首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Ileal Na+-dependent bile acid transporter (ISBT) constituting a gateway to enterohepatic circulation of bile acids occurs exclusively at the distal site of the small intestine. In the present study, we examined colonic tumorigenesis promoted by deoxycholic acid in relation to the expression of the ISBT. For this purpose, the small intestine of a Fischer-344 rat was resected a length of 20 cm above the ileo-cecal valve (ileal resection) or below the duodenum (jejunal resection). Then, rats were treated with an intraperitoneal injection of azoxymethane (15 mg/kg body wt.) once a week for 3 weeks and fed a 20% casein diet supplemented with 0.2% deoxycholate for 39 weeks. Northern blot analysis demonstrated that the ISBT mRNA was hardly detectable in ileum-resected rats. The excretion of fecal bile acids was 1.5-fold higher in the ileum-resected group than in the jejunum-resected group (P < 0.05). On the contrary, the serum bile acids concentration of ileal-resected rats was about one-half of that of jejunum-resected animals (P < 0.05). The tumor incidence and the total tumor number were significantly higher in the ileum-resected group than in the jejunum-resected one (P < 0.05). Interestingly, no tumor was found at the proximal colon in the jejunum-resected group while tumors developed frequently at the proximal site as well as mid and distal colon in the ileum-resected group. These observations demonstrate that malabsorption of bile acids owing to the lack of ISBT enhanced colon tumorigenesis.  相似文献   

3.
Epidemiological and experimental data suggest that dietary fiber and fat are major determinants of colorectal cancer. However, the mechanisms by which these dietary constituents alter the incidence of colon cancer have not been elucidated. Evidence indicates that dominant gain-of-function mutations short-circuit protooncogenes and contribute to the pathogenesis of cancer. Therefore, we began to dissect the mechanisms whereby dietary fat and fiber, fed during the initiation, promotion and progression stages of colon tumorigenesis, regulate ras p21 localization, expression and mutation frequency. Male Sprague-Dawley rats (140) were provided with corn oil or fish oil and pectin or cellulose plus or minus the carcinogen azoxymethane (AOM) in a 2 x 2 x 2 factorial design and killed after 34 weeks. We have previously shown adenocarcinoma incidence in these animals to be 70.3% (52/74) for corn oil + AOM and 56.1% (37/66) for fish oil + AOM (P < 0.05). Total ras expression as well as ras membrane:cytosol ratio was 4- to 6-fold higher in colon tumors than in mucosa from AOM- or saline-injected rats. Expression of ras in the mucosal membrane fraction was 13% higher for animals fed corn oil compared with fish oil feeding (P < 0.05), which is noteworthy since ras must be localized at the plasma membrane to function. The elevated ras membrane:cytosol ratio in tumors was not due to increased farnesyl protein transferase activity or prenylation state, as nearly all detectable ras was in the prenylated form. Phosphorylated p42 and p44 mitogen activated protein kinase (ERK) expression was two-fold higher in tumor extracts compared with uninvolved mucosa from AOM- and saline-injected rats (P < 0.05). The frequency of K-ras mutations was not significantly different between the various groups, but there was a trend toward a greater incidence of mutations in tumors from corn oil fed rats (85%) compared with fish oil fed rats (58%). Our results indicate that the carcinogen-induced changes in ras expression and membrane localization are associated with the in vivo activation of the ERK pathway. In addition, suppression of tumor development by dietary n-3 polyunsaturated fatty acids may be partly due to a combined effect on colonic ras expression, membrane localization, and mutation frequency.  相似文献   

4.
We have recently demonstrated that overexpression of PKC beta(II) renders transgenic mice more susceptible to carcinogen-induced colonic hyperproliferation and aberrant crypt foci formation. In order to further investigate the ability of PKC beta(II) to modulate colonocyte cytokinetics, we determined the localization of PKC beta(II) with respect to cell proliferation and apoptosis along the entire colonic crypt axis following carcinogen and diet manipulation. Rats were provided diets containing either corn oil [containing n-6 polyunsaturated fatty acids (PUFA)] or fish oil (containing n-3 PUFA), cellulose (non-fermentable fiber) or pectin (fermentable fiber) and injected with azoxymethane (AOM) or saline. After 16 weeks, an intermediate time point when no macroscopic tumors are detected, colonic sections were utilized for immunohistochemical image analysis and immunoblotting. Cell proliferation was measured by incorporation of bromodeoxyuridine into DNA and apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling. In the distal colon, PKC beta(II) staining was localized to the upper portion of the crypt. In comparison, proximal crypts had more (P < 0.05) staining in the lower tertile. AOM enhanced (P < 0.05) PKC beta(II) expression in all regions of the distal colonic crypt (upper, middle and lower tertiles). There was also an interaction (P < 0.05) between dietary fat and fiber on PKC beta(II) expression (corn/pectin > fish/cellulose, fish/pectin > corn/cellulose) in all regions of the distal colonic crypt. With respect to colonic cell kinetics, proliferation paralleled the increase in PKC beta(II) expression in carcinogen-treated animals. In contrast, apoptosis at the lumenal surface was inversely proportional to PKC beta(II) expression in the upper tertile. These results suggest that an elevation in PKC beta(II) expression along the crypt axis in the distal colon is linked to enhancement of cell proliferation and suppression of apoptosis, predictive intermediate biomarkers of tumor development. Therefore, select dietary factors may confer protection against colon carcinogenesis in part by blocking carcinogen-induced PKC beta(II) expression.  相似文献   

5.
Epidemiological and experimental studies suggest an inverse relationship between the intake of dietary selenium and/or low fat-intake and colon cancer risk. Efficacy studies in rodents suggest that the organoselenium compound 1, 4-phenylenebis(methylene)selenocyanate (p-XSC), is a more effective and less toxic chemopreventive agent than other organic or inorganic selenium compounds such as selenomethionine and Na2SeO3. The efficacy of p-XSC against colon cancer is significantly augmented by a low-fat diet. To explore the mechanisms by which this combined inhibiting effect against colon carcinogenesis comes about, we have investigated protein kinase C (PKC), tyrosine protein kinase (TPK), diacylglycerol kinase (DGK) activities and 8-isoprostane levels in colonic mucosa and tumor tissues in an azoxymethane (AOM)-induced rat colon cancer model. Weanling male F344 rats were fed the semipurified AIN-76A diet until seven weeks of age. Then various experimental groups were fed the low- or high-fat diets containing 0 or 20 ppm p-XSC (10 ppm as selenium). At seven weeks of age, groups of rats were injected s.c. with azoxymethane (AOM; 15 mg/kg body wt., once weekly for 2 weeks) and continued on their respective experimental diets until 38 weeks after the second AOM treatment. They were then sacrificed and colonic mucosal and tumor samples were evaluated for PKC, TPK, DGK and 8-isoprostane levels. Administration of p-XSC along with a low-fat diet significantly inhibited Ca+2-dependent and -independent PKC (P<0.05-0.01) activities in colonic mucosa and tumors. Administration of p-XSC either low-fat or high-fat diet significantly suppressed both colonic mucosal and tumor TPK activity (P<0.05-0.01). Suppression of TPK activity was more pronounced in rats maintained on a low-fat diet containing p-XSC. In contrast, rats receiving p-XSC with either low- or high fat diet showed significantly increased DGK activity (P<0.01-0.0001). Rats fed low-fat or high-fat plus p-XSC had lower-levels of 8-isoprostane in the colonic tumors than animals who had been given low- or high-fat diets without the organoselenium compound. Interestingly, 8-isoprostane levels were lower in the colon tumors of the rats fed the low-fat diet than those fed the high-fat diet. Our findings suggest that p-XSC induced down-regulation of PKC and TPK activities and up-regulation of DGK activity. These events may in part be responsible for the chemopreventive activity against colon carcinogenesis. Further, this study implies that p-XSC with a low-fat dietary regimen will augment regulation of PKC, TPK and DGK activities in the colon.  相似文献   

6.
Bile salts appear to be important promoters of colon carcinogenesis. This study was designed to assess the importance of the fecal stream in cholic acid-induced colon tumor promotion. Male Sprague-Dawley rats underwent transverse colostomy after induction with dimethylhydrazine (DMH) and the excluded distal colon was irrigated with saline or sodium cholate (23 microM) 5 times per week until sacrifice. Controls initially injected with saline were similarly treated. All surviving animals were sacrificed at 28 weeks after the last DMH injection. Five animals from each group were randomly chosen to assess tritiated thymidine labeling and distribution by autoradiography in normal appearing colon mucosa of irrigated bowel. Cholate irrigation failed to increase tumor yield or modify the proportion of adenomas and adenocarcinomas in this model. Paradoxically, fewer tumors per affected rat were noted with sodium cholate irrigation. Cholate irrigation also failed to affect crypt cellularity, thymidine labeling indices, and labeling distribution in DMH-treated rats and controls. An effect of DMH was seen, however, with an increase in thymidine labeling index and increased labeling in the top half of the crypt in all DMH-treated groups. This study suggests that tumor promotion with primary bile salts is not a direct affect and may result from further bile salt metabolism within the fecal stream. DMH-induced changes in cell proliferation were reproduced with this model. Use of an excluded colon segment to assess the effect of suspected tumor promoters on carcinogenesis or colon mucosal cell proliferation is feasible and may be a useful model for future studies.  相似文献   

7.
The chemopreventive action of 40 and 80% maximum tolerated dose (MTD) levels of piroxicam, D,L-alpha-difluoromethylornithine (DMFO), 16 alpha-fluoro-5-androsten-17-one (DHEA analogue 8354), and ellagic acid (EA) administered in diet individually and in combination before and during initiation and postinitiation phases of azoxymethane-induced neoplasia of the intestine was studied in male F344 rats. The MTD levels of piroxicam, DFMO, DHEA analogue, and EA were determined in male F344 rats and found to be 500, 5,000, 500, and 10,000 ppm, respectively, in modified AIN-76A diet. When these agents were fed in combination, the MTD levels were: piroxicam plus DFMO, 250 and 2500 ppm; piroxicam plus DHEA analogue, 250 and 250 ppm; piroxicam plus EA, 250 and 5000 ppm; piroxicam plus DFMO plus DHEA analogue, 250, 2500, and 250 ppm; and piroxicam plus DFMO plus EA, 250, 2500, and 5000 ppm. From these MTD values, 40 and 80% MTD levels were calculated and tested for their efficacy. At 5 weeks of age, animals were fed the modified AIN-76A (control) diet and experimental diets containing 40 and 80% MTD levels of piroxicam, DFMO, DHEA analogue, and EA individually and in combination. At 7 weeks of age, all animals except the vehicle-treated groups were administrated s.c. injections of azoxymethane (15 mg/kg body weight/week for 2 weeks). Animals intended for vehicle treatment received s.c. injections of an equal volume of normal saline. Fifty-two weeks after azoxymethane and saline treatment all the animals were necropsied, and colon and small intestinal tumor incidence (percentage of animals with tumors) and multiplicity (tumors/animal) were compared among various dietary groups. The results indicate that 40 and 80% MTD levels of dietary piroxicam and DFMO significantly (P less than 0.001) inhibited colon and small intestinal tumor incidence and multiplicity. DHEA analogue at 40% MTD level significantly decreased the small intestinal and colon tumor incidences (P less than 0.05), whereas 80% MTD of DHEA analogue inhibited only small intestinal tumor incidence. EA at 40 and 80% MTDs had no significant effect on colon tumor incidence (P greater than 0.05), but 80% MTD of EA showed a significant inhibitory effect on the incidence of small intestinal adenocarcinomas (P less than 0.01). In the combination study, 40 and 80% MTD levels of piroxicam plus DFMO significantly (P less than 0.001) inhibited colon adenocarcinoma incidence (8.3%) and multiplicity (0.08 +/- 0.04) (SE) when compared to colon adenocarcinoma incidence (72.2%) and multiplicity (1.14 +/- 0.18) in control diet-fed animals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
There is now general agreement that the etiology of proximal and distal colon cancers may differ, thus prompting renewed interest in understanding anatomical site-specific molecular mechanisms of tumor development. Using a 2x2x2 factorial design with male Sprague-Dawley rats (corn oil, fish oil; pectin, cellulose; plus or minus azoxymethane injection) we found a greater than 2-fold difference (P < 0.001) in tumor incidence proximally versus distally (prox/dist ratio: corn oil, 2.25; fish oil, 2.61). The purpose of the present study was to determine if the higher degree of proximal versus distal tumors in our model system could be accounted for by differences between these two sites in initial DNA damage, response to that damage or an effect of diet at one site but not the other. DNA damage was assessed by quantitative immunohistochemistry of O(6)-methylguanine adducts; repair by measurement of O(6)-methylguanine-DNA alkyltransferase and removal was determined by measurement of targeted apoptosis. Although overall initial DNA damage was similar at both sites, in the distal colon there was a greater expression of repair protein (P < 0.001) and a greater degree of targeted apoptosis (P < 0.0001). There was also a reduction in DNA damage in the distal colon of rats consuming fish oil. Together, these results suggest that the lower tumor incidence in the distal colon may be a result of the capacity to deal with initial DNA damage by the distal colon, as compared with the proximal colon. Therefore, the determination of site-specific mechanisms in tumor development is important because distinct strategies may be required to protect against cancer at different sites.  相似文献   

9.
Epidemiological studies have suggested a relationship between diet and colon cancer incidence. Results from animal studies suggest that whey protein, but not casein protein, may provide protective effects against experimentally induced breast cancer in animals. In the current study, we investigated the effects of casein and whey diets on chemically induced colon cancer in male rats. Pregnant female Sprague Dawley rats (days 3-4 of gestation) were maintained on modified AIN-93G diets formulated with a single protein source of either casein or whey. Life-time exposure to these diets was studied in the F1 generation (experiment A) or the F2 generation (experiment B). Male offspring were weaned to the same diets as the dams and were maintained on these diets throughout the study. At age 90 days, all rats received azoxymethane once a week for 2 weeks (s.c., 15 mg/kg). Forty weeks after the last azoxymethane injection, all rats were euthanized, the colon was examined visually for tumors, and each tumor was histologically evaluated. The weights and distribution of all of the tumors were recorded. In experiment A, rats fed the casein diet had a 56% incidence of colon tumors compared with 30% of the rats on whey-based diets (P < 0.05). In experiment B, rats fed the casein diet had 50% incidence of colon tumors compared with 29% in the whey group (P < 0.05). There were no significant effects of diet on tumor multiplicity or mass. These results suggest that consumption of whey protein-containing diets may reduce the risk of developing colon tumors.  相似文献   

10.
Epidemiological studies suggest that high intake of dietary fat rich in saturated fatty acids increases the colon cancer risk whereas dietary fish oil high in omega-3 fatty acids reduces the colon cancer risk. Previously, we reported that consumption of omega-6 fatty acid rich diets such as corn oil strongly promotes azoxymethane (AOM)-induced colon carcinogenesis in rats as compared to ingestion of a diet with equivalent amount of fat containing fish oil (HFFO) or low-fat diet (LFCO). Expression of PLK3 (Polo-like kinase-3, previously named Prk) is negatively correlated with the development of certain cancers. Ectopic expression of human PLK3 results in cell cycle arrest or induces apoptosis. To understand the role of PLK3 in colon carcinogenesis and to study the effect of types and amount of dietary fat on the expression levels of PLK3 in colon tumors, we analyzed the colon tumors and mucosa of rats administered the diets containing fish oil and corn oil for PLK mRNA expression. Here we report that expression of PLK3 was down-regulated in rat colon tumors. Quantitative polymerase chain reaction demonstrated that PLK3 mRNA levels were significantly lower in carcinogen (azoxymethane)-induced rat colon tumors than their uninvolved normal colonic mucosa. Among the normal mucosa isolated from rats fed on diets with various levels of fat (LFCO, or high fat diet with corn oil, HFCO, or supplemented with fish oil, HFFO), no significant changes in PLK3 mRNA expression was detected. Tumors isolated from rats fed with HFCO diet contained a very low level of PLK3 mRNA expression. Interestingly, tumors from rats fed the HFFO diet did not exhibit as dramatic down-regulation of PLK3 as the tumors of animals fed the HFCO diet. Furthermore, our results also indicate that the ectopic expression of a kinase active PLK3 construct induced apoptosis in HT-29 colon carcinoma cells. These observations suggest for the first time that a decreased activity of PLK3 may play a key role in colon tumor development as well as in HFCO-induced colon tumorigenesis.  相似文献   

11.
Our previous work on protein kinase C (PKC) and colon cancer has shown altered levels of PKC activity in human colon tumors, as well as activation of PKC by colon tumor promoters such as bile acids. To understand further the role of PKC in colon carcinogenesis, we analyzed the expression of phorbin, a gene induced by PKC activation, in a series of different stages of human colon tumors. As shown by northern blot analyses of poly (A)+ RNA, higher levels of phorbin RNA were seen in 26 colon tumor samples than in their adjacent normal colonic mucosa. There also appeared to be a correlation between the abundance of phorbin RNA in the tumors and the extent of invasion (tumor-to-normal tissue phorbin RNA ratio = 4.2, 8.0, and 11.9 for Dukes' A, B, and C, respectively). Phorbin RNA was also abundant in a human colon cancer line (HT29). We also examined the expression of other mitogen-responsive genes (c-myc, ODC, and beta-actin) in a set of 19 colon tumor samples. All tumors displayed significant (mean 3.8-fold) increases in the level of c-myc RNA compared with their adjacent normal colonic mucosa. About 47% and 16% of these tumor samples also showed increased levels of ODC (mean 3.1-fold) and beta-actin (mean 1.6-fold) RNA, respectively. The increased levels of c-myc, ODC, and beta-actin RNA did not correlate with the extent of tumor invasion. Taken together, these results demonstrate that human colon tumors usually display increased levels of both phorbin and c-myc RNAs. The marked increases in phorbin RNA suggest that this could serve as a useful biomarker in studies on human colon cancer.  相似文献   

12.
In this study we evaluated the effect of dietary administration of a high fat, low fiber diet (HRD) with or without 2% phytic acid (PA) on the development of mammary cancer and/or colon cancer in rats exposed to methylnitrosourea (MNU), azoxymethane (AOM) or MNU + AOM. The rats were fed a HRD alone or a HRD + 2% PA. At the end of week 2, the rats were given either a s.c. injection of MNU (50 mg/kg body wt) or one of normal saline (vehicle). At the end of weeks 3 and 4, the rats were given either a s.c. injection of AOM (15 mg/kg body wt per week) or one of normal saline (vehicle). Nine weeks after the injection of MNU or saline, 10 rats from each group were sacrificed and the mammary tumor incidence and the number of colonic aberrant crypt foci (ACF) were compared between different groups. The administration of different diets was continued for an additional 21 weeks and the mammary tumor and colon tumor incidence between different groups were compared. Results showed that rats injected with MNU alone did not develop ACF or colon tumors while those injected with AOM alone did not develop mammary tumors. Linear regression analysis of the number of ACF at 11 weeks versus colonic tumor incidence at 32 weeks, and the linear regression analysis of mammary tumor incidence at 11 weeks versus mammary tumor incidence at 32 weeks, both showed good linear correlation. These results demonstrate the potential value of the short term dual organ carcinogenesis bioassay for screening chemopreventive agents for their relative ability to inhibit the development of mammary cancer and/or colon cancer while on high risk diet.  相似文献   

13.
14.
The effect of three levels of piroxicam and three levels of D,L-alpha-difluoromethylornithine (DFMO) fed individually and in combination during the postinitiation phase of carcinogenesis was studied in male F344 rats to generate a data base on the efficacy and synergistic and additive effects of these compounds as inhibitors of colon carcinogenesis. The maximum tolerated dose of DFMO was determined in male F344 rats and found to be 5000 ppm in the AIN-76A diet. Piroxicam at levels of 25, 75, and 150 ppm and DFMO at concentrations of 400, 1000, and 4000 ppm (20, 50, and 80% maximum tolerated dose) in AIN-76 diet were tested individually and in combinations. At 7 weeks of age, while the rats were consuming the control diet (AIN-76A), all animals except the vehicle (saline)-treated controls were given a single s.c. injection of azoxymethane (CAS: 25843-45-2) at a dose level of 29.6 mg/kg body weight to induce intestinal tumors. One week after azoxymethane injection, animals were transferred to their respective experimental diets containing piroxicam and DFMO. Fifty-six weeks after azoxymethane injection, all animals were necropsied and colon and small intestinal tumor incidences and multiplicity were compared among the various dietary groups. Feeding of diets containing 75 and 150 ppm piroxicam or 1000 and 4000 ppm DFMO significantly inhibited the incidence (percentage of animals with tumors) of colon adenocarcinomas compared to that of control diet. The multiplicity (number of tumors/rat) of adenocarcinomas was significantly inhibited in animals fed the 25, 75, and 150 ppm piroxicam or 400, 1000, and 4000 ppm DFMO diets. Results analyzed by the linear regression method suggested a dose-dependent inhibition in colon adenocarcinoma incidence with increasing levels of piroxicam or DFMO. The incidence and multiplicity of colon adenocarcinomas were significantly inhibited in animals fed the diets containing combinations of 25, 75, and 150 ppm piroxicam and 400, 1000, and 4000 ppm DFMO. Piroxicam and DFMO administered together had a stronger inhibitory effect than did those given individually. Piroxicam and DFMO when administered individually had no significant inhibitory effect on colon adenoma incidence and multiplicity; in contrast, combinations of these compounds significantly inhibited colon adenomas. No consistent differences were found in the incidence and multiplicity of small intestinal tumors among the dietary groups.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The human colon can be described as a complex microbial ecosystem, comprising several hundred bacterial species. Some of these enteric bacteria are beneficial to the host and have been shown to exert antimutagenic and anticarcinogenic properties. We have investigated the colon tumor inhibitory activity of Bifidobacterium longum, a lactic acid-producing enterobacterium. The modifying effects of this lactic culture on colonic mucosal and/or tumor cell proliferation, ODC activity and ras-p21 oncoprotein expression in colon carcinogenesis were also analyzed. Male F344 rats were fed a modified AIN-76A diet containing 0 or 2% lyophilized cultures of B. longum and s.c. administered azoxymethane (AOM) dissolved in normal saline at a dose of 15 mg/kg body wt, once weekly for 2 weeks. Vehicle controls received an equal volume of normal saline s.c. Animals were maintained on control or experimental diets until termination of the study. Animals intended for analysis of cell proliferation were killed 20 weeks after the second AOM injection, whereas animals intended for colon tumor analysis and measurement of ODC activity and ras-p21 expression were killed 40 weeks after the last AOM injection. The data demonstrate that dietary administration of lyophilized cultures of B. longum resulted in significant suppression of colon tumor incidence and tumor multiplicity and also reduced tumor volume. Results also revealed that ingestion of B. longum significantly inhibited AOM-induced cell proliferation, ODC activity and expression of ras-p21 oncoprotein. Data suggest that oral administration of probiotic B. longum exerts strong antitumor activity, as indicated by modulation of the intermediate biomarkers of colon cancer, and consequently reduced tumor outcome.   相似文献   

16.
We have previously demonstrated that ursodeoxycholic acid(UDCA) and a fluorinated analogue of vitamin D(3), F(6)-D(3),inhibited colonic carcinogenesis in the azoxymethane (AOM) model. Generalized colonic mucosal hyperproliferation and aberrant crypt foci (ACF) are intermediate biomarkers of colon cancer. Using these biomarkers, in this study we examined the anticarcinogenic mechanisms of these chemopreventive agents. Rats were maintained on AIN-76A chow or supplemented with 0.4% UDCA or F(6)-D(3) (2.5 nmol/kg chow) and treated weekly with AOM 20 mg i.p./kg wt or saline x 2 weeks. F(6)-D(3) was continued for an additional 2 weeks and UDCA for the duration of the study. At 40 weeks, animals received bromodeoxyuridine (BrdUrd) i.p. 2 h before sacrifice. A portion of each tumor was fixed in formalin and the remainder flash frozen. Colons were divided longitudinally and half-fixed in formalin and half in ethanol. The size and location of methylene blue-stained ACF were recorded. Cell proliferation (BrdUrd labeling) and apoptosis (terminal deoxynucleotidyl transferase-mediated nick end labeling assay) were measured in colonic crypts and tumors. Protein expression levels of several regulators of cell proliferation were analyzed by immunostaining and Western blotting. Colonic crypt cyclin D1 and E-cadherin mRNA levels were measured by real-time PCR. In saline injected controls, neither UDCA nor F(6)-D(3) alone had any effect on cytokinetic parameters or on the expression of mitogenic regulators. AOM significantly increased the proliferation (percentage of BrdUrd-positive cells) of both ACF (23.1 +/- 1.7%) and non-ACF crypts (17.6 +/- 1.6%), compared with normal colonic crypts (4.5 +/- 0.8%; P < 0.05). This hyperproliferation was accompanied by a 5-fold increase in cyclin D1 and >50% decrease in E-cadherin protein (P < 0.05) in ACF, both of which are predicted to be growth-enhancing alterations. UDCA and F(6)-D(3) significantly (P < 0.05) inhibited AOM-induced crypt cell hyperproliferation, ACF development, and tumor burden. These chemopreventive agents also significantly blocked AOM-induced alterations in cyclin D1 and E-cadherin protein in ACF and tumors. In ACF, changes in mRNA levels of cyclin D1, but not E-cadherin, paralleled alterations in protein expression. Cyclooxygenase-2 and inducible nitric oxide synthase were increased in AOM tumors but not in ACF, and these changes were blocked by UDCA and F(6)-D(3). UDCA and F(6)-D(3) significantly inhibited ACF development and hyperproliferation, in part, by preventing carcinogen-induced alterations in cyclin D1 and E-cadherin. In established tumors, UDCA and F(6)-D(3) also limited inductions of cyclooxygenase-2 and inducible nitric oxide synthase, which together with their effects on cyclin D1 and E-cadherin, contribute to their chemopreventive actions.  相似文献   

17.
Daphnane-type diterpene gnidimacrin (NSC 252940) shows significant antitumor activity against murine tumors and human tumor cell lines. This compound binds to and directly activates protein kinase C (PKC), arresting the cell cycle at the G(1) phase through inhibition of cdk2 activity in human K562 leukemia cells. In our study, we examined whether cellular PKC is involved in the antiproliferating effect of gnidimacrin. In a 24-hr exposure of K562 cells to high concentrations of bryostatin 1 (0.11-3.3 microM), both expression of PKC alpha and PKC betaII was downregulated, and thereafter these cells became resistant to gnidimacrin in response to the degree of PKC downregulation. In addition, PKC alpha and PKC betaII genes were transfected to gnidimacrin-resistant human hepatoma HLE cells that demonstrated positive expression of PKC alpha and negative expression of PKC betaII. PKC betaII gene-transfected cells became sensitive to gnidimacrin in relation to the degree of PKC betaII expression. The most sensitive clone to show 0.001 microg/mL (1.2 nM) as IC(50) in a continuous 4-day exposure was obtained. While PKC alpha gene-transfected cells exhibited an increase in PKC alpha expression and became sensitive to gnidimacrin, sensitivity was one-hundredth of that in PKC betaIotaIota gene-transfected cells. These results suggest that PKC, in particular PKC betaIotaIota, is necessary in the antitumor effect of gnidimacrin.  相似文献   

18.
The effect of 30% caloric restriction on azoxymethane (AOM)-induced colon carcinogenesis was investigated in male F344 rats. Starting at 5 weeks of age, groups of animals were fed ad libitum a high-fat (23.5%) semipurified diet. At 7 weeks of age, all animals except the vehicle-treated groups were s.c. injected with AOM (15 mg/kg body wt, once weekly for 2 weeks). Four days after the second AOM injection, groups of animals were continued on high-fat diet and fed ad libitum (ad libitum group) whereas other groups were restricted to 70% of total calories (calorie-restricted group) consumed by the ad libitum group, but received same amounts of fiber, vitamins, and minerals. Thirty-two weeks after AOM injections, all animals were necropsied. The animals in the calorie-restricted group developed significantly fewer colon tumors and had a lower colon tumor incidence than did the rats in the ad libitum group. The size of colon tumors was also reduced in the calorie-restricted group.  相似文献   

19.
Alterations in the transforming growth factor-beta (TGF-beta) pathway are implicated in the pathogenesis of colorectal cancer. We hypothesize that alterations in the TGF-beta pathway contribute to differential sensitivity of mice to the colon carcinogen azoxymethane (AOM). A/J (sensitive) and AKR/J (resistant) mice were injected intraperitoneally with AOM (10 mg/kg of body weight once a week for 6 wk). Twenty-four weeks after AOM exposure, mutational analysis of TGF-beta type II receptor (TbetaR-II) from normal colons and from tumors showed no AOM-induced alterations. A significant decrease (1.5-fold, P < 0.05) in TbetaR-II mRNA levels, however, was found in A/J tumors with the RNase protection assay. Immunofluorescence of TbetaR-II showed marked loss of staining in A/J tumors. The RNase protection assay and sequence analysis of the downstream signaling molecule Smad3 revealed no carcinogen-induced alterations in either strain. To gain further insight into the functionality of the pathway, expression of TGF-beta, TGF-beta type I receptor (TbetaR-I), and several downstream targets of TGF-beta signaling, including Smad7, c-myc, and p15, was examined. Although no alterations in TGF-beta, TbetaR-I, or Smad7 were found in tumors, a significant increase in c-myc expression (2.5-fold, P < 0.05 ) and a significant decrease in p15 expression (4.5-fold, P < 0.05 ) were noted. Concomitant repression of TbetaR-II and overexpression of c-myc may render epithelial cells insensitive to TGF-beta-mediated growth arrest, a possibility that also is suggested by this model. The significant decrease in p15 expression in tumors provides additional evidence that TGF-beta signaling may be markedly attenuated during colon tumorigenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号