首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ellipticine is a pro-drug, whose activation is dependent on its oxidation by cytochromes P450 (CYP) and peroxidases. Cytochrome b5 alters the ratio of ellipticine metabolites formed by isolated reconstituted CYP1A1 and 1A2, favoring formation of 12-hydroxy- and 13-hydroxyellipticine metabolites implicated in ellipticine–DNA adduct formation, at the expense of 9-hydroxy- and 7-hydroxyellipticine that are detoxication products. Cytochrome b5 enhances the production of 12-hydroxy and 13-hydroxyellipticine. The change in metabolite ratio results in an increased formation of covalent ellipticine–DNA adducts, one of the DNA-damaging mechanisms of ellipticine antitumor action. This finding explains previous apparent discrepancies found with isolated enzymes and in vivo, where CYP1A enzymatic activation correlated with ellipticine–DNA-adduct levels while isolated CYP1A1 or 1A2 in reconstituted systems were much less effective than CYP3A4. The effect of cytochrome b5 might be even more pronounced in vivo, since, as we show here, ellipticine increases levels of cytochrome b5 in rat liver. Our results demonstrate that both the native 3D structure of cytochrome b5 and the presence of the heme as an electron transfer agent in this protein enable a shift in ellipticine metabolites formed by CYP1A1/2.  相似文献   

2.
We examined the effect of climbazole on the induction of rat hepatic microsomal cytochrome P450 (P450), and compared the induction potency with other N-substituted azole drugs such as clorimazole. We found that climbazole is found to be a potent inducer of rat hepatic microsomal P450 as clorimazole. Induced level of P450 by climbazole was almost similar in extent to clorimazole when compared with other imidazole drugs in a dose- and time-dependent manner. Parallel to the increase in P450, climbazole increased aminopyrine and erythromycin N-demethylase, ethoxycoumarin O-deethylase, and androstenedione 16 beta- and 15 alpha/6 beta hydroxylase activities; however, clorimazole did not induce aminopyrine N-demethylase activity irrespective of its marked increase in P450 content. Immunoblot analyses revealed that climbazole induced CYP2B1, 3A2 and 4A1. The present findings indicate that climbazole is a new potent inducer of hepatic microsomal P450 and drug-metabolizing enzymes like clorimazole, but it may have some differential mechanism(s) for these enzymes' induction in rat liver.  相似文献   

3.
The human hepatic cytochromes P450 involved in drug metabolism.   总被引:19,自引:0,他引:19  
The cytochromes P450 are a superfamily of hemoproteins that catalyze the metabolism of a large number of xenobiotics and endobiotics. The type and amount (i.e., the animal's phenotype) of the P450s expressed by the animal, primarily in the liver, thus determine the metabolic response of the animal to a chemical challenge. A majority of the characterized P450s involved in hepatic drug metabolism have been identified in experimental animals. However, recently at least 12 human drug-metabolizing P450s have been characterized at the molecular and/or enzyme level. The characterization of these P450s has made it possible to "phenotype" microsomal samples with respect to their relative levels of the various P450s and their metabolic capabilities. The purpose of this review is to compare and contrast the human P450s involved in drug metabolism with their related forms in the rat and other experimental species.  相似文献   

4.
Ellipticine is an antineoplastic agent, which forms covalent DNA adducts mediated by cytochromes P450 (CYP) and peroxidases. We evaluated the role of hepatic versus extra-hepatic metabolism of ellipticine, using the HRN (Hepatic Cytochrome P450 Reductase Null) mouse model, in which cytochrome P450 oxidoreductase (POR) is deleted in hepatocytes, resulting in the loss of essentially all hepatic CYP function. HRN and wild-type (WT) mice were treated i.p. with 1 and 10 mg/kg body weight of ellipticine. Multiple ellipticine-DNA adducts detected by (32)P-postlabelling were observed in organs from both mouse strains. Highest total DNA binding levels were found in liver, followed by lung, kidney, urinary bladder, colon and spleen. Ellipticine-DNA adduct levels in the liver of HRN mice were up to 65% lower relative to WT mice, confirming the importance of CYP enzymes for the activation of ellipticine in livers, recently shown in vitro with human and rat hepatic microsomes. When hepatic microsomes of both mouse strains were incubated with ellipticine, ellipticine-DNA adduct levels with WT microsomes were up to 2.9-fold higher than with those from HRN mice. The ratios of ellipticine-DNA adducts in extra-hepatic organs between HRN and WT mice of up to 4.7 suggest that these organs can activate ellipticine and that more ellipticine is available in the circulation. These results and the DNA adduct patterns found in vitro and in vivo demonstrate that both CYP1A or 3A and peroxidases participate in activation of ellipticine to reactive species forming DNA adducts in the mouse model used in this study.  相似文献   

5.
In this study, clotrimazole (CTZ) and ketoconazole (KTZ) were evaluated for their inhibition of testosterone metabolism catalyzed by rat hepatic microsomes differentially expressing certain cytochrome P450 enzymes. The objective was to compare the inhibitory potencies using hepatic microsomes from adult female rats treated with dexamethasone (F-DEX) and hepatic microsomes from vehicle-treated adult male rats (M-VEH), which are known to contain high levels of isozymes CYP3A1 (3A23) and 3A2, respectively. The results demonstrate that CTZ is a very potent and selective inhibitor of the 6beta-hydroxylation of testosterone, a CYP3A-mediated reaction, in all rat metabolic systems tested. The IC(50) value was 9.7 nM in F-DEX, and 6.7 nM in M-VEH for CTZ. The in vitro inhibitory potency for CTZ significantly exceeds the same parameters for KTZ, a well established specific inhibitor of human CYP3A-mediated reactions. It was found that the IC(50) values of KTZ in F-DEX and M-VEH were 69 and 780 nM, respectively. These values for KTZ are 10-fold and 100-fold higher, respectively, than for CTZ. CTZ, at the concentration that inhibits 90% and more of CYP3A-mediated reactions (40 nM), has less than a 10% inhibitory effect on the activities of other rat liver enzymes, such as CYP1A1, -1A2, -2A1, -2B1, -2B2, -2C11, and -2E1. In summary, CTZ is a more potent and selective inhibitor of all CYP3A-mediated reactions than KTZ in rat hepatic microsomes.  相似文献   

6.
Recent advances in the study of human cytochromes P450 by protein purification, molecular cloning techniques and analysis of polymorphisms has led to increased understanding of the role of the various forms in the metabolism of clinically important drugs. In particular, the substrate specificity of one form, CYP2D6, is well established. CYP2D6 shows polymorphism, with 5-10% of Caucasians (poor metabolizers) not expressing this enzyme. The molecular basis of this deficiency is now well understood and methods for the detection of poor metabolizers are discussed, as well as the effect of the polymorphism on drug metabolism. Substrate specificities and possible polymorphisms in other cytochromes P450 are also discussed.  相似文献   

7.
3-Nitrobenzanthrone (3-NBA) is a carcinogen occurring in diesel exhaust and air pollution. Using the (32)P-postlabelling method, we found that 3-NBA and its human metabolite, 3-aminobenzanthrone (3-ABA), are activated to species forming DNA adducts by cytosols and/or microsomes isolated from rat lung, the target organ for 3-NBA carcinogenicity, and kidney. Each compound generated identical five DNA adducts. We have demonstrated the importance of pulmonary and renal NAD(P)H:quinone oxidoreductase (NQO1) to reduce 3-NBA to species that are further activated by N,O-acetyltransferases and sulfotransferases. Cytochrome P450 (CYP) 1A1 is the essential enzyme for oxidative activation of 3-ABA in microsomes of both organs, while cyclooxygenase plays a minor role. 3-NBA was also investigated for its ability to induce NQO1 and CYP1A1 in lungs and kidneys, and for the influence of such induction on DNA adduct formation by 3-NBA and 3-ABA. When cytosols from rats treated i.p. with 40mg/kg bw of 3-NBA were incubated with 3-NBA, DNA adduct formation was up to 2.1-fold higher than in incubations with cytosols from control animals. This increase corresponded to an increase in protein level and enzymatic activity of NQO1. Incubations of 3-ABA with microsomes of 3-NBA-treated rats led to up to a fivefold increase in DNA adduct formation relative to controls. The stimulation of DNA adduct formation correlated with the potential of 3-NBA to induce protein expression and activity of CYP1A1. These results demonstrate that 3-NBA is capable to induce NQO1 and CYP1A1 in lungs and kidney of rats thereby enhancing its own genotoxic and carcinogenic potential.  相似文献   

8.
The metabolism of phenacetin is primarily by cytochrome P450-dependent O-deethylation to paracetamol (POD activity). In untreated rats, microsomal POD activity is detectable in both the liver and lung, but not in the small intestine or the kidney. POD activity is highly induced in both hepatic and extrahepatic tissues of the rat following treatment with polycyclic aromatic hydrocarbons such as 3-methylcholanthrene (MC). Only cytochrome P450c (P450IA1) is inducible in rat extrahepatic tissues by MC or isosafrole, whereas in the liver both cytochromes P450c and P450d (P450IA2) are inducible by these compounds. Specific antibodies to cytochromes P450c and P450d were used to study the expression and function of these two related isoenzymes in rat liver and extrahepatic tissues before and after induction with MC. Whereas cytochrome P450d is responsible for all of the high affinity POD activity in hepatic microsomal fractions of both untreated and MC treated rats, this activity is mediated only by P450c in microsomal fractions from extrahepatic tissues following MC treatment. POD activity of microsomal fractions from lung of untreated rats was not mediated by either cytochrome P450c or P450d.  相似文献   

9.
3-Nitrobenzanthrone (3-NBA), a suspected human carcinogen occurring in diesel exhaust and air pollution, and its human metabolite 3-aminobenzanthrone (3-ABA) were investigated for their ability to induce biotransformation enzymes in rat liver and the influence of such induction on DNA adduct formation by the compounds. Rats were treated (i.p.) with 0.4, 4, or 40 mg/kg body weight 3-NBA or 3-ABA. When hepatic cytosolic fractions from rats treated with 40 mg/kg body weight 3-NBA or 3-ABA were incubated with 3-NBA, DNA adduct formation, measured by 32P-postlabeling analysis, was 10-fold higher in incubations with cytosols from pretreated rats than with controls. The increase in 3-NBA-derived DNA adduct formation corresponded to a dose-dependent increase in protein levels and enzymatic activity of NAD(P)H:quinone oxidoreductase (NQO1). NQO1 is the major enzyme reducing 3-NBA in human and rat livers. Incubations of 3-ABA with hepatic microsomes of rats treated with 3-NBA or 3-ABA (40 mg/kg body weight) led to as much as a 12-fold increase in 3-ABA-derived DNA adduct formation compared with controls. The observed stimulation of DNA adduct formation by both compounds was attributed to their potential to induce protein expression and enzymatic activity of cytochromes P450 1A1 and/or -1A2 (CYP1A1/2), the major enzymes responsible for 3-ABA activation in human and rat livers. Collectively, these results demonstrate for the first time, to our knowledge, that by inducing hepatic NQO1 and CYP1A1/2, both 3-NBA and 3-ABA increase the enzymatic activation of these two compounds to reactive DNA adduct-forming species, thereby enhancing their own genotoxic potential.  相似文献   

10.
Benzene (B), toluene (T), ethylbenzene (EB), styrene (S) and xylene isomers (oX, mX, pX) are important environmental pollutants and B is a proved human carcinogen. Their inhalation by male Wistar rats (4 mg/1,20 h/day, 4 days) caused cytochrome P450 (P450) induction. The degree of P450 2B1 induction increased and that of 2E1 decreased in the series B, T, EB, S, oX, mX and pX, as estimated by Western blots, while neither solvent was as effective for 2B1 induction as phenobarbital and B was more effective for 2E1 than ethanol. The levels of several other P450s decreased after exposure to these solvents, B being most effective. Exposure to these solvents increased in vitro hepatic microsomal oxidation of B and aniline (AN) (2E1 substrates) 3 to 6-fold, indicating induction of this P450. T oxidation was increased 2 to 4-fold and chlorobenzene (ClB) oxidation 3-fold. Sodium phenobarbital (PB, 80 mg/kg/day, 4 days, i.p.) did not increase ethylmorphine (EM) and benzphetamine (BZP) demethylation (2B1 substrates), neither of the B derivatives did so, and oX decreased it; however, pentoxyresorufin O-dealkylation was well related to the immunochemically detected 2B1 levels in control, PB and B microsomes. PB did not increase B, but increased T and C1B oxidation 2–4 and 3-fold, respectively, indicating possible 2B1 role in their oxidation. B oxidation after various inducers was related to immunochemical 2E1 levels, T and C1B oxidation to both 2B1 and 2E1 and AN oxidation to 2E1 and 1A2 levels. Very efficient B oxidation by 2E1 at low B levels indicates that induction of 2E1 may contribute to B myelotoxicity in vivo more than any other P450 enzyme tested, especially considering the fact that B is the most efficient inducer of its metabolism.  相似文献   

11.
The cytochromes P450 (CYPs) constitute a superfamily of hemoprotein enzymes that are responsible for the biotransformation of numerous xenobiotics, including therapeutic agents. Studies of the biochemical and enzymatic properties of these enzymes and their molecular genetics and regulation of gene expression and activity have greatly enhanced our understanding of several aspects of clinical pharmacology such as pharmacokinetic variability, drug toxicity, and drug interactions. This review evaluates the major human hepatic drug-metabolizing CYP enzymes and their clinically relevant substrates, inhibitors, and inducers. Also discussed are the molecular bases and clinical implications of genetic polymorphisms that affect the CYPs. Much of the information on the specificity of substrates and inhibitors of the CYP enzymes is derived from in vitro studies using human liver microsomes and heterologously expressed CYP enzymes. These methods are discussed, and guidelines are provided for designing enzyme kinetic and reaction phenotyping studies using multiple approaches. The strengths, weaknesses, and discrepancies among the different approaches are considered using representative examples. The mathematical models used in predicting the pharmacokinetic clearance of a drug from in vitro estimates of intrinsic clearance and the principles of quantitative in vitro-in vivo scaling of metabolic drug interactions are also discussed.  相似文献   

12.
To investigate the influence of age on the regulation of the cytochromes P450IIB1 and P450IIB2 the levels of the messenger RNAs for these two cytochromes were determined in liver cytoplasmic RNA of rats of various ages after maximal induction with either phenobarbital or isosafrole and in untreated rats. The levels of these mRNAs were determined by solution hybridization with a RNA-probe (riboprobe system) complementary to both mRNAs. This study showed a marked decrease in the maximal induction levels of these mRNAs between the ages of 12 and 36 months irrespective of the type of inducer used. To assess whether this age-related decrease could be found for both individual mRNAs also solution hybridization experiments were performed with deoxyoligonucleotide probes of a defined sequence. The data presented in this paper show that ageing influences the levels of both the cytochrome P450IIB1 and P450IIB2 mRNA in a similar way. After induction the amount of mRNA for P450IIB1 was in all age groups measured four- to five-fold higher than that of P450IIB2. These data indicate that previously observed age-related changes in the cytochrome P450 system could be related to a lower accumulation of its mRNAs.  相似文献   

13.
14.
Two oligodeoxyribonucleotides were synthesized that were specific for the messenger RNAs for the polycyclic hydrocarbon-inducible cytochromes P450IA1 and P450IA2. The solution hybridization technique was modified for the use of these oligodeoxyribonucleotide probes so as to increase the sensitivity and specificity of this method. Using this technique, the steady-state levels of the mRNAs for cytochromes P450IA1 and P450IA2 in control rat liver were determined to be less than 3 and 6 molecules/cell, and 1.8 and 4.0 attomol/micrograms poly (A)+ RNA, respectively. At 15 hr after induction with 3-methylcholanthrene, the steady-state levels of the mRNAs for P450IA1 and P450IA2 were 68 and 200 molecules/cell, and 41.6 and 123 attomol/micrograms poly (A)+ RNA.  相似文献   

15.
It has been shown previously that the potentiation of chloroform-induced hepatotoxicity by linear secondary ketones increases with the carbon-chain length. The present work examines the possibility that this potentiation is due to the induction of P450IIE1. The metabolism of chloroform, as measured using headspace gas chromatography, in the presence of microsomes from acetone-treated rats was elevated threefold compared to controls. Inclusion of monoclonal antibody against P450IIE1 inhibited the metabolism by 81%. Alternate substrates of P450IIE1 were also inhibitory. Chloroform metabolism was observed using purified, reconstituted P450IIE1 plus cytochrome b5, but was not detected using P450IIB1. The inductive effect of 18-hr oral pretreatment (15 mmol/kg body wt) with each of three secondary ketones on two isozymes of rat liver microsomal cytochrome P450, P450IIE1, and P450IIB1 was studied. The content of total microsomal P450 and NADPH-dependent cytochrome c reductase, the rates of oxidation of N-nitrosodimethylamine, benzphetamine, and pentoxyresorufin, as well as levels of immunoreactive protein for both of the isozymes were elevated by the pretreatments in the rank order of acetone less than or equal to 2-butanone less than 2-hexanone, in agreement with other trends noted by previous investigators. The results provide further evidence for the role of P450IIE1 induction in the potentiation phenomenon.  相似文献   

16.
n-Propylxanthate (nPX) inactivated the 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC) O-deethylation activity of purified, reconstituted rat hepatic P450 2B1 or human P450 2B6 in a mechanism-based manner. The inactivation followed pseudo-first-order kinetics and was entirely dependent on both NADPH and nPX. The maximal rate constant for inactivation of P450 2B1 at 30 degrees C was 0.2 min-1. The apparent KI was 44 microM, and the half-time for inactivation was 4.1 min. Purified, reconstituted human P450 2B6 was also inactivated by nPX with a KI of 12 microM. The kinactivation for P450 2B6 was 0.06 min-1, and the t1/2 was 11 min. Incubations of P450 2B1 with nPX and NADPH for 20 min resulted in a 75% loss in enzymatic activity and a concurrent 25% loss of the enzyme's ability to form a reduced CO complex. Little loss in the absolute spectrum of nPX-inactivated P450 2B1 was observed. With P450 2B6, an 83% loss in enzymatic activity and a 12% loss in the CO-reduced spectra were observed. The extrapolated partition ratio for nPX with P450 2B1 was 32. P450 2B1 could be protected from inactivation by nPX by adding an alternate substrate to the reaction mixture. Removal of unbound nPX by dialysis did not reverse the inactivation. The alternate oxidant iodosobenzene was able to partially restore enzymatic activity to nPX-inactivated P450 2B1 samples. A stoichiometry for labeling of 1.2:1 for binding of radiolabeled nPX metabolite to P450 2B1 was seen. These results indicated that nPX inactivated P450 2B1 and P450 2B6 in a mechanism-based manner. P450 2B1 was inactivated primarily by a nPX reactive intermediate that bound to the apoprotein.  相似文献   

17.
18.
Tegafur, an anticancer prodrug, is bioactivated to 5-fluorouracil (5-FU) mainly by cytochrome P450 (P450) enzymes. The conversion from tegafur into 5-FU catalyzed by human liver microsomal P450 enzymes was investigated. In fourteen cDNA-expressed human P450 enzymes having measurable activities, CYP1A2, CYP2A6, CYP2E1, and CYP3A5 were highly active in catalyzing 5-FU formation at a tegafur concentration of 100 microM. Kinetic analysis revealed that CYP1A2 had the highest V(max)/K(m) value and that the V(max) value of CYP2A6 was high in 5-FU formation. In human liver microsomes, the activities of 5-FU formation from 10 microM, 100 microM, and 1 mM tegafur were significantly correlated with both coumarin 7-hydroxylation (r = 0.83, 0.86, and 0.74) and paclitaxel 6 alpha-hydroxylation (r = 0.77, 0.62, and 0.85) activities, respectively. Coumarin efficiently inhibited the 5-FU formation activities from 100 microM and 1 mM tegafur catalyzed by human liver microsomes that had high coumarin 7-hydroxylation activity. On the other hand, furafylline, fluvoxamine, and quercetin, as well as coumarin, showed inhibitory effects in liver microsomes that had high catalytic activities of 5-FU formation. The other P450 inhibitors examined showed weak or no inhibition in human liver microsomes. Polyclonal anti-CYP1A2 antibody, monoclonal anti-CYP2A6, and anti-CYP2C8 antibodies inhibited 5-FU formation activities to different extents in those two microsomal samples. These results suggest that CYP1A2, CYP2A6, and CYP2C8 have important roles in human liver microsomal 5-FU formation and that the involvement of these three P450 forms differs among individual humans.  相似文献   

19.
1. Antibodies to mouse liver cytochrome P3-450 (anti-P3-450) and antibodies to rat liver cytochrome P-450d (anti-P-450d-c) both inhibit the O-deethylation of 7-ethoxy-resorufin (ER) in liver microsomes of benzo(a)pyrene-induced (BP) mice but do not inhibit the O-deethylase activity in liver microsomes of BP-induced rats. 2. Anti-P3-450 and anti-P-450d-c inhibit BP hydroxylation in BP-induced mouse liver microsomes by 20%, but they do not inhibit this rection at all in BP-induced rat liver microsomes. 3. Isolated cytochrome P3-450 in a reconstituted monooxygenase system metabolized 7-ER and BP. In contrast, its homologue, cytochrome P-450d, does not metabolize these substrates. The fraction containing cytochrome P1-450 metabolized 7-ER at a low rate and BP at a rate of 3.6 nmol product/min per nmol cytochrome. 4. Western blot analysis with anti-P-450c + d revealed two bands in SDS-PAGE gels containing BP-induced mouse liver microsomes corresponding to cytochrome P1-450, 55.0 kDa, and cytochrome P3-450, 54.5 kDa. There appeared a single band (cytochrome P3-450) in interaction of mouse liver BP-microsomes with anti-P3-450 and anti-P-450d-c.  相似文献   

20.
1. Antibodies to mouse liver cytochrome P3-450 (anti-P3-450) and antibodies to rat liver cytochrome P-450d (anti-P-450d-c) both inhibit the O-deethylation of 7-ethoxyresorufin (ER) in liver microsomes of benzo(a)pyrene-induced (BP) mice but do not inhibit the O-deethylase activity in liver microsomes of BP-induced rats.

2. Anti-P3-450 and anti-P-450d-c inhibit BP hydroxylation in BP-induced mouse liver microsomes by 20%, but they do not inhibit this reaction at all in BP-induced rat liver microsomes.

3. Isolated cytochrome P3-450 in a reconstituted monooxygenase system metabolized 7-ER and BP. In contrast, its homologue, cytochrome P-450d, does not metabolize these substrates. The fraction containing cytochrome P1-450 metabolized 7-ER at a low rate and BP at a rate of 3.6 nmol product/min per nmol cytochrome.

4. Western blot analysis with anti-P-450c + d revealed two bands in SDS-PAGE gels containing BP-induced mouse liver microsomes corresponding to cytochrome P1-450, 55.0 kDa, and cytochrome P3-450, 54.5 kDa. There appeared a single band (cytochrome P3-450) in interaction of mouse liver BP-microsomes with anti-P3-450 and anti-P-450d-c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号