首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined the activities of soluble and particulate guanylate cyclase [GTP pyrophosphatelyase (cyclizing); ?EC 4.6.1.2] IN REGENERATING RAT LIVER, FETAL AND NEONATAL RAT LIVER, AND HEPATOMA. TIn these tissues we found increased particulate and decreased soluble enzyme activities compared to normal adult rat liver. The particulate activity increased 12 hr after partial hepatectomy, reached maximal activity at 48 hr, and then declined. The soluble enzyme activity decreased within 8 hr and continued to decline. The activity of homogenates did not change. Guanylate cyclase activity was increased in plasma membrane and microsome fractions from regenerating liver. The increase in particulate activity was prevented with cycloheximide. Decreased soluble and increased particulate enzyme activities were found in fetal liver. After birth the soluble activity increased and the particulate activity decreased. Seven to 14 days after birth the activities of soluble and particulate fractions were similar to those of adult rat liver. In hepatoma 3924A, the activity of particulate guanylate cyclase was 9-fold greater and that of the soluble enzyme was 50% that of normal liver. These studies suggest that guanylate cyclase activity and its subcellular distribution may be related to liver growth through some unknown mechanism.  相似文献   

2.
Nitric oxide gas (NO) increased guanylate cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] activity in soluble and particulate preparations from various tissues. The effect was dose-dependent and was observed with all tissue preparations examined. The extent of activation was variable among different tissue preparations and was greatest (19- to 33-fold) with supernatant fractions of homogenates from liver, lung, tracheal smooth muscle, heart, kidney, cerebral cortex, and cerebellum. Smaller effects (5- to 14-fold) were observed with supernatant fractions from skeletal muscle, spleen, intestinal muscle, adrenal, and epididymal fat. Activation was also observed with partially purified preparations of guanylate cyclase. Activation of rat liver supernatant preparations was augmented slightly with reducing agents, decreased with some oxidizing agents, and greater in a nitrogen than in an oxygen atmosphere. After activation with NO, guanylate cyclase activity decreased with a half-life of 3-4 at 4 degrees but re-exposure to NO resulted in reactivation of preparations. Sodium azide, sodium nitrite, hydroxylamine, and sodium nitroprusside also increased guanylate cyclase activity as reported previously. NO alone and in combination with these agents produced approximately the same degree of maximal activation, suggesting that all of these agents act through a similar mechanism. NO also increased the accumulation of cyclic GMP but not cyclic AMP in incubations of minces from various rat tissues. We propose that various nitro compounds and those capable of forming NO in incubations activate guanylate cyclase through a similar but undefined mechanism. These effects may explain the high activities of guanylate cyclase in certain tissues (e.g., lung and intestinal mucosa) that are exposed to environmental nitro compounds.  相似文献   

3.
P Nambi  R K Sharma 《Endocrinology》1981,108(5):2025-2027
Low concentrations of ACTH, 7 x 10(-12) M, caused a marked stimulation of the 100,000 x g particulate guanylate cyclase without any detectable change in the adenylate cyclase activity. The lowest concentration of the hormone that elicited adenylate cyclase stimulation was 7 x 10(-10) M, a concentration 100--fold higher than that required to stimulate the guanylate cyclase. Although calcium was found to be obligatory in the hormonally--dependent guanylate cyclase activity, calcium alone could not duplicate the ACTH effect. Sodium nitroprusside and ascorbic acid inhibited the particulate guanylate cyclase activity. While ACTH was unable to stimulate the soluble guanylate cyclase, sodium nitroprusside markedly stimulated this enzyme. From these data, we conclude that the adrenal guanylate cyclase exists in two forms, particulate and soluble. The particulate form is specifically responsive to ACTH, and calcium is one of the essential coupling factors of this hormonally--responsive guanylate cyclase.  相似文献   

4.
The effect of atrial natriuretic peptide (ANP), arginine vasopressin (AVP), and oxytocin (OT) on cAMP and cGMP accumulation was investigated in LLC-PK1 kidney epithelial cells. The addition of ANP, AVP, and OT to intact cells produced a time- and concentration-dependent increase in cGMP accumulation. ANP produced a 1.7-fold increase in cGMP at 10 pM and a maximal 28-fold increase in cGMP at 1 microM. ANP had no effect on basal or AVP-induced stimulation of cAMP accumulation. OT was 10-fold more potent than AVP at increasing cGMP levels, producing a 2.1-fold increase in cGMP at 0.1 nM, whereas AVP was 100-fold more potent at increasing cAMP levels. At a concentration of 1 microM, AVP and OT produced a maximal 12 to 14-fold increase in cGMP, while OT and AVP produced 50- and 90-fold increase in cAMP, respectively. The selective OT agonist [Thr4, Gly7]oxytocin was very effective at increasing cGMP, but not at increasing cAMP levels. The V2-vasopressin agonist [deamino-Pen1,Val4, D-Arg8]vasopressin did not increase cGMP levels, but produced a 20-fold increase in cAMP levels. The addition of ANP together with either AVP or OT produced an additive increase in cGMP content. Simultaneous addition of AVP and OT did not lead to a greater increase in cAMP or cGMP levels. These results suggest that the AVP- and OT-induced increase in cGMP is mediated by OT receptors, whereas the increase in cAMP is probably mediated by vasopressin receptors. ANP increased the activity of particulate guanylate cyclase by 6-fold, while AVP and OT has no effect on particulate guanylate cyclase activity. The relatively selective inhibitor of soluble guanylate cyclase, methylene blue, had no effect on the ANP-induced increase in cGMP content in intact cells, but produced a 50% inhibition of the increase in cGMP by AVP and OT. Methylene blue did not alter the stimulation of cAMP by AVP or OT. These results demonstrate that ANP, AVP, and OT increase cGMP in LLC-PK1 kidney epithelial cells. The increase in cGMP by ANP is mediated by particulate guanylate cyclase, whereas AVP and OT probably increase cGMP by interacting with OT receptors coupled to soluble guanylate cyclase.  相似文献   

5.
The cardiotoxicity of anthracycline antibiotic anti-tumor agents is well-described but the molecular basis of the cardiotoxicity is not understood. We examined the effect of doxorubicin (Adriamycin) on the activity of guanylate cyclase (E.C. 4.6.1.2), the enzyme catalyzing the production of guanosine 3′,5′-monophosphate, from rat heart, liver, lung, kidney, and spleen. Doxorubicin produced a decrease in cardiac guanylate cyclase activity over the concentration range 0.4 to 2 mm but was without effect, or slightly stimulated, guanylate cyclase from the other tissues. Daunorubicin (Daunomycin), a related, cardiotoxic anthracycline antibiotic also decreased cardiac guanylate cyclase activity over the concentration range 0.8 to 4 mm. Other antibiotic anti-tumor agents which are not cardiotoxic, including streptonigrin, porfiromycin, and mitomycin C did not decrease cardiac guanylate cyclase activity. Doxorubicin, 1 mm and 2 mm, and daunorubicin, 4 mm decreased cardiac guanylate cyclase approximately 50% in experiments utilizing guanylate cyclase prepared from human heart. The data suggests that some aspects of anthracycline cardiotoxicity may be related to altered cardiac guanylate cyclase activity.  相似文献   

6.
Sodium nitroprusside effected a rapid, dose-dependent increase in intracellular cGMP accumulation in freshly dispersed bovine parathyroid cells. The effect was half-maximal between 10(-4) and 3 X 10(-4)M, maximal at 3 X 10(-3)M nitroprusside and could be amplified (approximately 50%) by the addition of methylisobutylxanthine (4 X 10(-4)M). The dose-response characteristics were similar to those previously described for the inhibition of cAMP accumulation and PTH release by this agent. Neither dibutyryl cGMP (10(-3)M) nor 8'-bromo-cGMP (10(-3)M) mimicked the inhibitory effect of nitroprusside on cAMP accumulation or PTH release. Dose-dependent stimulation of guanylate cyclase was found in a particulate preparation of parathyroid cells; activity was maximal at 10(-4)M nitroprusside while higher concentrations appeared to inhibit the enzyme. Nitroprusside significantly reduced both (-)isoproterenol and guanine nucleotide-stimulated adenylate cyclase activity in the particulate preparation with maximum inhibition between 10(-3)-10(-2)M. cGMP concentrations as high as 10(-4)M did not affect agonist-stimulated cAMP synthesis. Thus, although the kinetic and dose-response characteristics of the nitroprusside effect on cGMP suggest a linkage to its previously described effects on cAMP and PTH secretion, no direct evidence was found to indicate a causal relationship between the two. Rather it would appear that the effects on the adenylate and guanylate cyclase enzymes occur in parallel, possibly the result of some common primary perturbation of cellular physiology.  相似文献   

7.
We have previously reported that the LH-induced decrease in the concentration of ovarian cyclic GMP (cGMP) in the rabbit was accompanied by a drop in ovarian guanylate cyclase activity. The present experiments were carried out to see if the increase in cGMP concentration that occurs in immature rat ovaries after stimulation with pregnant mare serum gonadotrophin (PMSG) is also accompanied by changes in guanylate cyclase activity. Total ovarian cGMP, along with ovarian weight, was found to be increased at 16 h after PMSG treatment. Ovarian concentrations of cGMP, however, increased only after that period (at 20, 24 and 48 h) and the increase was progressive. Guanylate cyclase activity was found in both the cytosol and 100 000 g particulate fractions of the immature rat ovaries. Forty-three hours after PMSG treatment, activity in the particulate fraction was found to be significantly increased. This increase in guanylate cyclase activity was also found at 20 h but not at 16 h. Thus, the increase in ovarian cGMP concentration in immature rats after PMSG treatment was accompanied by increased guanylate cyclase activity.  相似文献   

8.
Adenylate and guanylate cyclase activities were measured in rat small intestinal villus and crypt cells to determine possible correlations with cellular differentiation. Isolated intestinal cells were prepared by a method which effectively separates differentiated villus cells from undifferentiated crypt cells (J Biol Chem 248:2542, 1973). Crypt cells were found to have a significantly lower guanylate cyclase activity than villus cells. Adenylate cyclase activity was higher in crypt cells than villus cells, although the difference was less striking than the reverse gradient observed for guanylate cyclase. There was no gradient of activity for cyclic guanosine 3':5'-monophosphate phosphodiesterase. However, cyclic adenosine 3':5'-monophosphate phosphodiesterase activity was lower in villus cells. No villus to crypt gradient of cyclic adenosine 3':5'-monophosphate concentration was detected in mucosa frozen rapidly in liquid nitrogen. The properties and subcellular localization of the cyclases were also evaluated, and of particular interest was the localization of guanylate cyclase to the microvillus membrane and the confirmation of adenylate cyclase activity in the lateral-basal membrane. The villus to crypt gradient of guanylate cyclase suggests that this enzyme has a specialized role in the differentiated villus cell. The contrasting subcellular localization of the cyclases suggests that the cyclases may be interrelated, possibly reflecting the epithelial cell polarity for absorption and secretion.  相似文献   

9.
Chondroprogenitor cells derived from avian tibia epiphyseal growth plate, and skin fibroblasts were cultured in vitro. In the fibroblasts, human (1-28) and rat (5-28) atrial natriuretic peptide (ANP) stimulated cyclic GMP (cGMP) production in a dose-dependent manner without affecting cAMP. Sodium nitroprusside also stimulated cGMP accumulation by chondroprogenitor cells and fibroblasts, but the maximum cGMP accumulation elicited by sodium nitroprusside was much lower than that obtained with ANP. The effects of ANP and sodium nitroprusside on chondroprogenitor cells and skin fibroblasts were additive. Human ANP increased cGMP production by the particulate fraction prepared either from chondroprogenitor cells or fibroblasts. Sodium nitroprusside, at concentrations of up to 1 mmol/l, did not affect cGMP production by the particulate fraction prepared from either cell type. The present study provides additional evidence that avian growth-plate chondroprogenitor cells and skin fibroblasts are targets for ANP. ANP and nitroprusside activate different guanylate cyclase isoenzymes--the particulate and soluble forms of the enzyme respectively. The data suggest that most of the guanylate cyclase activity in these cells is localized in the particulate fraction.  相似文献   

10.
The anthracycline antibiotic doxorubicin induces a variety of cardiotoxic effects. We have recently demonstrated that this drug also causes a selective inhibition of rat and human cardiac guanylate cyclase activity in vitro. In the present study, we examined the effect of 30 analogs of doxorubicin on cardiac guanylate cyclase activity. Structural modifications of these anthracycline antibiotics were found to alter their effect on rat cardiac guanylate cyclase activity, N-Substitutions on the sugar moiety eliminated the inhibitory action observed with the parent compound. Long-chain hydrocarbon substitutions in place of the methylketone side chain had a similar effect. Removal or substitution of the C-4 methoxy group had little or no effect on the ability of these compounds to modify guanylate cyclase activity. Substitutions of the C-9 side chain by a hydrazone derivative resulted in compounds that stimulated the enzyme. All of the anthracenedione derivatives were inhibitory. A comparison of the inhibitory effect of some of these anthracycline derivatives on in vitro cardiac guanylate cyclase activity with their cardiotoxic potency suggests a possible relationship between these two parameters.  相似文献   

11.
The intestinal hormone guanylin and bacterial heat-stable enterotoxins (STs) are members of a peptide family that activates intestinal membrane guanylate cyclase. Two different peptides that activate the human intestinal T84 cell guanylate cyclase have been purified from urine and intestinal mucosa of opossums (Didelphis virginiana). The highly acidic peptide, QEDCELCINVACTGC, was named uroguanylin because it was isolated from urine and shares 53% identity with guanylin. A second peptide, SHTCEICAFAACAGC, was purified from urine and intestinal mucosa. This alanine-rich peptide was 47% identical to uroguanylin and 73% identical to human guanylin, suggesting that it may be an opossum homologue of guanylin. Synthetic uroguanylin-(2-15) (i.e., EDCELCINVACTGC) was 10-fold more potent than synthetic rat guanylin, but both peptides were less potent than Escherichia coli ST in the T84 cell cGMP bioassay. Uroguanylin-(2-15) and guanylin inhibited 125I-ST binding to T84 cell receptors in competitive radioligand binding assays. Transepithelial Cl- secretion was stimulated by 1 microM uroguanylin, indicated by an increase in the short circuit current of T84 cells. Thus, uroguanylin is another paracrine hormone in the emerging peptide family that activates intestinal membrane guanylate cyclase. The second peptide may be the opossum form of guanylin, or perhaps, it is still another member of this peptide family. The presence of uroguanylin and guanylin in urine and receptors in proximal tubules suggests that these peptides may also originate from renal tissue and may regulate kidney function.  相似文献   

12.
A partially purified preparation of the heat-stable enterotoxin of Escherichia coli caused a rapid and persistent increase in electric potential difference and short-circuit current when added in vitro to the luminal surface of isolated rabbit ileal mucosa. As little as 1 ng/ml produced an easily detectable response. Under short-circuit condition, the enterotoxin abolished net Cl- absorption; this change was half that produced by theophylline, which stimulated net secretion. The enterotoxin did not change cyclic AMP concentration but caused large and persistent increases in cyclic GMP concentration. The electrical and nucleotide responses exhibited similar and unusually broad concentration-dependences and maximal effects could not be demonstrated. Theophylline elevated cyclic GMP concentration 3-fold both in the presence and absense of the enterotoxin, suggesting no effect of the toxin on cyclic GMP phosphodiesterase. Guanylate cyclase [GTP pyrophosphatelyase(cyclizing); EC 4.6.1.2] activity in a crude membrane fraction from intestinal epithelial cells was stimulated 7-fold by the enterotoxin. These results suggest that guanylate cyclase stimulation is the basis for the toxin's diarrheagenic effect.  相似文献   

13.
D L Vesely 《Endocrinology》1981,109(4):1284-1286
Bromocriptine and its parent compound alpha-ergocryptine were investigated with respect to their ability to interact with the guanylate cyclase (E.C.4.6.1.2)-cyclic GMP system in vitro in the rat pituitary and ovary. Both bromocriptine and alpha-ergocryptine enhanced guanylate cyclase two- to threefold in both of these tissues over a concentration range of 1 nM to 1 microM. Since bromocriptine is thought to be a dopamine agonist in the pituitary, dopamine's effects on guanylate cyclase were also tested. Dopamine caused a twofold enhancement of guanylate cyclase activity in the pituitary and ovary. When bromocriptine and dopamine were used in combination, bromocriptine had to be in equal or a greater concentration with respect to dopamine in vitro to enhance guanylate cyclase activity. These findings suggest that bromocriptine's effect at the level of the pituitary and ovary may be mediated through enhancement of guanylate cyclase activity.  相似文献   

14.
Guanylin, a bioactive peptide, has recently been isolated from the intestine; this peptide activates intestinal guanylate cyclase (i.e., guanylate cyclase C) and thus is potentially involved in the regulation of water/electrolyte transport in the gastrointestinal mucosa. As yet, the cells involved in synthesis, storage, or secretion of guanylin have not been identified by immunocytochemistry. We raised antisera against guanylin and investigated the entire gastrointestinal tract of guinea pigs by light and electron microscopical immunocytochemistry. Extracts of various intestinal segments and plasma analyzed on a Western blot revealed a peptide band corresponding to the molecular mass of guanylin. Localization studies in the entire digestive tract showed that guanylin is exclusively confined to enterochromaffin (EC) cells. Remarkably, most EC cells contacted the gut lumen by cell processes that were highly immunoreactive for guanylin. In addition to the well known secretion in an endocrine fashion, EC cells by circumstantial evidence may release guanylin into the gut lumen to activate guanylate cyclase C that is immediately located on the brush border of adjacent enterocytes. The unique localization of guanylin in EC cells may indicate that these cells are involved in the regulation of fluid secretion in the gastrointestinal mucous membrane.  相似文献   

15.
The activities of guanylate cyclase and cyclic GMP (cGMP) phosphodiesterase, enzymes that are responsible for maintaining tissue levels of cGMP, were determined in the ovaries of rabbits killed without treatment or 4 h after administration of LH. Ovarian activities of the two enzymes were determined in the 100 000 g supernatant fraction (cytosol) and the resulting pellet (particulate fraction). Significant phosphodiesterase and cyclase activities were detected in both the cytosol and particulate fractions. Administration of LH had no significant effect on phosphodiesterase activity in either of the tissue fractions. On the other hand, LH caused a significant drop in guanylate cyclase activity in the cytosol and particulate fractions. This drop in the cyclase activity may be the cause of the decreased rabbit ovarian concentrations of cGMP that we have previously observed after LH stimulation.  相似文献   

16.
We have investigated the role of Ca2+ and calmodulin in the stimulation of cGMP formation by mouse Leydig cells in response to rat atriopeptin-II (rAP-II). Removal of extracellular Ca2+ had no influence on the levels of cGMP accumulated by the cells stimulated with rAP-II. The amounts of testosterone produced by unstimulated and rAP-II-stimulated cells were, however, reduced by 50% in the absence of Ca2+ from the incubation medium. Addition of ionomycin to the Leydig cells led to a dose-related inhibition of rAP-II-stimulated cGMP formation, but the basal cGMP level was not affected. These experiments were carried out in the presence of a phosphodiesterase inhibitor. The inhibitory effect of ionomycin was absolutely dependent upon the presence of Ca2+ in the medium. The guanylate cyclase activity required the presence of a cation, and Mn2+, Mg2+, or Ca2+ could function as the required cation. There was no direct inhibition of the cyclase activity by Ca2+ up to as high a concentration as 8 mM. Furthermore, three structurally unrelated calmodulin antagonists, W7, trifluoperazine, and calmidazolium, but not W5, caused a dose-related inhibition of rAP-II-stimulated cGMP accumulation by the cells. The inhibitory effect of calmodulin antagonists was not exerted directly at the level of guanylate cyclase activity, since the particulate enzyme was not inhibited by any of these drugs. We conclude, therefore, that extracellular Ca2+ is not essential for rAP-II-mediated stimulation of cGMP formation by mouse Leydig cells, at least under the short term incubation conditions used. An excessive ionophoretic influx of Ca2+ into the cells impairs the ability of rAP-II to stimulate cGMP formation. Therefore, it appears that a finely regulated level of intracellular Ca2+ is required for optimal activation of atrial natriuretic peptide-responsive guanylate cyclase in mouse Leydig cells, and calmodulin plays an important role in this process.  相似文献   

17.
In immunohistochemical studies of rat liver tissue slices and purified nuclei, adenosine 3':5'-cyclic monophosphate (cAMP) and guanosine 3':5'-cyclic monophosphate (cGMP) immunofluorescence on the nuclear membrane are sequentially increased after glucagon administration. An explanation for the increased cGMP immunofluorescence was sought in experiments in which guanylate cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2]activity of hepatic subcellular fractions was determined. The results showed that a nuclear guanylate cyclase exists which can be distinguished from the soluble and crude particulate guanylate cyclases. The activity of the nuclear enzyme was increased by 35% in nuclei isolated from rats 30 min after glucagon injection, the time at which maximal nuclear membrane cGMP immunofluorescence is observed. Because glucagon altered both cAMP location and levels prior to the observed changes in nuclear cGMP metabolism, the hypothesis that cAMP acted as the second messenger was tested. In vitro incubation of nuclei isolated from control rats with 10(-5) M cAMP produced a 25% increase in nuclear guanylate cyclase activity. With nuclei isolated from glucagon-treated rats, no significant increase in enzyme activity was observed; this indicates that maximal stimulation of nuclear guanylate cyclase by cAMP occurred at levels that are obtained in vivo after glucagon administration. These findings suggest that hepatic nuclear cGMP content may be regulated by a specific organelle guanylate cyclase and that cAMP may be one of the determinants of this enzyme's activity.  相似文献   

18.
The binding of biologically active 125I-labeled heat-stable enterotoxin (ST) of Escherichia coli with cultured mammalian cells was dose dependent and could be inhibited with low concentrations of unlabeled toxin or by neutralization with specific antiserum. There was positive cooperativity among cell binding sites. A single cultured cell bound approximately 4 X 10(4) molecules of ST; the dissociation constant was 1.33 X 10(-10) M. The specific binding of ST was partially inhibited by Pronase (Sigma Chemical Company, St. Louis, Missouri) and trypsin, but not by lipid- or carbohydrate-specific enzymes, simple sugars, or saccharides. Addition of ST to cultures of rat basophilic leukemia cells resulted in a dose-dependent secretion of histamine. Pharmacologic agents that inhibited calcium uptake or prostaglandin synthesis decreased the amount of histamine released. These data demonstrate the specific binding of ST by cultured cells and support the contention that calcium and prostaglandins may be important in the molecular mechanism(s) whereby ST activates guanylate cyclase.  相似文献   

19.
Adenylate cyclase and cyclic AMP phosphodiesterase activities in the thyroid gland were significantly reduced after hypophysectomy, followed by a gradual restoration of the enzyme activities to the levels seen in sham-operated rats whereas a slight and persistent reduction was evident in guanylate cyclase and cyclic GMP phosphodiesterase activities in the same tissue. These changes in enzyme activities were restored by TSH administration but not by ACTH. The recovery of activity produced by TSH administration was inhibited by cycloheximide. Hypophysectomy, or TSH and cycloheximide administration, did not produce any significant changes in the concentrations of calmodulin, suggesting that the alteration of these enzyme activities is not induced by a decrease in the concentration of calmodulin. Since forskolin activation of adenylate cyclase did not restore the reduced activity in the hypophysectomized rat thyroid to the level found in the sham-operated control rat thyroid, we conclude that there is a reduction of the amount of enzyme after hypophysectomy rather than a change of the active site on adenylate cyclase. The spontaneous restoration of adenylate cyclase and cyclic AMP phosphodiesterase activities after hypophysectomy implies that cyclic AMP-metabolizing enzymes are responsive to an autoregulatory mechanism in thyroid follicular cells.  相似文献   

20.
D L Vesely  D E Hill 《Endocrinology》1980,107(6):2104-2109
Since both estrogens and cyclic guanosine 3',5'-monophosphate stimulate protein synthesis, the objective of the present investigation was to determine if estrogens and their precursors might have part of their mechanism of action through stimulation of guanylate cyclase (E.C.4.6.1.2), the enzyme that catalyzes the conversion of guanosine triphosphate to cyclic guanosine 3',5'-monophosphate. The precursors of estrogen synthesis originate from cholesterol. Cholesterol itself had no effect on guanylate cyclase activity. The precursors of estrogen synthesis generated from cholesterol, namely, progesterone, 17 alpha-OH-progesterone, androstenedione, pregnenolone, 17 alpha-OH-pregnenolone, and dehydroepinandrosterone, however, caused a 2- to 3-fold enhancement of fetal and maternal guinea pig hepatic and uterine guaynlate cyclase activity at a concentration of 1 microM. In comparative studies, similar effects were seen on immature female Sprague-Dawley rat hepatic and uterine guanylate cyclase activity. Estrone, estradiol-17 beta, estriol, and the synthetic estrogen, diethylstilbestrol, enhanced guanylate cyclase activity in the same tissues 2- to 3- fold at the 1 microM concentration. Dose-response relationships revealed that these estrogens and their precursors had their maximal effect at 0.001 microM. Estradiol-17 alpha also enhanced uterine guanylate cyclase activity, but a 1000-fold greater concentration compared to the other estrogens was necessary to show any significant effect. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of estrogens and their precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号