首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hao JH  Yu M  Liu FT  Newland AC  Jia L 《Cancer research》2004,64(10):3607-3616
Previous studies have shown that the lymphoblastic leukemia CEM cell line is resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis because of a low expression of caspase-8. Bcl-2 inhibitors, BH3I-2' and HA14-1, are small cell-permeable nonpeptide compounds, are able to induce apoptosis by mediating cytochrome c release, and also lead to dissipation of the mitochondrial membrane potential (DeltaPsim). This study aimed to use the Bcl-2 inhibitors to sensitize CEM cells to TRAIL-induced apoptosis by switching on the mitochondrial apoptotic pathway. We found that a low dose of BH3I-2' or HA14-1, which did not induce cytochrome c release, greatly sensitized CEM cells to TRAIL-induced apoptosis. In a similar manner to the classical uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), both BH3I-2' and HA14-1 induced a reduction in DeltaPsim, a generation of reactive oxygen species (ROS), an increased mitochondrial respiration, and a decreased ATP synthesis. This uncoupling function of the Bcl-2 inhibitors was responsible for the synergy with TRAIL-induced apoptosis. CCCP per se did not induce apoptosis but again sensitized CEM cells to TRAIL-induced apoptosis by uncoupling mitochondrial respiration. The uncoupling effect facilitated TRAIL-induced Bax conformational change and cytochrome c release from mitochondria. Inhibition of caspases failed to block TRAIL-mediated cell death when mitochondrial respiration was uncoupled. We observed that BH3I-2', HA14-1, or CCCP can overcome resistance to TRAIL-induced apoptosis in TRAIL-resistant cell lines, such as CEM, HL-60, and U937. Our results suggest that the uncoupling of mitochondrial respiration can sensitize leukemic cells to TRAIL-induced apoptosis. However, caspase activation per se does not represent an irreversible point of commitment to TRAIL-induced cell death when mitochondrial respiration is uncoupled.  相似文献   

2.
The role of Bcl-2 in TRAIL-induced apoptosis has been investigated in lymphoid cells. Here we show that the human prostatic carcinoma cell line PC3 was sensitive to TRAIL treatment whereas PC3 overexpressing of Bcl-2 was resistant. TRAIL receptors ligation in PC3 activated caspases -2, -3, -7, -8, and -9, induced Bid processing, dissipation of mitochondrial transmembrane potential (Delta Psi(m)), and cytochrome c release. We have detected caspases -8 and -3 only in the cytosolic fraction of cells, but caspases -2, -7, and -9 were found both in cytosolic and mitochondrial fractions. Bcl-2 overexpression did not affect caspase-8 activation although it did change the processing pattern of caspase-3. At the same time, Bcl-2 overexpression inhibited the activation of mitochondrial localized caspases -2, -7, and -9. Bcl-2 also abrogated TRAIL-induced cytochrome c release and dissipation of Delta Psi(m). These findings suggest that TRAIL-induced apoptosis in the epithelial cell line PC3 depends both on mitochondrial integrity and caspase activation.  相似文献   

3.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to have selective antitumor activity. TRAIL induces ubiquitous pathways of cell death in which caspase activation is mediated either directly or via the release of apoptogenic factors from mitochondria; however, the precise components of the mitochondrial signaling pathway have not been well defined. Notably, mitochondria constitute an important target in overcoming resistance to TRAIL in many types of tumors. Bid is considered to be fundamental in engaging mitochondria during death receptor-mediated apoptosis, but this action is dependent on mitochondrial lipids. Here, we report that TRAIL signaling induces an alteration in mitochondrial membrane lipids, particularly cardiolipin. This occurs independently of caspase activation and primes mitochondrial membranes to the proapoptotic action of Bid. We unveil a link between TRAIL signaling and alteration of membrane lipid homeostasis that occurs in parallel to apical caspase activation but does not take over the mode of cell death because of the concurrent activation of caspase-8. In particular, TRAIL-induced alteration of mitochondrial lipids follows an imbalance in the cellular homeostasis of phosphatidylcholine, which results in an elevation in diacylglycerol (DAG). Elevated DAG in turn activates the delta isoform of phospholipid-dependent serine/threonine protein kinase C, which then accelerates the cleavage of caspase-8. We also show that preservation of phosphatidylcholine homeostasis by inhibition of lipid-degrading enzymes almost completely impedes the activation of pro-caspase-9 while scarcely changing the activation of caspase-8.  相似文献   

4.
Signaling pathways involved in survival responses may attenuate the apoptotic response to the cytotoxic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in human colon carcinomas. In six lines examined, three were sensitive (GC(3)/c1, VRC(5)/c1, HCT116), HT29 demonstrated intermediate sensitivity, and RKO and HCT8 were resistant to TRAIL-induced apoptosis. Calphostin c [an inhibitor of classic and novel isoforms of protein kinase C (PKC)] sensitized five of six cell lines to TRAIL, whereas Go6976, (inhibitor of classic PKC isoforms), did not influence TRAIL sensitivity. Rottlerin, an inhibitor of novel isoforms of PKC, specifically PKC delta, sensitized five of six cell lines to TRAIL-induced apoptosis, suggesting that PKC delta may be involved in the mechanism of TRAIL resistance. Transfection of HCT116 with a proapoptotic cleaved fragment of PKC delta or an antiapoptotic full-length PKC delta did not influence the sensitivity of HCT116 to TRAIL. Furthermore, the incubation of HCT116 or RKO with phorbol myristate acetate for 16 h, which down-regulated the expression of novel PKC isoforms, also did not influence sensitivity to TRAIL either in the absence or presence of rottlerin. However, after 15-min incubation with rottlerin, mitochondrial membrane potential (Delta psi m) was dramatically reduced in RKO cells, and, in cells subsequently treated with TRAIL, rapid apoptosis was evident within 8 h. Calphostin c, but not Go6976, also caused a decrease in Delta psi m. In RKO, rottlerin induced the release of cytochrome c, HtrA2/Omi, Smac/DIABLO, and AIF from the mitochondria, potentiated in combination with TRAIL, with concomitant caspase activation and down-regulation of XIAP. In HT29, the release of proapoptotic factors was demonstrated only when rottlerin and TRAIL were combined, and Bcl-2 overexpression inhibited this release and the induction of apoptosis. TRAIL-induced apoptosis was not influenced by rottlerin or Bcl-2 overexpression in type I (GC(3)/c1) cells. Data suggest that rottlerin affects mitochondrial function independent of PKC delta, thereby sensitizing cells to TRAIL, and that mitochondria constitute an important target in overcoming inherent resistance to TRAIL in colon carcinomas.  相似文献   

5.
Resistance to apoptosis is a hallmark of pancreatic cancer, a leading cause of cancer deaths. Therefore, novel strategies are required to target apoptosis resistance. Here, we report that the combination of X-linked inhibitor of apoptosis (XIAP) inhibition and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an effective approach to trigger apoptosis despite Bcl-2 overexpression and to suppress pancreatic cancer growth in vitro and in vivo. Knockdown of XIAP by RNA interference cooperates with TRAIL to induce caspase activation, loss of mitochondrial membrane potential, cytochrome c release, and apoptosis in pancreatic carcinoma cells. Loss of mitochondrial membrane potential and cytochrome c release are extensively inhibited by a broad range or caspase-3 selective caspase inhibitor and by RNAi-mediated silencing of caspase-3, indicating that XIAP inhibition enhances TRAIL-induced mitochondrial damage in a caspase-3-dependent manner. XIAP inhibition combined with TRAIL even breaks Bcl-2-imposed resistance by converting type II cells that depend on the mitochondrial contribution to the death receptor pathway to type I cells in which TRAIL-induced activation of caspase-3 and caspase-9 and apoptosis proceeds irrespective of high Bcl-2 levels. Most importantly, XIAP inhibition potentiates TRAIL-induced antitumor activity in two preclinical models of pancreatic cancer in vivo. In the chicken chorioallantoic membrane model, XIAP inhibition significantly enhances TRAIL-mediated apoptosis and suppression of tumor growth. In a tumor regression model in xenograft-bearing mice, XIAP inhibition acts in concert with TRAIL to cause even regression of established pancreatic carcinoma. Thus, this combination of XIAP inhibition plus TRAIL is a promising strategy to overcome apoptosis resistance of pancreatic cancer that warrants further investigation.  相似文献   

6.
TRAIL is a TNF family member that engages apoptosis via recruitment and rapid activation of caspase-8. Oxygen-free radicals, more generally known as reactive oxygen species (ROS) are well recognized for playing an important role in the regulation of tumor cell apoptosis. ROS within the cells act as secondary messengers in intracellular signalling cascades therefore function as anti-tumorigenic species. But very little is known about the effect of ROS on TRAIL-induced apoptosis. In this study we investigated the effect of CCCP, a classic uncoupler of oxidative phosphorylation, on TRAIL-induced apoptosis in TRAIL-resistant MCF-7 cells. It was found that pretreatment with CCCP for 6 h and then treatment with TRAIL for additional 3 h markedly enhanced apoptosis by 2-fold as compared with TRAIL alone. The uncoupling effect enhanced TRAIL-induced apoptosis by ROS generation. Moreover, CCCP treatment also reduced mitochondrial transmembrane potential (MTP, Delta Psi m) and induced Bax translocation to the mitochondria of its own account. This sensitization was inhibited with N-acetyl-L-cysteine (NAC) treatment by abrogating the ROS which was generated by the combined treatment of CCCP and TRAIL. Of interest, NAC also inhibited reduction of the Delta Psi m and Bax translocation after CCCP pretreatment which suggest that the generation of ROS may precede the loss in MTP. Thus, we demonstrated that CCCP-induced ROS generation enhanced TRAIL induced apoptosis by regulation of Bax translocation and mitochondrial transmembrane potential. The enhancing effect by CCCP-induced ROS generation was restored after NAC treatment. Therefore, our results suggest that uncoupling the cells by CCCP can overcome the resistance to TRAIL protein and can be a very efficient treatment for the tumor cells especially resistant to TRAIL-induced apoptosis.  相似文献   

7.
Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression   总被引:17,自引:0,他引:17  
Fulda S  Meyer E  Debatin KM 《Oncogene》2002,21(15):2283-2294
Primary or acquired resistance to current treatment protocols remains a major concern in clinical oncology and may be caused by defects in apoptosis programs. Since recent data suggest that TRAIL can bypass apoptosis resistance caused by Bcl-2, we further investigated the role of Bcl-2 in TRAIL-induced apoptosis. Here we report that overexpression of Bcl-2 conferred protection against TRAIL in neuroblastoma, glioblastoma or breast carcinoma cell lines. Bcl-2 overexpression reduced TRAIL-induced cleavage of caspase-8 and Bid indicating that caspase-8 was activated upstream and also downstream of mitochondria in a feedback amplification loop. Importantly, Bcl-2 blocked cleavage of caspases-9, -7 and -3 into active subunits and cleavage of the caspase substrates DFF45 or PARP. Also, Bcl-2 blocked cleavage of XIAP and overexpression of XIAP conferred resistance against TRAIL indicating that apoptosis was also amplified through a feedforward loop between caspases and XIAP. In contrast, in SKW lymphoblastoid cells, TRAIL-induced activation of caspase-8 directly translated into full activation of caspases, cleavage of XIAP, DFF45 or PARP and apoptosis independent of Bcl-2 overexpression, although Bcl-2 similarly inhibited loss of mitochondrial membrane potential and the release of cytochrome c, AIF and Smac from mitochondria in all cell types. By demonstrating a cell type dependent regulation of the TRAIL signaling pathway at different level, e.g. by Bcl-2 and by XIAP, these findings may have important clinical implication. Thus, strategies targeting the molecular basis of resistance towards TRAIL may be necessary in some tumors for cancer therapy with TRAIL.  相似文献   

8.
Death receptor-induced apoptosis is paradigmatically mediated via the recruitment of FADD adapter molecule to the ligand/receptor complex and subsequent activation of caspase-8. However, several observations provided evidence that components of the mitochondrial apoptosis pathway are involved in death receptor-mediated apoptosis. In this regard, caspase-8-mediated activation of Bid induces the release of cytochrome c from the mitochondria, which, in turn, triggers the formation of the apoptosome protein complex, resulting in the activation of caspase-9. Whereas Bax or Bak were shown to be required for the proapoptotic effect of Bid, Bcl-2 was described to interfere with its action. Up to now, contradictory results regarding the role of Bcl-2 in TRAIL-induced apoptosis have been published. In order to study the influence of Bcl-2 on TRAIL-induced cell death more detailed, we utilized a tetracycline-regulated Bcl-2 expression system in Jurkat T cells. After having analysed the dose response for TRAIL-induced activation of caspase-8, -9, -3, breakdown of the mitochondrial membrane potential, and changes in the apoptotic morphology in cells expressing different Bcl-2 levels, we conclude that overexpression of Bcl-2 mediates a partial resistance towards lower doses of TRAIL that can be overcome when higher doses of TRAIL are applied. Thus, the requirement of the mitochondrial pathway for death receptor-induced apoptosis in type II cells should be reconsidered, since the protective effect of Bcl-2 is limited to lower TRAIL doses or early observation time points.  相似文献   

9.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor family and has recently been shown to exert tumoricidal activity in vivo in the absence of any observable toxicity. The signaling pathways triggered by TRAIL stimulation and the mechanisms involved in resistance against TRAIL-mediated apoptosis are still poorly defined. We show here that TRAIL-induced apoptosis involves late dissipation of mitochondrial membrane potential (delta psi(m)) and cytochrome c release. These events follow activation of caspase-8 and caspase-3 and induction of DNA fragmentation. In addition, caspase-8-deficient cells are resistant against TRAIL-induced apoptosis, and inhibition of caspase-8 but not caspase-9 prevents mitochondrial permeability transition and apoptosis. In contrast, various Bcl-2- or Bcl-xL-overexpressing tumor cell lines are sensitive to TRAIL-induced apoptosis; however, they show a delay in TRAIL-induced mitochondrial permeability transition compared with control transfectants. This indicates that TRAIL-induced apoptosis depends on caspase-8 activation rather than on the disruption of mitochondrial integrity. Because most chemotherapeutic drugs used in the treatment of malignancies lead to apoptosis primarily by engagement of the mitochondrial proapoptotic machinery, we tested whether drug-resistant tumor cells retain sensitivity for TRAIL-induced apoptosis. Tumor cells overexpressing Bcl-2 or Bcl-xL become resistant to apoptosis induced by the chemotherapeutic drug etoposide. However, these cells are not protected or are only marginally protected against TRAIL-induced apoptosis. Thus, TRAIL may still kill tumors that have acquired resistance to chemotherapeutic drugs by overexpression of Bcl-2 or Bcl-xL. These data will influence future treatment strategies involving TRAIL.  相似文献   

10.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis via the death receptors DR4 and DR5 in transformed cells in vitro and exhibits potent antitumor activity in vivo with minor side effects. Protein kinase casein kinase II (CK2) is increased in response to diverse growth stimuli and is aberrantly elevated in a variety of human cancers. Rhabdomyosarcoma tumors are the most common soft-tissue sarcoma in childhood. In this investigation, we demonstrate that CK2 is a key survival factor that protects tumor cells from TRAIL-induced apoptosis. We have demonstrated that inhibition of CK2 phosphorylation events by 5,6-dichlorobenzimidazole (DRB) resulted in dramatic sensitization of tumor cells to TRAIL-induced apoptosis. CK2 inhibition also induced rapid cleavage of caspase-8, -9, and -3, as well as the caspase substrate poly(ADP-ribose) polymerase after TRAIL treatment. Overexpression of Bcl-2 protected cells from TRAIL-induced apoptosis in the presence of the CK2 inhibitor. Death signaling by TRAIL in these cells was Fas-associated death domain and caspase dependent because dominant negative Fas-associated death domain or the cowpox interleukin 1beta-converting enzyme inhibitor protein cytokine response modifier A prevented apoptosis in the presence of DRB. Analysis of death-inducing signaling complex (DISC) formation demonstrated that inhibition of CK2 by DRB increased the level of recruitment of procaspase-8 to the DISC and enhanced caspase-8-mediated cleavage of Bid, thereby increasing the release of the proapoptotic factors cytochrome c, HtrA2/Omi, Smac/DIABLO, and apoptosis inducing factor (AIF) from the mitochondria, with subsequent degradation of X-linked inhibitor of apoptosis protein (XIAP). To further interfere with CK2 function, JR1 and Rh30 cells were transfected with either short hairpin RNA targeted to CK2alpha or kinase-inactive CK2alpha (K68M) or CK2alpha' (K69M). Data show that the CK2 kinase activity was abrogated and that TRAIL sensitivity in both cell lines was increased. Silencing of CK2alpha expression with short hairpin RNA was also associated with degradation of XIAP. These findings suggest that CK2 regulates TRAIL signaling in rhabdomyosarcoma by modulating TRAIL-induced DISC formation and XIAP expression.  相似文献   

11.
We studied the role of the mitogen-activated protein kinase (MAPK) pathway in the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in breast tumor MCF-7 cells. We found that addition of a protein kinase C (PKC) activator to MCF-7 cultures prevented TRAIL-induced apoptosis, by inhibiting a step downstream of both caspase-8 activation and BID cleavage. TRAIL-induced translocation of Bax from cytosol to mitochondria, release of cytochrome c from mitochondria and activation of caspase-9 were all inhibited by PKC activation. PKC-mediated prevention of mitochondrial apoptotic events and apoptosis was found to be dependent on the MAPK pathway. Since TRAIL is a ligand of potential use in antineoplastic clinical trials, our findings may provide relevant information in cancer therapy.  相似文献   

12.
PURPOSE: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that induces apoptosis in multiple tumor cell types while sparing most normal cells. We determined the effect of ectopic Bcl-2 expression on TRAIL-induced apoptosis and whether the small molecule Bcl-2 inhibitor, HA14-1, could increase TRAIL sensitivity. EXPERIMENTAL DESIGN: SW480 human colon cancer cells were stably transfected with the PC3-Bcl-2 plasmid or vector alone. Cells were incubated with recombinant human TRAIL +/- HA14-1 or caspase-9 inhibitor (Z-LEHD-FMK). Apoptosis was analyzed by Annexin V-fluorescein isothiocyanate labeling and DNA fragmentation factor 45 (DFF45) cleavage. Clonigenic survival was also studied. Caspase activation was determined by immunoblotting or colorimetric assay. The cytosolic expression of Bid, Bax, and XIAP and release of cytochrome c and Smac/DIABLO were determined by immunoblotting. RESULTS: Bcl-2 overexpression partially protected SW480 cells from a dose-dependent induction of apoptosis by TRAIL, as did a caspase-9 inhibitor, and increased their clonogenic survival. Bcl-2 overexpression attenuated TRAIL-induced cleavage of caspase-8, indicating its activation upstream and downstream of mitochondria, as well as cleavage of Bid and caspase-3. Bcl-2 inhibited TRAIL-induced Bax translocation, cytosolic release of cytochrome c and Smac/DIABLO, and the downstream cleavage of XIAP and DFF45. Coadministration of HA14-1 and TRAIL increased apoptosis in SW480/Bcl-2 cells by restoring Bax redistribution and cytochrome c release. CONCLUSIONS: Bcl-2 confers apoptosis resistance to TRAIL by inhibiting a mitochondrial amplification step and by inactivating downstream XIAP in SW480 cells. HA14-1 reversed Bcl-2-mediated TRAIL resistance, suggesting a novel strategy for increasing TRAIL sensitivity in Bcl-2-overexpressing colon cancers.  相似文献   

13.
We investigated the cytotoxic responsiveness of 40 cell lines derived from representatives of the Ewing's sarcoma family of tumours (ESFT), i.e., Ewing's sarcoma (ES), peripheral primitive neuroectodermal tumour (pPNET) and Askin tumour (AT), to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Incubation with TRAIL at 100 ng/ml induced cell death at 24 hr in 19 of 26 ES, 11 of 12 pPNET and 2 of 2 AT cell lines. Half-maximal cell death concentrations (IC(50) values) varied from 0.1 to 20 ng/ml. TRAIL displayed potent cytotoxic activity against freshly derived ESFT cell isolates. Cytotoxicity was associated with phosphatidylserine expression and internucleosomal DNA fragmentation, features characteristic of apoptosis. The apoptotic programme in the sensitive ESFT VH-64 cell line revealed TRAIL-induced activation of FLICE/MACH1 (caspase-8) and CPP32/Yama/apopain (caspase-3) and processing of the prototype caspase substrate poly(ADP-ribose) polymerase. In addition, TRAIL provoked a collapse of the mitochondrial transmembrane potential (DeltaPsi(m)), parallelled by a reduction in ATP levels and release of cytochrome c from mitochondria into the cytosol. Inhibition of caspase-8 and caspase-3 by zIETDfmk and zDEVDfmk, respectively, substantially prevented TRAIL-induced apoptosis. However, zIETDfmk, but not zDEVDfmk, reduced TRAIL-mediated DeltaPsi(m) dissipation, indicating that TRAIL causes mitochondrial dysfunction through caspase-8 acting upstream of mitochondria. While macromolecule synthesis inhibitors (actinomycin D, cycloheximide) augmented susceptibility to TRAIL in TRAIL-responsive cell lines, these agents did not render TRAIL-resistant cell lines susceptible to TRAIL. However, the proteasome inhibitor MG132 sensitised to TRAIL in resistant cell lines. Collectively, these results show that TRAIL initiates effective death in the vast majority (80%) of cell lines derived from ESFT. Since TRAIL provoked cell death in ESFT ex vivo, this cytokine may be a promising drug for the treatment of ESFT in vivo.  相似文献   

14.
Protein kinase casein kinase II (CK2) is increased in response to diverse growth stimuli, as well as being elevated in many human cancers examined. We have demonstrated that CK2 is a key survival factor that protects human colon carcinoma cells from TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. We determined that inhibition of CK2 phosphorylation events by DRB (5,6-dichlorobenzimidazole) resulted in dramatic sensitization of tumor cells to TRAIL-induced apoptosis, in the absence of effects in normal cells. Sensitization was caspase dependent, and independent of regulation via NF-kappaB. Further, inhibition of phosphorylation by CK2 did not modify the expression level of antiapoptotic proteins. Analysis of TRAIL-induced death-inducing signaling complex (DISC) formation demonstrated enhanced formation of the DISC, enhanced cleavage of caspase-8 and cleavage of Bid in the presence of DRB, thereby facilitating the release of proapoptotic factors from the mitochondria with subsequent downregulation of the expression of XIAP and c-IAP1. Further, silencing of CK2alpha in HT29 cells following transfection of CK2alpha shRNA abrogated CK2 kinase activity while simultaneously increasing TRAIL sensitivity. These findings demonstrate that CK2 plays a critical antiapoptotic role by conferring resistance to TRAIL at the level of the DISC.  相似文献   

15.
Rosato RR  Almenara JA  Coe S  Grant S 《Cancer research》2007,67(19):9490-9500
Interactions between the multikinase inhibitor sorafenib and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were examined in malignant hematopoietic cells. Pretreatment (24 h) of U937 leukemia cells with 7.5 micromol/L sorafenib dramatically increased apoptosis induced by sublethal concentrations of TRAIL/Apo2L (75 ng/mL). Similar interactions were observed in Raji, Jurkat, Karpas, K562, U266 cells, primary acute myelogenous leukemia blasts, but not in normal CD34+ bone marrow cells. Sorafenib/TRAIL-induced cell death was accompanied by mitochondrial injury and release of cytochrome c, Smac, and AIF into the cytosol and caspase-9, caspase-3, caspase-7, and caspase-8 activation. Sorafenib pretreatment down-regulated Bcl-xL and abrogated Mcl-1 expression, whereas addition of TRAIL sharply increased Bid activation, conformational change of Bak (ccBak) and Bax (ccBax), and Bax translocation. Ectopic Mcl-1 expression significantly attenuated sorafenib/TRAIL-mediated lethality and dramatically reduced ccBak while minimally affecting levels of ccBax. Similarly, inhibition of the receptor-mediated apoptotic cascade with a caspase-8 dominant-negative mutant significantly blocked sorafenib/TRAIL-induced lethality but not Mcl-1 down-regulation or Bak/Bax conformational change, indicating that TRAIL-mediated receptor pathway activation is required for maximal lethality. Sorafenib/TRAIL did not increase expression of DR4/DR5, or recruitment of procaspase-8 or FADD to the death-inducing signaling complex (DISC), but strikingly increased DISC-associated procaspase-8 activation. Sorafenib also down-regulated cFLIP(L), most likely through a translational mechanism, in association with diminished eIF4E phosphorylation, whereas ectopic expression of cFLIP(L) significantly reduced sorafenib/TRAIL lethality. Together, these results suggest that in human leukemia cells, sorafenib potentiates TRAIL-induced lethality by down-regulating Mcl-1 and cFLIP(L), events that cooperate to engage the intrinsic and extrinsic apoptotic cascades, culminating in pronounced mitochondrial injury and apoptosis.  相似文献   

16.
Zhang XD  Borrow JM  Zhang XY  Nguyen T  Hersey P 《Oncogene》2003,22(19):2869-2881
We have previously shown that Smac/DIABLO release from mitochondria appears to be the principal pathway by which TRAIL induces apoptosis of human melanoma. We report that TRAIL-induced release of Smac/DIABLO appears to be downregulated by concomitant signaling through the MEK Erk1/2 kinase pathway and that this inhibits TRAIL-induced apoptosis. Inhibition of Erk1/2 signaling by either the MEK inhibitor U0126 or a dominant-negative mutant of MKK1 markedly sensitized melanoma cells to TRAIL-induced apoptosis. The site in the apoptotic pathway acted on by U0126 appeared to be downstream of caspase-8 and Bid but upstream of caspase-3 in that the levels of proteolytic cleavage of caspase-8 and Bid by TRAIL were similar in cells with or without exposure to U0126. Caspase-3 activation and cleavage of its substrates, PARP, ICAD and XIAP, were however increased by cotreatment with U0126. This was associated with a rapid reduction in mitochondrial transmembrane potential (MMP) and increased release of Smac/DIABLO into the cytosol. Exploration of events leading to the changes in MMP revealed an increased translocation of Bax from the cytosol to mitochondria in the presence of U0126. There was also a delayed decrease in the levels of expression of Mcl-1. Bcl-2 and Bcl-X(L). Over expression of Bcl-2 blocked TRAIL-induced apoptosis in the presence of U0126. Cytochrome c appeared not to play a major role in sensitization of melanoma to TRAIL in that caspase-9 activation was not detected in most of the cell lines. These results suggest that Erk1/2 signaling may protect melanoma cells against TRAIL-induced apoptosis by inhibiting the relocation of Bax from the cytosol to mitochondria and that this may reduce TRAIL-mediated release of Smac/DIABLO and induction of apoptosis.  相似文献   

17.
Suliman A  Lam A  Datta R  Srivastava RK 《Oncogene》2001,20(17):2122-2133
Tumor necrosis (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family of cytokines that promotes apoptosis. TRAIL induces apoptosis via death receptors (DR4 and DR5) in a wide variety of tumor cells but not in normal cells. The objectives of this study are to investigate the intracellular mechanisms by which TRAIL induces apoptosis. The death receptor Fas, upon ligand binding, trimerizes and recruits the adaptor protein FADD through the cytoplasmic death domain of Fas. FADD then binds and activates procaspase-8. It is unclear whether FADD is required for TRAIL-induced apoptosis. Here we show that the signaling complex of DR4/DR5 is assembled in response to TRAIL binding. FADD and caspase-8, but not caspase-10, are recruited to the receptor, and cells deficient in either FADD or caspase-8 blocked TRAIL-induced apoptosis. In addition, TRAIL initiates the activation of caspases, the loss of mitochondrial transmembrane potential (Deltapsi(m)), the cleavage of BID, and the redistribution of mitochondrial cytochrome c. Treatment of Jurkat cells with cyclosporin A delayed TRAIL-induced Deltapsi(m), caspase-3 activation and apoptosis. Similarly, Overexpression of Bcl-2 or Bcl-X(L) delayed, but did not inhibit, TRAIL-induced Deltapsi(m) and apoptosis. In contrast, XIAP, cowpox virus CrmA and baculovirus p35 inhibited TRAIL-induced apoptosis. These data suggest that death receptors (DR4 and DR5) and Fas receptors induced apoptosis through identical signaling pathway, and TRAIL-induced apoptosis via both mitochondrial-dependent and -independent pathways.  相似文献   

18.
Zou W  Liu X  Yue P  Zhou Z  Sporn MB  Lotan R  Khuri FR  Sun SY 《Cancer research》2004,64(20):7570-7578
Death receptor (DR) 4 or 5, on binding to its ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), triggers apoptosis via activating the caspase-8-mediated caspase cascade. Certain anticancer drugs up-regulate the expression of these receptors and thereby induce apoptosis or enhance TRAIL-induced apoptosis. In this study, we explored the ability of methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me) to activate the extrinsic DR-mediated apoptotic pathway in human lung cancer cells. We found that CDDO-Me not only activated caspase-8 but also induced expression of DRs, particularly DR5, in a p53-independent mechanism. Correspondingly, CDDO-Me augmented TRAIL-induced apoptosis in these cells regardless of p53 status as evidenced by enhanced DNA fragmentation and activation of caspase cascades, suggesting that CDDO-Me-induced DRs are functionally active. Moreover, silencing of DR5 expression using small interfering RNA suppressed apoptosis induced by CDDO-Me alone or by combination of CDDO-Me and TRAIL, indicating that DR5 up-regulation is required for induction of apoptosis by CDDO-Me and for enhancement of TRAIL-induced apoptosis by CDDO-Me. CDDO-Me rapidly activated c-Jun NH(2)-terminal kinase (JNK) before DR up-regulation and caspase-8 activation. Moreover, application of the JNK-specific inhibitor SP600125 blocked CDDO-Me-induced increases in JNK activation, DR up-regulation, caspase-8 activation, and DNA fragmentation. These results show that activation of JNK pathway results in CDDO-Me-induced DR up-regulation, caspase-8 activation, and apoptosis. Collectively, we conclude that CDDO-Me induces apoptosis via the JNK-mediated DR up-regulation in human lung cancer cells.  相似文献   

19.
20.
Because tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively kills tumor cells, it is being tested in cancer patients. Unfortunately, patients develop resistance to the cytokine, therefore, agents that can sensitize cells to TRAIL are urgently needed. In this study, we investigated whether dibenzylideneacetone (DBA) can sensitize cancer cells to TRAIL and potentiates TRAIL-induced apoptosis. As indicated by accumulation of the membrane phospholipid phosphatidylserine, DNA breaks, intracellular esterase activity, and activation of caspase-8, -9, and -3, we concluded that DBA potentiated TRAIL-induced apoptosis in colon cancer cells. DBA also converted TRAIL resistant-cells to TRAIL-sensitive. When examined for the mechanism, we found that DBA decreased the expression of antiapoptotic proteins and decoy receptor-2 and increased proapoptotic proteins. DBA also induced both death receptor (DR)-5 and DR4. Knockdown of DR5 and DR4 by small interfering RNA (SiRNA) reduced the sensitizing effect of DBA on TRAIL-induced apoptosis. In addition, DBA increased the expression of CHOP proteins. Knockdown of CHOP by siRNA decreased the induction of DBA-induced DR5 expression and apoptosis. Induction of receptors by DBA, however, was p53-independent, as deletion of p53 had no effect on receptor induction. We observed that DBA-induced induction of DR5 and DR4 was mediated through generation of reactive oxygen species (ROS), as N-acetylcysteine blocked the induction of death receptors and suppression of cell survival proteins by DBA. Overall, our results show that DBA potentiates TRAIL-induced apoptosis through downregulation of cell survival proteins and upregulation of death receptors via activation of ROS and CHOP mediated pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号