首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Summary We have previously reported that electrical stimulation in LC or NRM when tested on the activity of a multireceptive neurone in the spinal cord produced similar inhibitory actions. The present study aimed to define the pathways that mediate this descending inhibitory action in the spinal cord by pharmacological means and by making surgical lesions in the spinal cord or NRM. Attempts to differentiate pathways pharmacologically did not succeed since the i.v. administration of the 5-HT antagonists, methysergide and cinnanserin failed to antagonise descending inhibition evoked from either NRM or LC. Lesions involving a part or whole of the ipsilateral ventral quadrant reduced the inhibition produced from LC to a greater extent than that from NRM in 24 multireceptive neurones. In seven of these neurones stimulation in LC was without any effect after the lesion. In 23 multireceptive neurones recorded after making lesions that spared the ipsilateral ventral quadrant the effects of LC stimulation were unchanged. NRM effectiveness was reduced by an ipsilateral dorsolateral funiculus (DLF) lesion but required a bilateral DLF lesion for an almost complete abolition. Similar results were obtained when the effect of the various lesions were studied on the dorsal root potentials (DRPs) generated from LC or NRM. Lesions in the midline raphe complex, that included NRM, did not block the inhibitory action of LC stimulation. The inhibition produced from both these nuclei was additive whereas excitation was not. We conclude that LC actions in the spinal cord are mediated primarily through a pathway in the ipsilateral ventral quadrant whereas those from NRM are mediated through bilateral projections in DLF. Furthermore, although NRM plays no part in mediating LC actions and separate and independent pathways mediate their spinal action yet these apparently independent pathways have plenty of scope for interaction in the dorsal horn of the spinal cord itself.  相似文献   

2.
Summary The effects of electrical stimulation in the nuclei locus coeruleus (LC) and raphe magnus (NRM) were examined on the background and/or evoked discharge of neurones in the spinal dorsal horn of anaesthetized cats. These were qualitatively, and in most cases quantitatively similar, in their action on multireceptive neurones. In these neurones an inhibitory action on the discharge evoked by noxious cutaneous stimuli or by activation of A and C fibres was most prominent although in some neurones (22%) an initial excitation lasting up to 100 ms preceded the inhibition which could last up to 1 s. Excitation alone was observed in only 3% of multireceptive neurones. Electrical stimulation also produced an inhibitory action on the discharge of low threshold mechanoreceptive neurones (80%). In four of ten multireceptive neurones examined in detail, LC stimulation produced a selective inhibitory action on the discharge evoked by noxious cutaneous stimuli. In the remaining six multireceptive neurones it was partially selective against noxious as compared with non-noxious inputs. The inhibitory action was also more pronounced on the discharge evoked by activity in A and C fibres than fast conducting afferents. The inhibitory action evoked by electrical stimulation in LC on nociceptive transmission in the spinal cord is suggested to play a part in mediating analgesia from LC.Abbreviation for Structures 6 Abducens nucleus - BC Brachium Conjunctivum - BP Brachium Pontis Dorsal Nucleus of Raphe - DRM Medial division - TD Dorsal Tegmental nucleus - 7L Facial Nucleus lateral division - 7M Facial Nucleus medial Division - V4 Fourth ventricle - 7G Genu of the Facial Nerve - IC Inferior Colliculus - SOL, SOM Lateral, Medial Nucleus of Superior Olive - BCM Marginal Nucleus of the Brachium conjunctivum - 5ME Mesencephalic trigeminal nucleus - 5M Motor Trigeminal Nucleus - LC Nucleus locus coeruleus - PH Nucleus praepositus hypoglossi - NRM Nucleus Raphe Magnus - P Pyramidal tract - PPR Postpyramidal Nucleus of the Raphe - SC Subcoeruleus - CS Superior Central Nucleus - TB trapezoid body  相似文献   

3.
Summary Electrophysiological properties of neurones in the spinal cord dorsal horn were studied in decerebrated, immobilized spinal rats. Extracellular recordings were performed at the thoraco-lumbar junction level. Each track was systematically located by extracellular injection of pontamine sky blue. According to their responses to mechanical peripheral stimuli, cells were classified in four classes: Class 1 cells: Cells activated only by nonnoxious stimuli. They were divided into — 1A: hair movement and/or touch and 1B: hair movement and/or touch and pressure or pressure only. Class 2 cells: Cells driven by both nonnoxious and noxious stimuli, divided into — 2A: hair movement and/or touch, pressure, pinch and/or pin-prick, and 2B: pressure, pinch and/or pin-prick. Class 3 cells: Cells only activated by noxious stimuli (pinch and/or pin-prick). Class 4 cells: Cells responding to joint movement or pressure on deep tissues.Peripheral transcutaneous or sural nerve stimulation clearly showed that class 1 cells were activated only by A fiber input while 68% of classes 2 and 3 cells received A and C input. Histological examination indicated that cells driven only by noxious input were located either in the deepest part or in the marginal zone (lamina I) of the dorsal horn. Nevertheless, some lamina I cells were also driven by both nonnoxious and noxious stimuli. In addition, there is a great deal of overlap between class 1 and class 2 cells. This fact was confirmed by considering the wide distribution in the dorsal horn of cells receiving A and C input. However, spinal organization of the different classes of cells consists of a preferential distribution rather than a strict lamination. This study indicates that properties of dorsal horn interneurones in the rat have a high degree of similarity with those previously described in other species (cat and monkey).This work was supported by the C.N.R.S. (E.R.A. 237).  相似文献   

4.
The present study was undertaken to investigate whether isoforms of c-Jun N-terminal kinase (JNK 46 kDa and 54 kDa), one component of the mitogen-activated protein kinase (MAPK) family, might show region-related differential activation patterns in both naïve and pain-experiencing rats. In naïve rats, no significant difference was observed in total expression level of the two JNK isoforms between spinal cord and primary somatosensory cortex (S1 area). However, phosphorylated JNK 46 kDa was normally expressed in the S1 area, but not in the spinal cord, while neither of the two structures contained phosphorylated JNK 54 kDa. Subcutaneous bee venom (BV)-induced persistent pain stimulation resulted in a significant increase in the phosphorylation of both JNK isoforms in each area for a long period (lasting at least 48 h). Nevertheless, JNK 46 kDa exhibited a much higher activation than JNK 54 kDa in the spinal cord, whereas the same noxious stimulation elicited evident activation of JNK 54 kDa in the S1 area, leaving JNK 46 kDa less affected. Intraplantar injection of sterile saline solution, causing acute and transient pain, produced almost the same changes in activation profile of the two JNK isoforms as found in the BV-treated rats. These results implicate that individual members of the JNK family may be associated with specific regions of nociceptive processing. Also, the two JNK isoforms are supposed to function differently according to their locations within the rat central nervous system.  相似文献   

5.
Summary In the present study we examined the effect of systemic tocainide on sensory hypersensitivity in rats after spinal cord ischemia induced by a photochemical technique. After induction of spinal cord ischemia the rats exhibited a sensory disturbance which was mainly expressed as vocalization to innocuous cutaneous mechanical stimuli (allodynia) in the flank area during the following several days. Tocainide at 75 mg/kg i.p., but not 50 mg/kg i.p., significantly increased the vocalization threshold to mechanical pressure for 2 h. The effect of intraarterial (i.a.) tocainide on the responses of dorsal horn wide-dynamic-range (WDR) neurons to suprathreshold electrical stimulation of their receptive fields was also examined in normal rats and after transient spinal cord ischemia, at a time when the animals exhibited typical behavioral allodynia in the dermatomes innervated by the ischemic spinal segments. In normal rats, tocainide (50 mg/kg i.a.) strongly suppressed the responses of WDR neurons to C fiber input with lesser effect on A fiber input. In allodynic rats, tocainide suppressed the augmented A and C fiber mediated responses of WDR neurons to the extent that their responses were similar to those seen in normal rats without tocainide. There was no difference in the overall depression of A and C fiber mediated input by tocainide between normal and allodynic rats. The present results demonstrated the analgesic effect of systemic tocainide in relieving allodynia in rats and indicated that systemic local anesthetics, at doses that do not block nerve conduction, can be effective in suppressing dorsal horn WDR neuronal activity. Although such drugs primarily suppress C fiber induced activity, the depression by local anesthetics of increased A fiber induced responses in allodynic conditions mediated by myelinated afferents may explain the analgesic effect of such drugs on behavior.  相似文献   

6.
7.
Extracellular recordings of neuronal activity made in the lumbosacral spinal segments of the anesthetized cat have disclosed the existence of a set of neurons in Rexed's laminae III–VI that discharged in a highly synchronized manner during the occurrence of spontaneous negative cord dorsum potentials (nCDPs) and responded to stimulation of low-threshold cutaneous fibers (<1.5×T) with mono- and polysynaptic latencies. The cross-correlation between the spontaneous discharges of pairs of synchronic neurons was highest when they were close to each other, and decreased with increasing longitudinal separation. Simultaneous recordings of nCDPs from several segments in preparations with the peripheral nerves intact have disclosed the existence of synchronized spontaneous nCDPs in segments S1–L4. These potentials lasted between 25 and 70 ms and were usually larger in segments L7–L5, where they attained amplitudes between 50 and 150 μV. The transection of the intact ipsilateral hindlimb cutaneous and muscle nerves, or the section of the dorsal columns between the L5 and L6, or between the L6 and L7 segments in preparations with already transected nerves, had very small effects on the intersegmental synchronization of the spontaneous nCDPs and on the power spectra of the cord dorsum potentials recorded in the lumbosacral enlargement. In contrast, sectioning the ipsilateral dorsal horn and the dorsolateral funiculus at these segmental levels strongly decoupled the spontaneous nCDPs generated rostrally from those generated caudally to the lesion and reduced the magnitude of the power spectra throughout the whole frequency range. These results indicate that the lumbosacral intersegmental synchronization between the spontaneous nCDPs does not require sensory inputs and is most likely mediated by intra- and intersegmental connections. It is suggested that the occurrence of spontaneous synchronized nCDPs is due to the activation of tightly coupled arrays of neurons, each comprising one or several spinal segments. This system of neurons could be involved in the modulation of the information transmitted by cutaneous and muscle afferents to functionally related, but rostrocaudally distributed spinal interneurons and motoneurons, as well as in the selection of sensory inputs during the execution of voluntary movements or during locomotion. Electronic Publication  相似文献   

8.
Summary Macaca speciosa monkeys were trained to escape electrical stimulation of either hindlimb, and they were given the alternative of witholding the response for 10 sec to receive food reward. The force, latency and threshold of escape responses were measured as a function of stimulation intensity before and after lesions of the spinal cord. The stimulus range was set so that pain was certainly evoked by some portion of the intensities above escape threshold, and it was inferred that pain reactivity was altered if the force or latency curves or both were shifted by a lesion. Ipsilateral dorsal column lesions decreased pain reactivity as revealed by higher latencies and lower forces of escape responses. Thresholds were generally unaffected. Ipsilateral lesions of the dorsolateral column produced hyperesthesia, or reduced latencies and increased forces. Thresholds were again unaffected. Contralateral lesions of the lateral column elevated thresholds, and this effect was magnified by inclusion of the dorsal columns in the lesion.Supported by Grant NS07261 from the National Institute of Neurological Diseases and Stroke, U.S. Department of Health, Education and Welfare, Bethesda, Maryland, and the Veterans Administration Hospital, Gainesville, Florida. The research described in this report involved animals maintained in animal care facilities fully accredited by the American Association for Accreditation of Laboratory Animal Care. The animal care was provided in part by N.I.H. grant FR00421. We thank Dorothy Robinson for technical assistance.During this investigation, Dr. Hamilton was supported by a postdoctoral fellowship from the Center for Neurobiological Sciences (grant MH10320 from the National Institutes of Mental Health).  相似文献   

9.
Summary ATP, the energy source for axoplasmic transport, is indispensable for the transport of nerve growth factor (NGF). NGF regulates the regeneration of central processes of the primary sensory neurons, by means of transganglionic regulatory mechanisms. This central regeneration was investigated with the help of the histochemical detection of fluoride-resistant acid phosphatase (FRAP), one of the marker enzymes of the primary nociceptive neurons. Transganglionic degenerative atrophy (TDA) of the central terminals of primary sensory neurons was induced with sciatic nerve crush. Dynamics of central regeneration was studied in rats treated with a cobalt-ATP complex, and with commercially available Na-ATP, respectively, by means of histochemical detection of the restitution of FRAP activity in the Rolando substance. Disappearance of FRAP activity was complete on the 6th postoperative day in the medial two-thirds of the upper dorsal horn in segments L2–L6. The regeneration (i.e. replenishment of FRAP activity) began on the 14th day and was complete by the 31st day in animals treated with cobalt-ATP, while in the animals treated with Na-ATP the replenishment of FRAP activity began on the 20th day and was complete only by the 60th day. It is concluded that the cobalt-ATP-complex significantly enhances central regeneration.  相似文献   

10.
Summary The morphology, background activity and responses to stimulation of primary afferent inputs of small neurones in the superficial dorsal horn which could only be excited from the skin by noxious stimulation were investigated by intracellular recording and ionophoresis of HRP. Neurones which gave similar responses to afferent stimulation were morphologically heterogeneous with respect to dendritic tree geometry and axonal projection, but were located around the lamina I/II border. Cutaneous excitatory receptive fields responding to noxious stimulation were generally small; most neurones had more extensive inhibitory fields responding to innocuous mechanical stimulation, in many cases overlapping the excitatory fields. Generally, stimulation of the excitatory field resulted in depolarization of the neurone and increased action potential firing, and stimulation of the inhibitory field resulted in hyperpolarization. Electrical stimulation of peripheral nerves revealed the existence of converging excitatory inputs carried by different fibre groups, and all neurones received an inhibitory input activated at low threshold. Excitatory responses were short-lived and occurred consistently in response to repeated stimulation. Central delay measurements gave evidence of a number of A monosynaptic inputs but only one A monosynaptic input; inhibitory inputs along A fibres were polysynaptic. The constant latency and regularity of the C response suggested monosynaptic connections. Low intensity stimulation of inhibitory inputs elicited a short-lived i.p.s.p. which increased in amplitude with increasing stimulus strength until it disappeared into a more prolonged hyperpolarization. This was associated with inhibition of background action potentials, and increased in duration with increasing stimulus strength up to C levels, indicating an A and C component. It is suggested that the level of excitability of these neurones depends on the relative amounts of concurrent noxious and innocuous stimulation, and that the resultant output, which is conveyed mainly to other neurones within the spinal cord, could modulate reflex action at the spinal level as well as affecting components of ascending sensory pathways.Supported by grant no. 11853/1.5 from the Wellcome Trust  相似文献   

11.
Literature highlights that serotonergic descending pathways are implicated in somatosensory functions in the spinal cord and that serotonin (5-HT) in the dorsal horn might play a role in motor function through proprioceptive feedback. We hypothesized that 5-HT release in dorsal horn might represent an important factor in the completion of locomotion by facilitation of the spinocerebellar tract and/or by modulation of spinal reflex pathways. The present study demonstrates that during locomotor activity, 5-HT is released in layers II, III, IV, V of Rexed. Microdialysis in combination with HPLC was used to measure concentrations of neurotransmitters in the lumbar dorsal horn before, during, and after a treadmill running exercise. Our results show a significant 41% increase of 5-HT release within the dorsal horn during the exercise. 5-HT release is temporally related to exercise. The present study demonstrates that dorsal horn 5-HT release might modulate locomotion.  相似文献   

12.
脐带间充质干细胞治疗脊髓损伤临床分析   总被引:2,自引:0,他引:2  
目的观察脐带间充质干细胞(UC-MSCs)鞘内注射治疗脊髓损伤(SCI)的临床效果及安全性。方法对2008年1月至2010年10月收治的22例SCI患者,给予UC—MSCs鞘内注射治疗,细胞数1×10^6个/(kg·次),1次/周,4次为1个疗程,其中4例接受2个疗程,1例接受3个疗程,余均接受1个疗程。采用美国脊髓损伤协会制定的脊髓损伤神经功能评分标准(ASIA标准)对患者治疗前后神经功能进行评定,采用国际神经修复学会脊髓损伤功能评价量表(IANR—SCIRFS)对患者治疗前后日常生活活动能力进行评定。结果22例患者中13例有效,9例无效。不完全性SCI患者有效率达81.25%,完全性SCI的6例患者均无效。有5例有效的患者接受了2~3个疗程治疗,疗效均有进一步的提高。有效患者多表现为运动和/或感觉功能改善,大小便控制能力增强。22例患者治疗后1个月与治疗前比较,痛觉、触觉、运动、日常生活活动能力评分均有明显升高(P〈0.01)。治疗后常见的不良反应有头痛(1例)、腰痛(1例),均在1~3d内消失。随访3个月至3年,无治疗相关不良事件发生。结论UC—MSCs鞘内注射治疗是安全的,可以改善大部分不完全性SCI患者的神经功能,提高这些患者的生活质量。  相似文献   

13.
 NADPH-diaphorase positive (NDP) neurons and nerve fibers were found in the spinal dorsal horn (DH) and sensory ganglia of the turtle Chrysemys d’orbigny. Three well-defined types of NDP neurons were found in the DH: (a) elongated nerve cells with two radially arranged dendritic branches, (b) neurons with rostro-caudal dendritic branches, (c) bitufted neurons with two, practically symmetric branches that project to the ipsilateral and contralateral dorsal horns. A combination of the techniques that reveal NADPH-diaphorase activity with the horseradish peroxidase transganglionic labeling of the dorsal root collaterals, suggested that NDP neurons of the DH are second-order cells of the spinal sensory pathway. NDP neurons were also found in the spinal sensory ganglia at all metameric levels. Our findings indicate that the DH of turtles, like that of mammals, contains both the enzymatic machinery and the neural connections required to postulate the participation of nitric oxide in ”plastic phenomena” such as hyperalgesia and central sensitization. Two other alternatives or complementary hypotheses are discussed: (a) NDP neurons in the DH and sensory ganglia may represent specific cell populations involved in the processing of sensory visceral information; (b) NADPH-diaphorase reactivity may indicate sustained levels of neuronal activity. Received: 12 February 1996 / Accepted: 2 August 1996  相似文献   

14.
Visceral nociceptive signals are the subject of descending modulation from the locus coeruleus/subcoeruleus (LC/SC). We have recently found dorsal horn neurons whose visceral nociceptive responses are not inhibited by the descending LC/SC system (LC/SC-unaffected neurons) in the rat. The aim of the present study was to estimate a possible role of LC/SC-unaffected neurons for pain processing and pain-related responses. We focused on the fact that nociceptive signals from a visceral organ produce not only visceral pain but also visceromotor reflexes (muscular defense). Different effects of LC/SC stimulation can be expected between visceral pain and visceromotor reflexes. To accomplish our objective, the descending colon was electrically stimulated, and both the evoked discharge (ED) in the ventral posterolateral (VPL) nucleus of the thalamus and the electromyogram (EMG) of the abdominal muscle were simultaneously recorded under halothane anesthesia. The ED recorded from the VPL was completely inhibited with the increase of LC/SC stimulus intensity, while the EMG of the abdominal muscle still remained even after the ED disappeared. This result suggests that the minimum visceromotor reflex responses are maintained by the presence of LC/SC-unaffected neurons, which play the important role of protecting the visceral organs. Considering a role of muscular defense, the presence of the LC/SC-unaffected neurons may be advantageous for the individual under an abnormal pain state, such as inflammation.  相似文献   

15.
Summary The responses of dorsal horn neurons to both electrical stimulation of a cutaneous nerve and natural stimulation of skin receptors have been studied in an avian species, the pigeon. Neurons located in either lamina I or lamina IV were recorded. Most lamina IV neurons had short-latency responses to electrical stimulation of a cutaneous nerve and were activated by stimulation of sensitive mechanoreceptors. This points to an input from mechanoreceptors innervated by large afferent fibers. Lamina I neurons which were usually located near the entrance zone of small fibers had longer latency responses and had often an input from several groups of afferent fibers including C-fibers. Many lamina I neurons were activated specifically by noxious stimulation. Some had an input from sensitive mechanoreceptors but possibly through an additional synapse. A few lamina I neurons responded specifically to activation of cold receptors. Some dorsal horn neurons showed segmental inhibition. Altogether, the characteristics of dorsal horn neurons in the pigeon studied so far were similar to those in mammalian species.  相似文献   

16.
 Development of glomerular synapses in the superficial dorsal horn has been studied in the embryonic macaque spinal cord using light and electron microscopic techniques including Golgi impregnation, 3H-thymidine radioautography and pre-embedding immunohistochemistry of substance P (SP), calcitonin gene related peptide (CGRP), calbindin D-28 K (CB) and parvalbumin (PV). The study revealed that substantia gelatinosa cells of the primate dorsal horn are generated last, but unlike in rodents, synaptogenesis in this region starts at early embryonic (E) stages of the 165-day long gestation. Already by E30, both Type 1 (light) and 2 (dark) dorsal root axons and their growth cones are identifiable within the oval bundle of His, before they form synaptic contact with their final target cells. Subsequently they invade the dorsal horn and enter the bisecting interfaces formed by orderly programmed cell death. Each type of scalloped (sinusoid) central primary afferent terminal (i.e. DSA, RSV and LDCV) have well defined pre- and post-synaptic specializations already by E40. Among the neuropeptides studied, SP appears first at E67 and CGRP at E70 in the lateral position but within a few days both of them are spread to the entire superficial dorsal horn. Both SP and CGRP are present in the thin dorsal root axons and their growth cones, giving rise to scalloped and simple axon terminals. PV is transiently present in the entire length of the thick dorsal root afferents before becoming concentrated in the synaptic boutons. CB is displayed mainly in neurons of the lamina I and III. Dendrites of CB-immunoreactive cells establish synaptic connection with each type of dorsal root afferents, including glomerular synaptic complexes. These data reveal that the superficial dorsal horn in the primate spinal cord develops its characteristic synaptic complexes much earlier in gestation than in any other mammalian species studied. Furthermore, characteristic cytological features of the prospective glomerular complex emerge before establishment of the final synaptic contacts. Accepted: 20 July 1998  相似文献   

17.
Visceral nociceptive information is transmitted in two different areas of the spinal cord gray matter, the dorsal horn and the area near the central canal. The present study was designed to examine whether visceral nociceptive transmission in the two different areas is under the control of the centrifugal pathways from the locus coeruleus/subcoeruleus (LC/SC). Extracellular recordings were made from the L(6)-S(2) segmental level using a carbon filament glass microelectrode (4-6 MOmega). Colorectal distentions (80 mmHg) were produced by inflating a balloon inside the descending colon and rectum. In both dorsal horn and deep area neurons, responses to colorectal distention were inhibited during electrical stimulation (30, 50 and 70 microA, 100 Hz, 0.1 ms pulses) of the LC/SC. It is well known that spinothalamic tract (STT) neurons excited by visceral nociceptive stimuli are located in the dorsal horn and that postsynaptic dorsal column (PSDC) neurons which conduct visceral nociceptive signals in the dorsal column (DC) are located near the central canal of the spinal cord. The present study, therefore, suggests that the descending LC/SC system can inhibit visceral nociceptive signals ascending through the STT and the DC pathways.  相似文献   

18.
In the somatosensory system, the flow of sensory information is regulated at early stages by presynaptic inhibition. Recent findings have shown that the mechanisms generating the primary afferent depolarization (PAD) associated with presynaptic inhibition are complex, with some components mediated by a non-spiking mechanism. How sensory inputs carried by neighbouring afferent fibres interact to regulate the generation of PAD, and thus presynaptic inhibition, is poorly known. Here, we investigated the interaction between neighbouring primary afferents for the generation of PAD in an in vitro preparation of the turtle spinal cord. To monitor PAD we recorded the dorsal root potential (DRP), while the simultaneous cord dorsum potential (CDP) was recorded to assess the population postsynaptic response. We found that the DRP and the CDP evoked by a primary afferent test stimulus was greatly reduced by a conditioning activation of neighbouring primary afferents. This depression had early and late components, mediated in part by GABAA and GABAB receptors, since they were reduced by bicuculline and SCH 50911 respectively. However, with the selective stimulation of C and Aδ fibres in the presence of TTX, the early and late depression of the DRP was replaced by facilitation of the GABAergic and glutamatergic components of the TTX-resistant DRP. Our findings suggest a subtle lateral excitatory interaction between primary afferents for the generation of PAD mediated by a non-spiking mechanism that may contribute to shaping of information transmitted by C and Aδ fibres in a spatially confined scale in analogy with the retina and olfactory bulb.  相似文献   

19.
The objective of this study was to assess the efficacy of adaptive signal enhancement (ASE) as a means of indicating intraoperative spinal cord impingement. ASE technique was used to determine the changes in the somatosensory evoked potential (SEP) elicited from eighteen rats with varying levels of spinal cord compression. ASE technique was found to be able to effectively extract SEP signals for the detection of spinal cord injury. Furthermore, while the traditional ensemble averaging (EA) technique requires more than 500 trials for meaningful signal processing in severe noisy SEP recordings, the ASE method required only 50 trials to provide similar information. Because of its fast and reliable SEP detection, the ASE method is ideal for spinal cord monitoring in the clinical setting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号