首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Puri-Li kinetic model is modified to include neuronal calcium ion homeostasis to study the effect of calcium ions on the production of amyloid-β peptides (), microglia, and astroglia during the pathogenesis of Alzheimer’s disease (AD). This is carried out by solving the modified Puri-Li model under steady-state conditions. The derived expressions show that the inclusion of calcium ions has altered the steady-state populations of , microglia, and astroglia. The calcium ions activate the synthesis of which in turn increases the calcium ions entering the cytoplasm of the neuronal cells, thus creating a positive loop. The study also shows that as AD progresses, the inclusion of calcium ions enhances the production of microglia and astroglia. Examination of the steady-state solutions of microglia and astroglia shows that equilibrium conditions are achieved by microglia and astroglia destroying neurons. These model results are in agreement with experimental findings, which show a feed back loop between calcium ion levels and ; population increase in microglia, astroglia during AD; and microglia, astroglia acting as inflammatory cells producing toxins to destroy neurons during AD. Increased production of , microglia, and astroglia resulting from increased levels of calcium ions suggests that controlling the calcium ion levels could present a therapeutic strategy to combat AD.  相似文献   

2.
3.
Mycobacterium tuberculosis (M. tuberculosis) invading and activating microglia causes the most serious subtypes of tuberculosis called tubercular meningitis. However, the developmental process of tubercular meningitis, especially the early phase, is poorly understood due to lacking well-established and well-accepted visible models in vitro and in vivo. Here, consistent with one recent report, we found Mycobacterium marinum (M. marinum) invade the zebrafish brain and subsequently cause granuloma-like structures. We further showed that M. marinum, which shares similar characteristics with M. tuberculosis, can invade microglia and replicate in microglia, which subsequently promote the secretion of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α. M. marinum infection in microglia can also promote autophagy, which conversely limits the replication of M. marinum. Thus, pharmacological activation of autophagy by rapamycin could prevent M. marinum replication. Our study provides in vivo and in vitro models to study underlying pathogenic mechanisms of tubercular meningitis by using M. marinum. Our results also showed that activation of autophagy could be a meaningful way to prevent tubercular meningitis.  相似文献   

4.
Cerebellar circuits are patterned into an array of topographic parasagittal domains called zones. Zones are best revealed by gene expression, circuit anatomy, and cellular degeneration patterns. Thus far, the study of zones has been focused heavily on how neurons are organized. Because of this, detailed neuronal patterning maps have been established for Purkinje cells, granule cells, Golgi cells, unipolar brush cells, and also for the terminal field organization of climbing fiber and mossy fiber afferents. In comparison, however, it remains poorly understood if glial cells are also organized into zones. We have identified an Npy-Gfp BAC transgenic mouse line (Tau-Sapphire Green fluorescent protein (Gfp) is under the control of the neuropeptide Y (Npy) gene regulatory elements) that can be used to label Bergmann glial cells with Golgi-like resolution. In these adult transgenic mice, we found that Npy-Gfp expression was localized to Bergmann glia mainly in lobules VI/VII and IX/X. Using double immunofluorescence, we show that in these lobules, Npy-Gfp expression in the Bergmann glia overlaps with the pattern of the small heat shock protein HSP25, a Purkinje cell marker for zones located in lobules VI/VII and IX/X. Developmental analysis starting from the day of birth showed that HSP25 and Npy-Gfp expression follow a similar program of spatial and temporal patterning. However, loss of Npy signaling did not alter the patterning of Purkinje cell zones. We conclude that Bergmann glial cells are zonally organized and their patterns are restricted by boundaries that also confine cerebellar neurons into a topographic circuit map.  相似文献   

5.
Complement-associated factors are implicated in pathogen presentation, neurodegeneration, and microglia resolution of tissue injury. To characterize complement activation with microglial clearance of degenerating mossy fiber boutons, hippocampal dentate granule neurons were ablated in CD-1 mice with trimethyltin (TMT; 2.2 mg/kg, i.p.). Neuronal apoptosis was accompanied by amoeboid microglia and elevations in tumor necrosis factor [Tnfa], interleukin 1β [Il1b], and Il6 mRNA and C1q protein. Inos mRNA levels were unaltered. Silver degeneration and synaptophysin staining indicated loss of synaptic innervation to CA3 pyramidal neurons. Reactive microglia with thickened bushy morphology showed co-localization of synaptophysin+ fragments. The initial response at 2 days post-TMT included transient elevations in Tnfa, Il1b, Il6, and Inos mRNA levels. A concurrent increase at 2 days was observed in arginase-1 [Arg1], Il10, transforming growth factor β1 [Tgfb1], and chitinase 3 like-3 [Ym1] mRNA levels. At 2 days, C1q protein was evident in the CA3 with elevated C1qa, C1qb, C3, Cr3a, and Cr3b mRNA levels. mRNA levels remained elevated at 5 days, returning to control by 14 days, corresponding to silver degeneration. mRNA levels for pentraxin3 (Ptx3) were elevated on day 2 and Ptx1 was not altered. Our data suggest an association between microglia reactivity, the induction of anti-inflammatory genes concurrent with pro-inflammatory genes and the expression of complement-associated factors with the degeneration of synapses following apoptotic neuronal loss.  相似文献   

6.

Background

The antidepressant-like effects of simvastatin on traumatic brain injury (TBI) remain unclear. The present study aimed to investigate the neuroprotective effects of simvastatin and determine whether simvastatin attenuates TBI-induced depression-like behavior and, more specifically, acts as an antineuroinflammatory.

Methods

Anesthetized male Sprague–Dawley rats were divided into five groups: sham-operated controls, TBI controls, and TBI treatment with simvastatin 4, 10, or 20 mg/kg. Simvastatin was intraperitoneally injected 0, 24, and 48 h after TBI. The motor function was measured using an inclined plane, and depression-like behavior was evaluated using forced swimming tests. Neuronal apoptosis (markers: NeuN, TUNEL, caspase-3), microglia (marker: OX42) and astrocyte (marker: GFAP) activation, and TNF-α expression in the microglia and astrocytes of the hippocampal CA3 area were investigated using immunofluorescence assay. All parameters were measured on the 4th, 8th, and 15th day, or only on the 15th day after TBI.

Results

TBI-induced depression-like behavior, which increased duration of immobility, was significantly attenuated by 20 mg simvastatin therapy on day 15 after TBI. TBI-induced neuronal apoptosis, microglia and astrocyte activation, and TNF-α expression in the microglia and astrocytes of the CA3 area of the hippocampus were significantly reduced by simvastatin treatment, particularly when 20 mg/kg was administered for 3 days.

Conclusions

Intraperitoneal injection of simvastatin attenuated TBI in rats during the acute stage by reducing neuronal apoptosis, microglia, and TNF-α expression, thereby resulting in a reduction of depressive-like behavior. Our results suggest that simvastatin may be a promising treatment for TBI-induced depression-like behavior.
  相似文献   

7.
Spinal cord injuries (SCI) lead to major disabilities affecting > 2.5 million people worldwide. Major shortcomings in clinical translation result from multiple factors, including species differences, development of moderately predictive animal models, and differences in methodologies between preclinical and clinical studies. To overcome these obstacles, we first conducted a comparative neuroanatomical analysis of the spinal cord between mice, Microcebus murinus (a nonhuman primate), and humans. Next, we developed and characterized a new model of lateral spinal cord hemisection in M. murinus. Over a 3-month period after SCI, we carried out a detailed, longitudinal, behavioral follow-up associated with in vivo magnetic resonance imaging (1H-MRI) monitoring. Then, we compared lesion extension and tissue alteration using 3 methods: in vivo 1H-MRI, ex vivo 1H-MRI, and classical histology. The general organization and glial cell distribution/morphology in the spinal cord of M. murinus closely resembles that of humans. Animals assessed at different stages following lateral hemisection of the spinal cord presented specific motor deficits and spinal cord tissue alterations. We also found a close correlation between 1H-MRI signal and microglia reactivity and/or associated post-trauma phenomena. Spinal cord hemisection in M. murinus provides a reliable new nonhuman primate model that can be used to promote translational research on SCI and represents a novel and more affordable alternative to larger primates.  相似文献   

8.
Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90–231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrPSc). PrP90–231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca++] i increase. Indeed, while in “pure” cerebellar granule neuron cultures, PrP90–231 causes a delayed intracellular Ca++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca++] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca++] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca++] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE2 release from glial cells. Thus, Ca++ homeostasis alteration, directly induced by PrP90–231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90–231 neurotoxicity, whereas NMDA blockade by d(?)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90–231 neurotoxicity. These data indicate that amyloidogenic peptides induce neurotoxic signals via both direct neuron interaction and glia activation through different mechanisms responsible of calcium homeostasis disruption in neurons and potentiating each other: the activation of excitotoxic pathways via NMDA receptors and the release of radical species that establish an oxidative milieu.  相似文献   

9.
Synucleinopathies are a group of neurodegenerative diseases that share a common pathological lesion of intracellular protein inclusions largely composed by aggregates of alpha-synuclein protein. Accumulating evidence, including genome wide association studies, has implicated alpha-synuclein (SNCA) gene in the etiology of synucleinopathies. However, the precise variants within SNCA gene that contribute to the sporadic forms of Parkinson’s disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and other synucleinopathies and their molecular mechanisms of action remain elusive. It has been suggested that SNCA expression levels are critical for the development of these diseases. Here, we review several model systems that have been developed to advance the understanding of the role of SNCA expression levels in the etiology of synucleinopathies. We also describe different molecular mechanisms that regulate SNCA gene expression and discuss possible strategies for SNCA down-regulation as means for therapeutic approaches. Finally, we highlight some examples that underscore the relationships between the genetic association findings and the regulatory mechanisms of SNCA expression, which suggest that genetic variability in SNCA locus is directly responsible, at least in part, to the changes in gene expression and explain the reported associations of SNCA with synucleinopathies. Future studies utilizing induced pluripotent stem cells (iPSCs)—derived neuronal lines and genome editing by CRISPR/Cas9, will allow us to validate, characterize, and manipulate the effects of particular cis-genetic variants on SNCA expression. Moreover, this model system will enable us to compare different neuronal and glial lineages involved in synucleinopathies representing an attractive strategy to elucidate—common and specific—SNCA-genetic variants, regulatory mechanisms, and vulnerable expression levels underlying synucleinopathy spectrum disorders. This forthcoming knowledge will support the development of precision medicine for synucleinopathies.  相似文献   

10.
Reelin is an extracellular glycoprotein which contributes to synaptic plasticity and function of memory in the adult brain. It has been indicated that the Reelin signaling cascade participates in Alzheimer’s disease (AD). Besides the neurons, glial cells such as astrocytes also express Reelin protein. While functional loss of astrocytes has been reported to be associated with AD, dysfunction of astrocytic Reelin signaling pathway has not received much attention. Therefore, we investigated the effects of α-boswellic acid (ABA) as one of the major component of Boswellia serrata resin on primary fetal human astrocytes under a stress paradigm as a possible model for AD through study on Reelin cascade. For this aim, we used streptozotocin (STZ), in which from an outlook generates Alzheimer’s hallmarks in astrocytes, and assayed Reelin expression, Tau and Akt phosphorylation as well as reactive oxygen species (ROS) generation and apoptosis in the presences of ABA. Our results indicated that while STZ (100 µM) down-regulated the expression of Reelin, ABA (25 µM) up-regulated its expression (p < 0.01) for 24 h. ABA efficiently reduced hyperphosphorylated Tau (Ser404) in STZ-treated astrocytes (p < 0.01). Furthermore, STZ-induced apoptosis by increasing cleaved caspase three (p < 0.01) and ROS generation (p < 0.01), a further pathological hallmark of Tauopathy. On the other hand, ABA decreased ROS generation and promoted proliferation of astrocytes through elevating Survivin expression (p < 0.01). These results showed that ABA could be considered as a potent therapeutic agent for prevention and decreasing the progression of Alzheimer’s hallmarks in astrocytes; however, more in vivo studies would be needed.  相似文献   

11.
12.
Human immunodeficiency virus (HIV) infection of the central nervous system (CNS) results in neuronal damage and apoptosis, and both in vitro models and pathological studies suggest that a variety of neurotoxins released by HIV-infected and -activated macrophages/microglia selectively damage susceptible subsets of neurons. Confirmation of in vitro findings of mechanisms of neurodegeneration and neuronal cell dysfunction in vivo has been approached through detailed pathological analysis of regional structural damage, immunohistochemical detection of selected antigens in damaged cells, and, more recently, analysis of gene expression in whole tissue blocks or pooled populations (hundreds/thousands) of microdissected cells. Recently developed techniques of gene expression analysis through antisense mRNA amplification (aRNA) at the single-cell level may offer the potential to study pathways of neuronal cell death and to determine patterns of coordinated gene expression that may more specifically identify susceptible neuronal subclasses in vivo. Utilizing this unique technique, the authors have demonstrated, for the first time, RNA amplification and gene expression profiling in individual deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL)-reactive neurons microdissected from fixed, archival human brain tissue. RNA amplification was successful in >80% of TUNEL-positive neurons, and quantitative aRNA/cDNA hybridization slot-blot analysis demonstrated similar levels of actin RNA but significant differences in caspase-2 RNA expression between TUNEL-reactive and -nonreactive neurons. Reliable quantitative comparisons were achieved with modest numbers of sampled neurons (~10). These studies suggest that analysis of coordinated gene expression in individual damaged neurons in vivo can be reliably used to identify neuronal subclasses that express certain susceptibility- or survival-promoting genes that may be targeted for more specific neuroprotective strategies against HIV.  相似文献   

13.

Background

The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh) is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM) to map the lineages derived from Shh- expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary.

Results

Shh- expressing progenitors labeled at an early stage (before embryonic day (E)9.5) contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia). Progenitors labeled at later stages (after E9.5) give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh- expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes.

Conclusions

We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh- expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly defined progenitor domains and that there is little or no cell mixing between the tuberal and anterior or the preoptic and anterior hypothalamus. Finally, we show that, in the tuberal hypothalamus, neurons destined for every mediolateral level are produced during a period of days, in conflict with the current 'three-wave' model of hypothalamic neurogenesis. Our work sets the stage for a deeper developmental analysis of this complex and important brain region.
  相似文献   

14.
Microglia are considered to be potential antigen-presenting cells and have the ability to present antigen under pathological conditions. Nevertheless, whether and how microglia are involved in immune regulation are largely unknown. Here, we investigated the suppressive activity of microglia during experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein, with the goal of understanding their role in regulating the T cell reaction. Using flow cytometric analysis, we found that microglia were characterized by increased cell number and up-regulated programmed death ligand-1 (PD-L1) at the peak phase of EAE. Meanwhile, both the CD4+ T cells and microglia that infiltrated the central nervous system expressed higher levels of PD1, the receptor for PD-L1, accompanied by a decline of Th1 cells. In an ex vivo co-culture system, microglia from EAE mice inhibited the proliferation of antigen-specific CD4+ T cells and the differentiation of Th1 cells, and this was significantly inhibited by PD-L1 blockade. Further, microglia suppressed Th1 cells via nitric oxide (NO), the production of which was dependent on PD-L1. Thus, these data suggest a scenario in which microglia are involved in the regulation of EAE by suppressing Th1-cell differentiation via the PD-L1-NO pathway.  相似文献   

15.

Background

Frontotemporal lobar degeneration (FTLD) includes a spectrum of heterogeneous clinical and neuropathological diseases. In a strict sense this includes the behavioral variant of frontotemporal dementia (bvFTD) and primary progressive aphasia (PPA) and both variants can be associated with amyotrophic lateral sclerosis (FTD-ALS). In a broader sense FTLD also includes progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). In recent years the strong genetic component of FTLD has become increasingly clear.

Objective

The association between clinical presentation, neuropathology, genetics and pathophysiological mechanisms of FTLD are presented.

Results

The diagnostic criteria and tools for the clinical differential diagnosis of FTLD are presented. At autopsy patients show neuronal and glial inclusions of Tau, TDP-43 or FUS. While Tau pathology is often associated with extrapyramidal symptoms, patients with TDP-43 and FUS inclusions often also show signs of ALS. Pathogenic mutations directly increase the aggregation propensity of these proteins or impair protein degradation through autophagy or the proteasome. Pathogenic mutations in most FTLD genes trigger cytoplasmic missorting and aggregation of the RNA-binding protein TDP-43 and thus lead to a nuclear loss of TDP-43 function. Microgliosis and mutations in GRN and TREM2 suggest an important role of neuroinflammation in FTLD.

Conclusion

There is still no causal therapy for FTLD but preclinical studies focusing on pathogenic mutations in C9orf72, GRN and Tau may lead to clinical trials soon; therefore, establishing large well characterized patient cohorts is crucial for trial readiness.
  相似文献   

16.
17.
In this study, we used resting-state functional magnetic resonance imaging to explore the genetic effects of amyloid precursor protein (APP) or presenilins mutation and apolipoprotein E (APOE) ε4 on the default-mode network (DMN) in cognitively intact young adults (24.1 ± 2.5 years). Both the APP or presenilin-1/2 group and the APOE ε4 group had significantly lower DMN functional connectivity (FC) in the some brain regions like precuneus/middle cingulate cortices (PCu/MCC) than controls (AlphaSim corrected, P < 0.05). Only a lower FC tendency was demonstrated (control < APOE ε4 < APP or presenilin-1/2 group). Moreover, lower FC in PCu/MCC is correlated with some neuropsychological assessments such as similarity test in APOE ε4 group. These findings indicate that DMN FC alteration in APP or presenilin-1/2 or APOE ε4 subjects is prior to the occurrence of neurological alterations and clinical symptoms, and DMN FC might be a valuable biomarker to detect genetic risk in the preclinical stage.  相似文献   

18.
Despite the recent advances in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-1) remains a global health threat. HIV-1 affects the central nervous system by releasing viral proteins that trigger neuronal death and neuroinflammation, and promotes alterations known as HIV-associated neurocognitive disorders (HAND). This disorder is not fully understood, and no specific treatments are available. Recently, we demonstrated that the HIV-1 envelope protein gp120IIIB induces a functional upregulation of the α7-nicotinic acetylcholine receptor (α7) in neuronal cells. Furthermore, this upregulation promotes cell death that can be abrogated with receptor antagonists, suggesting that α7 may play an important role in the development of HAND. The partial duplication of the gene coding for the α7, known as CHRFAM7A, negatively regulates α7 expression but its role in HIV infection has not been studied. Hence, we studied both CHRNA7 and CHRFAM7A regulation patterns in various gp120IIIB in vitro conditions. In addition, we measured CHRNA7 and CHRFAM7A expression levels in postmortem brain samples from patients suffering from different stages of HAND. Our results demonstrate the induction of CHRNA7 expression accompanied by a significant downregulation of CHRFAM7A in neuronal cells when exposed to pathophysiological concentrations of gp120IIIB. Our results suggest a dysregulation of CHRFAM7A and CHRNA7 expressions in the basal ganglia from postmortem brain samples of HIV+ subjects and expand the current knowledge about the consequences of HIV infection in the brain.  相似文献   

19.
20.

Background

In the peripheral nervous system (PNS), specialized glial cells called Schwann cells produce myelin, a lipid-rich insulating sheath that surrounds axons and promotes rapid action potential propagation. During development, Schwann cells must undergo extensive cytoskeletal rearrangements in order to become mature, myelinating Schwann cells. The intracellular mechanisms that drive Schwann cell development, myelination, and accompanying cell shape changes are poorly understood.

Methods

Through a forward genetic screen in zebrafish, we identified a mutation in the atypical guanine nucleotide exchange factor, dock1, that results in decreased myelination of peripheral axons. Rescue experiments and complementation tests with newly engineered alleles confirmed that mutations in dock1 cause defects in myelination of the PNS. Whole mount in situ hybridization, transmission electron microscopy, and live imaging were used to fully define mutant phenotypes.

Results

We show that Schwann cells in dock1 mutants can appropriately migrate and are not decreased in number, but exhibit delayed radial sorting and decreased myelination during early stages of development.

Conclusions

Together, our results demonstrate that mutations in dock1 result in defects in Schwann cell development and myelination. Specifically, loss of dock1 delays radial sorting and myelination of peripheral axons in zebrafish.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号