 pmol/min/mg) and low-affinity (apparent K(m) = 619 +/- 68 microM, V(max) = 137 +/- 6 pmol/min/mg) components. Among 13 recombinant human P450s expressed in baculovirus-infected insect cells (Supersomes), CYP2B6 exhibited the highest nicotine N-demethylase activity, followed by CYP2A6. The apparent K(m) values of CYP2A6 (49 +/- 12 microM) and CYP2B6 (550 +/- 46 microM) were close to those of high- and low-affinity components in human liver microsomes, respectively. The intrinsic clearances of CYP2A6 and CYP2B6 Supersomes were 5.1 and 12.5 nl/min/pmol P450, respectively. In addition, the intrinsic clearance of CYP2A13 expressed in Escherichia coli (44.9 nl/min/pmol P450) was higher than that of CYP2A6 expressed in E. coli (2.6 nl/min/pmol P450). Since CYP2A13 is hardly expressed in human livers, the contribution of CYP2A13 to the nicotine N-demethylation in human liver microsomes would be negligible. The nicotine N-demethylase activity in microsomes from 15 human livers at 20 microM nicotine was significantly correlated with the CYP2A6 contents (r = 0.578, p < 0.05), coumarin 7-hydroxylase activity (r = 0.802, p < 0.001), and S-mephenytoin N-demethylase activity (r = 0.694, p < 0.005). The nicotine N-demethylase activity at 100 microM nicotine was significantly correlated with the CYP2B6 contents (r = 0.677, p < 0.05) and S-mephenytoin N-demethylase activities (r = 0.740, p < 0.005). These results as well as the inhibition analyses suggested that CYP2A6 and CYP2B6 would significantly contribute to the nicotine N-demethylation at low and high substrate concentrations, respectively. The contributions of CYP2A6 and CYP2B6 would be dependent on the expression levels of these isoforms in any human liver.  相似文献   

10.
Meperidine is an opioid analgesic metabolized in the liver by N-demethylation to normeperidine, a potent stimulant of the central nervous system. The purpose of this study was to identify the human cytochrome P450 (P450) enzymes involved in normeperidine formation. Our in vitro studies included 1) screening 16 expressed P450s for normeperidine formation, 2) kinetic experiments on human liver microsomes and candidate P450s, and 3) correlation and inhibition experiments using human hepatic microsomes. After normalization by its relative abundance in human liver microsomes, CYP2B6, CYP3A4, and CYP2C19 accounted for 57, 28, and 15% of the total intrinsic clearance of meperidine. CYP3A5 and CYP2D6 contributed to < 1%. Formation of normeperidine significantly correlated with CYP2B6-selective S-mephenytoin N-demethylation (r = 0.88, p < 0.0001 at 75 > microM meperidine, and r = 0.89, p < 0.0001 at 350 microM meperidine, n = 21) and CYP3A4-selective midazolam 1'-hydroxylation (r = 0.59, p < 0.01 at 75 microM meperidine, and r = 0.55, p < 0.01 at 350 microM meperidine, n = 23). No significant correlation was observed with CYP2C19-selective S-mephenytoin 4'-hydroxylation (r = 0.36, p = 0.2 at 75 microM meperidine, and r = 0.02, p = 0.9 at 350 microM meperidine, n = 13). An anti-CYP2B6 antibody inhibited normeperidine formation by 46%. In contrast, antibodies inhibitory to CYP3A4 and CYP2C8/9/18/19 had little effect (<14% inhibition). Experiments with thiotepa and ketoconazole suggested inhibition of microsomal CYP2B6 and CYP3A4 activity, whereas studies with fluvoxamine (a substrate of CYP2C19) were inconclusive due to lack of specificity. We conclude that normeperidine formation in human liver microsomes is mainly catalyzed by CYP2B6 and CYP3A4, with a minor contribution from CYP2C19.  相似文献   

11.
MK-0457 (N-[4([4-(4-methylpiperazin-1-yl)-6-[(3-methyl-1H-pyrazol-5 -yl)amino]pyrimidin-2-yl]thio)phenyl]cyclopropanecarboxamide), an Aurora kinase inhibitor in development for the treatment of cancer, was evaluated for its in vitro metabolism in different species. This compound primarily underwent N-oxidation and N-demethylation in human, monkey, dog, and rat liver preparations. However, N-demethylation was less significant in dogs. The formation of minor metabolites varied with species, but all metabolites generated in human hepatocytes were observed in animals. Results of immunoinhibition, selective chemical inhibition, thermal inactivation, and metabolism by recombinant cytochromes P450 and flavin-containing monoogygenases (FMOs) strongly suggest that CYP3A4 and FMO3 comparably contributed to MK-0457 N-oxidation in human liver microsomes, where the reaction conformed to Michaelis-Menten kinetics. These studies indicate a major role of CYP2C8 in the N-demethylation reaction, whereas CYP3A4 only made a minor contribution. However, significant substrate inhibition was observed with MK-0457 N-demethylation at high substrate concentrations (>10 microM) in human liver microsomes relative to the anticipated therapeutic exposure. A multienzyme metabolic pathway such as this may mitigate the potential of drug interactions in clinical treatment with MK-0457.  相似文献   

12.
The contribution of human cytochrome P450 (P450) isoforms to the metabolism of aprepitant in humans was investigated using recombinant P450s and inhibition studies. In addition, aprepitant was evaluated as an inhibitor of human P450s. Metabolism of aprepitant by microsomes prepared from baculovirus-expressed human P450s was observed only when CYP1A2, CYP2C19, or CYP3A4 was present in the expression system. Incubation with CYP1A2 and CYP2C19 yielded only products of O-dealkylation, whereas CYP3A4 catalyzed both N- and O-dealkylation reactions. The metabolism of aprepitant by human liver microsomes was inhibited completely by ketoconazole or troleandomycin. No inhibition was observed with other P450 isoform-selective inhibitors. Aprepitant was evaluated also as a P450 inhibitor in human liver microsomes. No significant inhibition of CYP1A2, CYP2B6, CYP2C8, CYP2D6, and CYP2E1 was observed in experiments with isoform-specific substrates (IC50 > 70 microM). Aprepitant was a moderate inhibitor of CYP3A4, with Ki values of approximately 10 microM for the 1'- and 4-hydroxylation of midazolam, and the N-demethylation of diltiazem, respectively. Aprepitant was a very weak inhibitor of CYP2C9 and CYP2C19, with Ki values of 108 and 66 microM for the 7-hydroxylation of warfarin and the 4'-hydroxylation of S-mephenytoin, respectively. Collectively, these results indicated that aprepitant is both a substrate and a moderate inhibitor of CYP3A4.  相似文献   

13.
Oxycodone undergoes N-demethylation to noroxycodone and O-demethylation to oxymorphone. The cytochrome P450 (P450) isoforms capable of mediating the oxidation of oxycodone to oxymorphone and noroxycodone were identified using a panel of recombinant human P450s. CYP3A4 and CYP3A5 displayed the highest activity for oxycodone N-demethylation; intrinsic clearance for CYP3A5 was slightly higher than that for CYP3A4. CYP2D6 had the highest activity for O-demethylation. Multienzyme, Michaelis-Menten kinetics were observed for both oxidative reactions in microsomes prepared from five human livers. Inhibition with ketoconazole showed that CYP3A is the high affinity enzyme for oxycodone N-demethylation; ketoconazole inhibited >90% of noroxycodone formation at low substrate concentrations. CYP3A-mediated noroxycodone formation exhibited a mean K(m) of 600 +/- 119 microM and a V(max) that ranged from 716 to 14523 pmol/mg/min. Contribution from the low affinity enzyme(s) did not exceed 8% of total intrinsic clearance for N-demethylation. Quinidine inhibition showed that CYP2D6 is the high affinity enzyme for O-demethylation with a mean K(m) of 130 +/- 33 microM and a V(max) that ranged from 89 to 356 pmol/mg/min. Activity of the low affinity enzyme(s) accounted for 10 to 26% of total intrinsic clearance for O-demethylation. On average, the total intrinsic clearance for noroxycodone formation was 8 times greater than that for oxymorphone formation across the five liver microsomal preparations (10.5 microl/min/mg versus 1.5 microl/min/mg). Experiments with human intestinal mucosal microsomes indicated lower N-demethylation activity (20-50%) compared with liver microsomes and negligible O-demethylation activity, which predict a minimal contribution of intestinal mucosa in the first-pass oxidative metabolism of oxycodone.  相似文献   

14.
Azelastine hydrochloride [4-[(4-chlorophenyl)methyl]-2-(hexahydro-1-methyl-1H-azepin-4yl )-1-(2 H)-phthalazinone monohydrochloride], is a long-acting antiallergic and antiasthmatic drug. The human cytochrome P-450 (CYP) isoform responsible for azelastine N-demethylation, the major metabolic pathway for azelastine, has been examined. Eadie-Hofstee plots of azelastine N-demethylation in human liver microsomes were biphasic. In microsomes from baculovirus-infected insect cells, recombinant CYP3A4, 2D6, 1A2, and 2C19 exhibited high azelastine N-demethylase activity. The K(m) values of the recombinant CYP2D6 (3.75 microM) and CYP3A4 (43.7 microM) were relatively close to that of high-affinity (14.1 microM) and low-affinity (54.7 microM) components in human liver microsomes, respectively. Azelastine N-demethylase activity was inhibited only by the anti-CYP3A antibody, in contrast to antibodies for CYP1A, 2D6, and 2C. In addition, desmethylazelastine formation was significantly inhibited by ketoconazole and troleandomycin but only weakly by omeprazole, sulfaphenazole, and furafylline. These observations suggested that the N-demethylation of azelastine is most extensively catalyzed by the CYP2D6 and 3A4 isoforms in humans.  相似文献   

15.
Azelastine, an antiallergy and antiasthmatic drug, has been reported to be mainly N-demethylated to desmethylazelastine in humans. In the present study, Eadie-Hofstee plots of azelastine N-demethylation in human liver microsomes were biphasic. In microsomes from human B-lymphoblast cells, recombinant cytochrome P-450 (CYP)2D6 and CYP1A1 exhibited higher azelastine N-demethylase activity than did other CYP enzymes. On the other hand, recombinant CYP3A4 and CYP1A2 as well as CYP1A1 and CYP2D6 in microsomes from baculovirus-infected insect cells were active in azelastine N-demethylation. The K(M) value of the recombinant CYP2D6 (2.1 microM) from baculovirus-infected insect cells was similar to the K(M) value of the high-affinity (2.4+/-1.3 microM) component in human liver microsomes. On the other hand, the K(M) values of the recombinant CYP3A4 (51.1 microM) and CYP1A2 (125.4 microM) from baculovirus-infected insect cells were similar to the K(M) value of the low-affinity (79.7+/-12.8 microM) component in human liver microsomes. Bufuralol inhibited the high-affinity component, making the Eadie-Hofstee plot in human liver microsomes monophasic. Azelastine N-demethylase activity in human liver microsomes (5 microM azelastine) was inhibited by ketoconazole, erythromycin, and fluvoxamine (IC(50) = 0.08, 18.2, and 17.2 microM, respectively). Azelastine N-demethylase activity in microsomes from twelve human livers was significantly correlated with testosterone 6beta-hydroxylase activity (r = 0.849, p<.0005). The percent contributions of CYP1A2, CYP2D6, and CYP3A4 in human livers were predicted using several approaches based on the concept of correction with CYP contents or relative activity factors (RAFs). Our data suggested that the approach using RAF(CL) (RAF as the ratio of clearance) is most predictive of the N-demethylation clearance of azelastine because it best reflects the observed N-demethylation clearance in human liver microsomes. Summarizing the results, azelastine N-demethylation in humans liver microsomes is catalyzed mainly by CYP3A4 and CYP2D6, and CYP1A2 to a small extent (in average, 76.6, 21.8, and 3.9%, respectively), although the percent contribution of each isoform varied among individuals.  相似文献   

16.
AIMS: To determine the cytochrome P450 (CYP) isoforms involved in the oxidation of propofol by human liver microsomes. METHODS: The rate constant calculated from the disappearance of propofol in an incubation mixture with human liver microsomes and recombinant human CYP isoforms was used as a measure of the rate of metabolism of propofol. The correlation of these rate constants with rates of metabolism of CYP isoform-selective substrates by liver microsomes, the effect of CYP isoform-selective chemical inhibitors and monoclonal antibodies on propofol metabolism by liver microsomes, and its metabolism by recombinant human CYP isoforms were examined. RESULTS: The mean rate constant of propofol metabolism by liver microsomes obtained from six individuals was 4.2 (95% confidence intervals 2.7, 5.7) nmol min(-1) mg(-1) protein. The rate constants of propofol by microsomes were significantly correlated with S-mephenytoin N-demethylation, a marker of CYP2B6 (r = 0.93, P < 0.0001), but not with the metabolic activities of other CYP isoform-selective substrates. Of the chemical inhibitors of CYP isoforms tested, orphenadrine, a CYP2B6 inhibitor, reduced the rate constant of propofol by liver microsomes by 38% (P < 0.05), while other CYP isoform-selective inhibitors had no effects. Of the recombinant CYP isoforms screened, CYP2B6 produced the highest rate constant for propofol metabolism (197 nmol min-1 nmol P450-1). An antibody against CYP2B6 inhibited the disappearance of propofol in liver microsomes by 74%. Antibodies raised against other CYP isoforms had no effect on the metabolism of propofol. CONCLUSIONS: CYP2B6 is predominantly involved in the oxidation of propofol by human liver microsomes.  相似文献   

17.
Ketamine is metabolized by cytochrome P450 (CYP) leading to production of pharmacologically active products and contributing to drug excretion. We identified the CYP enzymes involved in the N-demethylation of ketamine enantiomers using pooled human liver microsomes and microsomes from human B-lymphoblastoid cells that expressed CYP enzymes. The kinetic data in human liver microsomes for the (R)- and (S)-ketamine N-demethylase activities could be analyzed as two-enzyme systems. The K(m) values were 31 and 496 microM for (R)-ketamine, and 24 and 444 microM for (S)-ketamine. Among the 12 cDNA-expressed CYP enzymes examined, CYP2B6, CYP2C9, and CYP3A4 showed high activities for the N-demethylation of both enantiomers at the substrate concentration of 1 mM. CYP2B6 had the lowest K(m) value for the N-demethylation of (R)- and (S)-ketamine (74 and 44 microM, respectively). Also, the intrinsic clearance (CL(int): V(max)/K(m)) of CYP2B6 for the N-demethylation of both enantiomers were 7 to 13 times higher than those of CYP2C9 and CYP3A4. Orphenadrine (CYP2B6 inhibitor, 500 microM) and sulfaphenazole (CYP2C9 inhibitor, 100 microM) inhibited the N-demethylase activities for both enantiomers (5 microM) in human liver microsomes by 60 to 70%, whereas cyclosporin A (CYP3A4 inhibitor, 100 microM) failed to inhibit these activities. In addition, the anti-CYP2B6 antibody inhibited these activities in human liver microsomes by 80%, whereas anti-CYP2C antibody and anti-CYP3A4 antibody failed to inhibit these activities. These results suggest that the high affinity/low capacity enzyme in human liver microsomes is mediated by CYP2B6, and the low affinity/high capacity enzyme is mediated by CYP2C9 and CYP3A4. CYP2B6 mainly mediates the N-demethylation of (R)- and (S)-ketamine in human liver microsomes at therapeutic concentrations (5 microM).  相似文献   

18.
Effect of age and gender on the activity of human hepatic CYP3A.   总被引:22,自引:0,他引:22  
Many pharmacokinetic investigations in the elderly population reveal decreased clearance of lipophilic drugs metabolized by the cytochrome P450 enzymes; however, few studies have evaluated aging-dependent or gender-related changes in specific cytochrome P450 enzymes. The clearance of quinidine, midazolam, triazolam, erythromycin, and lidocaine declines with age; these drugs are metabolized by the isoform, CYP3A. To determine whether these metabolic effects are due to changes in CYP3A, the effects of age and gender on CYP3A activity were examined. The activity of the human hepatic cytochrome P450, CYP3A, was quantified in vitro as erythromycin N-demethylation in microsomes prepared from forty-three resected human liver specimens obtained from patients, age 27 to 83, with normal liver function. Erythromycin N-demethylation varied 5-fold in human liver microsomes. CYP3A activity was 24% higher in females than males (P = 0.027). CYP3A activity did not correlate with age, smoking status, ethanol consumption or percent ideal body weight. Large interindividual differences and a small female-specific increase in CYP3A activity were obtained. However, CYP3A activity was unaffected by age over the range of 27-83 years, suggesting that the aging-related alteration in the clearance of CYP3A substrates is secondary to changes in liver blood flow, size, or drug binding and distribution with aging.  相似文献   

19.
AIMS: To investigate the kinetics of CYP-mediated N-demethylation of methadone in human liver microsomes, and examine the role of stereoselectivity and CYP isoforms involved. METHODS: The kinetics of 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) formation via N-demethylation of rac-, (R)- and (S)-methadone in human liver microsomes prepared from six liver samples were determined by h.p.l.c., and inhibition of metabolic function was studied using isoform-specific chemical inhibitors and monoclonal antibodies. Microsomes containing expressed CYP3A4, CYP2D6 and CYP2C19 were also used to examine the formation of EDDP. RESULTS: The V max, Km, and CLint values for the formation of EDDP from rac-, (R)- and (S)-methadone were in the ranges of 20-77 nmol mg-1 protein h-1, 125-252 microm, and 91-494 ml h-1 g-1 protein. Km and CLint values for (R)- and (S)-methadone were not statistically significantly different (P >0.05), while V max values for (S)-methadone were 15% (P=0.045) lower than for (R)-methadone. Expressed CYP3A4 and CYP2C19 showed similar reaction rates for both (R)- and (S)-methadone, while CYP2D6 did not catalyse this reaction. Selective chemical inhibitors of CYP3A (troleandomycin, ketoconazole) and monoclonal human CYP3A4 antibodies significantly inhibited (P<0.05) the formation of EDDP in a concentration dependent manner by up to 80%. Sulphaphenazole (CYP2C9) also significantly inhibited (P<0.05) EDDP formation (range 14-25%). There were no statistically significant differences in the inhibition observed between the three substrates. Selective inhibitors of CYP1A2 (furafylline), CYP2A6 (coumarin), CYP2C19 ((S)-mephenytoin), CYP2D6 (quinidine) and CYP2E1 (diethyldithiocarbamic acid sodium salt and monoclonal human CYP2E1 antibodies) had no significant (P >0.05) effect. CONCLUSIONS: The N-demethylation of methadone in human liver microsomes is not markedly stereoselective, and is mediated mainly by CYP3A4 with the possible involvement of CYP2C9 and CYP2C19. Thus, the large interindividual variation reported for methadone pharmacokinetics may be due to variability in the expression of these CYP isoforms, and the reported stereoselectivity in the systemic clearance of methadone in vivo is not due to stereoselectivity in N-demethylation.  相似文献   

20.
1. The aim of the present study was to identify human cytochrome p-450 isoforms (CYPs) involved in 5-sulphoxidation and N-demethylation of the simplest phenothiazine neuroleptic promazine in human liver. 2. The experiments were performed in the following in vitro models: (A). a study of promazine metabolism in liver microsomes-(a). correlations between the rate of promazine metabolism and the level and activity of CYPs; (b). the effect of specific inhibitors on the rate of promazine metabolism (inhibitors: CYP1A2-furafylline, CYP2D6-quinidine, CYP2A6+CYP2E1-diethyldithiocarbamic acid, CYP2C9-sulfaphenazole, CYP2C19-ticlopidine, CYP3A4-ketoconazole); (B). promazine biotransformation by cDNA-expressed human CYPs (Supersomes 1A1, 1A2, 2A6, 2B6, 2C9, 2C19, 2E1, 3A4); (C). promazine metabolism in a primary culture of human hepatocytes treated with specific inducers (rifampicin-CYP3A4, CYP2B6 and CYP2C inducer, 2,3,7,8-tetrachlordibenzeno-p-dioxin (TCDD)-CYP1A1/1A2 inducer). 3. In human liver microsomes, the formation of promazine 5-sulphoxide and N-desmethylpromazine was significantly correlated with the level of CYP1A2 and ethoxyresorufin O-deethylase and acetanilide 4-hydroxylase activities, as well as with the level of CYP3A4 and cyclosporin A oxidase activity. Moreover, the formation of N-desmethylpromazine was correlated well with S-mephenytoin 4'-hydroxylation. 4. Furafylline (a CYP1A2 inhibitor) and ketoconazole (a CYP3A4 inhibitor) significantly decreased the rate of promazine 5-sulphoxidation, while furafylline and ticlopidine (a CYP2C19 inhibitor) significantly decreased the rate of promazine N-demethylation in human liver microsomes. 5. The cDNA-expressed human CYPs generated different amounts of promazine metabolites, but the rates of CYP isoforms to catalyse promazine metabolism at therapeutic concentration (10 microM) was as follows: 1A1>2B6>1A2>2C9>3A4>2E1>2A6>2D6>2C19 for 5-sulphoxidation and 2C19>2B6>1A1>1A2>2D6>3A4>2C9>2E1>2A6 for N-demethylation. The highest intrinsic clearance (V(max)/K(m)) was found for CYP1A subfamily, CYP3A4 and CYP2B6 in the case of 5- sulphoxidation, and for CYP2C19, CYP1A subfamily and CYP2B6 in the case of N-demethylation. 6. In a primary culture of human hepatocytes, TCDD (a CYP1A subfamily inducer), as well as rifampicin (mainly a CYP3A4 inducer) induced the formation of promazine 5-sulphoxide and N-desmethylpromazine. 7. Regarding the relative expression of various CYPs in human liver, the obtained results indicate that CYP1A2 and CYP3A4 are the main isoforms responsible for 5-sulphoxidation, while CYP1A2 and CYP2C19 are the basic isoforms that catalyse N-demethylation of promazine in human liver. Of the other isoforms studied, CYP2C9 and CYP3A4 contribute to a lesser degree to promazine 5-sulphoxidation and N-demethylation, respectively. The role of CYP2A6, CYP2B6, CYP2D6 and CYP2E1 in the investigated metabolic pathways of promazine seems negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号