首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the last decade genome-wide association studies have proven to be a powerful approach to identifying disease-causing variants. However, for admixed populations, most current methods for association testing are based on the assumption that the effect of a genetic variant is the same regardless of its ancestry. This is a reasonable assumption for a causal variant but may not hold for the genetic variants that are tested in genome-wide association studies, which are usually not causal. The effects of noncausal genetic variants depend on how strongly their presence correlate with the presence of the causal variant, which may vary between ancestral populations because of different linkage disequilibrium patterns and allele frequencies. Motivated by this, we here introduce a new statistical method for association testing in recently admixed populations, where the effect size is allowed to depend on the ancestry of a given allele. Our method does not rely on accurate inference of local ancestry, yet using simulations we show that in some scenarios it gives a substantial increase in statistical power to detect associations. In addition, the method allows for testing for difference in effect size between ancestral populations, which can be used to help determine if a given genetic variant is causal. We demonstrate the usefulness of the method on data from the Greenlandic population.  相似文献   

2.
The National Human Genome Research Institute's catalog of published genome‐wide association studies (GWAS) lists over 10,000 genetic variants collectively associated with over 800 human diseases or traits. Most of these GWAS have been conducted in European‐ancestry populations. Findings gleaned from these studies have led to identification of disease‐associated loci and biologic pathways involved in disease etiology. In multiple instances, these genomic findings have led to the development of novel medical therapies or evidence for prescribing a given drug as the appropriate treatment for a given individual beyond phenotypic appearances or socially defined constructs of race or ethnicity. Such findings have implications for populations throughout the globe and GWAS are increasingly being conducted in more diverse populations. A major challenge for investigators seeking to follow up genomic findings between diverse populations is discordant patterns of linkage disequilibrium (LD). We provide an overview of common measures of LD and opportunities for their use in novel methods designed to address challenges associated with following up GWAS conducted in European‐ancestry populations in African‐ancestry populations or, more generally, between populations with discordant LD patterns. We detail the strengths and weaknesses associated with different approaches. We also describe application of these strategies in follow‐up studies of populations with concordant LD patterns (replication) or discordant LD patterns (transferability) as well as fine‐mapping studies. We review application of these methods to a variety of traits and diseases.  相似文献   

3.
Genome‐wide association studies (GWAS) of common disease have been hugely successful in implicating loci that modify disease risk. The bulk of these associations have proven robust and reproducible, in part due to community adoption of statistical criteria for claiming significant genotype‐phenotype associations. As the cost of sequencing continues to drop, assembling large samples in global populations is becoming increasingly feasible. Sequencing studies interrogate not only common variants, as was true for genotyping‐based GWAS, but variation across the full allele frequency spectrum, yielding many more (independent) statistical tests. We sought to empirically determine genome‐wide significance thresholds for various analysis scenarios. Using whole‐genome sequence data, we simulated sequencing‐based disease studies of varying sample size and ancestry. We determined that future sequencing efforts in >2,000 samples of European, Asian, or admixed ancestry should set genome‐wide significance at approximately P = 5 × 10?9, and studies of African samples should apply a more stringent genome‐wide significance threshold of P = 1 × 10?9. Adoption of a revised multiple test correction will be crucial in avoiding irreproducible claims of association.  相似文献   

4.
Binary phenotypes commonly arise due to multiple underlying quantitative precursors and genetic variants may impact multiple traits in a pleiotropic manner. Hence, simultaneously analyzing such correlated traits may be more powerful than analyzing individual traits. Various genotype‐level methods, e.g., MultiPhen (O'Reilly et al. [ 2012 ]), have been developed to identify genetic factors underlying a multivariate phenotype. For univariate phenotypes, the usefulness and applicability of allele‐level tests have been investigated. The test of allele frequency difference among cases and controls is commonly used for mapping case‐control association. However, allelic methods for multivariate association mapping have not been studied much. In this article, we explore two allelic tests of multivariate association: one using a Binomial regression model based on inverted regression of genotype on phenotype (Binomial regression‐based Association of Multivariate Phenotypes [BAMP]), and the other employing the Mahalanobis distance between two sample means of the multivariate phenotype vector for two alleles at a single‐nucleotide polymorphism (Distance‐based Association of Multivariate Phenotypes [DAMP]). These methods can incorporate both discrete and continuous phenotypes. Some theoretical properties for BAMP are studied. Using simulations, the power of the methods for detecting multivariate association is compared with the genotype‐level test MultiPhen's. The allelic tests yield marginally higher power than MultiPhen for multivariate phenotypes. For one/two binary traits under recessive mode of inheritance, allelic tests are found to be substantially more powerful. All three tests are applied to two different real data and the results offer some support for the simulation study. We propose a hybrid approach for testing multivariate association that implements MultiPhen when Hardy‐Weinberg Equilibrium (HWE) is violated and BAMP otherwise, because the allelic approaches assume HWE.  相似文献   

5.
Current genome-wide association studies (GWAS) often involve populations that have experienced recent genetic admixture. Genotype data generated from these studies can be used to test for association directly, as in a non-admixed population. As an alternative, these data can be used to infer chromosomal ancestry, and thus allow for admixture mapping. We quantify the contribution of allele-based and ancestry-based association testing under a family-design, and demonstrate that the two tests can provide non-redundant information. We propose a joint testing procedure, which efficiently integrates the two sources information. The efficiencies of the allele, ancestry and combined tests are compared in the context of a GWAS. We discuss the impact of population history and provide guidelines for future design and analysis of GWAS in admixed populations.  相似文献   

6.
Association analysis using admixed populations imposes challenges and opportunities for disease mapping. By developing some explicit results for the variance of an allele of interest conditional on either local or global ancestry and by simulation of recently admixed genomes we evaluate power and false‐positive rates under a variety of scenarios concerning linkage disequilibrium (LD) and the presence of unmeasured variants. Pairwise LD patterns were compared between admixed and nonadmixed populations using the HapMap phase 3 data. Based on the above, we showed that as follows:
    相似文献   

7.
The detection of loci contributing effects to complex human traits, and their subsequent fine-mapping for the location of causal variants, remains a considerable challenge for the genetics research community. Meta-analyses of genomewide association studies, primarily ascertained from European-descent populations, have made considerable advances in our understanding of complex trait genetics, although much of their heritability is still unexplained. With the increasing availability of genomewide association data from diverse populations, transethnic meta-analysis may offer an exciting opportunity to increase the power to detect novel complex trait loci and to improve the resolution of fine-mapping of causal variants by leveraging differences in local linkage disequilibrium structure between ethnic groups. However, we might also expect there to be substantial genetic heterogeneity between diverse populations, both in terms of the spectrum of causal variants and their allelic effects, which cannot easily be accommodated through traditional approaches to meta-analysis. In order to address this challenge, I propose novel transethnic meta-analysis methodology that takes account of the expected similarity in allelic effects between the most closely related populations, while allowing for heterogeneity between more diverse ethnic groups. This approach yields substantial improvements in performance, compared to fixed-effects meta-analysis, both in terms of power to detect association, and localization of the causal variant, over a range of models of heterogeneity between ethnic groups. Furthermore, when the similarity in allelic effects between populations is well captured by their relatedness, this approach has increased power and mapping resolution over random-effects meta-analysis.  相似文献   

8.
Genome‐wide association studies (GWAS) have emerged as powerful means for identifying genetic loci related to complex diseases. However, the role of environment and its potential to interact with key loci has not been adequately addressed in most GWAS. Networks of collaborative studies involving different study populations and multiple phenotypes provide a powerful approach for addressing the challenges in analysis and interpretation shared across studies. The Gene, Environment Association Studies (GENEVA) consortium was initiated to: identify genetic variants related to complex diseases; identify variations in gene‐trait associations related to environmental exposures; and ensure rapid sharing of data through the database of Genotypes and Phenotypes. GENEVA consists of several academic institutions, including a coordinating center, two genotyping centers and 14 independently designed studies of various phenotypes, as well as several Institutes and Centers of the National Institutes of Health led by the National Human Genome Research Institute. Minimum detectable effect sizes include relative risks ranging from 1.24 to 1.57 and proportions of variance explained ranging from 0.0097 to 0.02. Given the large number of research participants (N>80,000), an important feature of GENEVA is harmonization of common variables, which allow analyses of additional traits. Environmental exposure information available from most studies also enables testing of gene‐environment interactions. Facilitated by its sizeable infrastructure for promoting collaboration, GENEVA has established a unified framework for genotyping, data quality control, analysis and interpretation. By maximizing knowledge obtained through collaborative GWAS incorporating environmental exposure information, GENEVA aims to enhance our understanding of disease etiology, potentially identifying opportunities for intervention. Genet. Epidemiol. 34: 364–372, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Genome wide association studies (GWAS) have revealed many fascinating insights into complex diseases even from simple, single-marker statistical tests. Most of these tests are designed for testing of associations between a phenotype and an autosomal genotype and are therefore not applicable to X chromosome data. Testing for association on the X chromosome raises unique challenges that have motivated the development of X-specific statistical tests in the literature. However, to date there has been no study of these methods under a wide range of realistic study designs, allele frequencies and disease models to assess the size and power of each test. To address this, we have performed an extensive simulation study to investigate the effects of the sex ratios in the case and control cohorts, as well as the allele frequencies, on the size and power of eight test statistics under three different disease models that each account for X-inactivation. We show that existing, but under-used, methods that make use of both male and female data are uniformly more powerful than popular methods that make use of only female data. In particular, we show that Clayton's one degree of freedom statistic [Clayton, 2008] is robust and powerful across a wide range of realistic simulation parameters. Our results provide guidance on selecting the most appropriate test statistic to analyse X chromosome data from GWAS and show that much power can be gained by a more careful analysis of X chromosome GWAS data.  相似文献   

10.
Significant allele flipping, where associations for the same disease occur at opposite alleles of the same bi‐allelic locus, is increasing. But when is a significant allele flip genuine? We address the statistical issues of claiming and observing genuine allele flips in actual samples. We show that unless an allele flip is genuine, the probability of observing a significant allele flip in samples ascertained similarly from a common population is negligible. We derive expressions for the expected values of commonly used measures of association, which confirm previous findings that the underlying mechanism of a genuine allele flip is variation in the haplotype frequencies and show further how this variation interacts with variation in the genetic effects to impact allele flipping. We show that for association testing at proxy SNPs, common in genome‐wide association studies, variation in haplotype frequencies must coincide with a reversal in the sign of linkage disequilibrium (LD) to trigger genuine allele flips. Using HapMap data and r, rather than r2, to highlight previously unobserved effects, we show that unless genetic effects are large, variation in LD is unlikely to cause genuine allele flips in samples drawn from the same population. However, as populations diverge, it is an increasingly viable cause of a genuine allele flip for sufficiently large genetic effect and/or sample sizes. We conclude that evidence of variation in local patterns of LD, ancestral composition of study samples, and environmental exposures between study populations can provide compelling practical evidence in defense of a genuine allele flip. Genet. Epidemiol. 34: 266–274, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Sara Lindström  Jennifer A. Brody  Constance Turman  Marine Germain  Traci M. Bartz  Erin N. Smith  Ming-Huei Chen  Marja Puurunen  Daniel Chasman  Jeffrey Hassler  Nathan Pankratz  Saonli Basu  Weihua Guan  Beata Gyorgy  Manal Ibrahim  Jean-Philippe Empana  Robert Olaso  Rebecca Jackson  Sigrid K. Brækkan  Barbara McKnight  Jean-Francois Deleuze  Cristopher J. O’Donnell  Xavier Jouven  Kelly A. Frazer  Bruce M. Psaty  Kerri L. Wiggins  Kent Taylor  Alexander P. Reiner  Susan R. Heckbert  Charles Kooperberg  Paul Ridker  John-Bjarne Hansen  Weihong Tang  Andrew D. Johnson  Pierre-Emmanuel Morange  David A. Trégouët  Peter Kraft  Nicholas L. Smith  Christopher Kabrhel 《Genetic epidemiology》2019,43(4):449-457
Although recent Genome-Wide Association Studies have identified novel associations for common variants, there has been no comprehensive exome-wide search for low-frequency variants that affect the risk of venous thromboembolism (VTE). We conducted a meta-analysis of 11 studies comprising 8,332 cases and 16,087 controls of European ancestry and 382 cases and 1,476 controls of African American ancestry genotyped with the Illumina HumanExome BeadChip. We used the seqMeta package in R to conduct single variant and gene-based rare variant tests. In the single variant analysis, we limited our analysis to the 64,794 variants with at least 40 minor alleles across studies (minor allele frequency [MAF] ~0.08%). We confirmed associations with previously identified VTE loci, including ABO, F5, F11, and FGA. After adjusting for multiple testing, we observed no novel significant findings in single variant or gene-based analysis. Given our sample size, we had greater than 80% power to detect minimum odds ratios greater than 1.5 and 1.8 for a single variant with MAF of 0.01 and 0.005, respectively. Larger studies and sequence data may be needed to identify novel low-frequency and rare variants associated with VTE risk.  相似文献   

12.
Despite the success of genome-wide association studies, much of the genetic contribution to complex human traits is still unexplained. One potential source of genetic variation that may contribute to this "missing heritability" is that which differs in magnitude and/or direction between males and females, which could result from sexual dimorphism in gene expression. Such sex-differentiated effects are common in model organisms, and are becoming increasingly evident in human complex traits through large-scale male- and female-specific meta-analyses. In this article, we review the methodology for meta-analysis of sex-specific genome-wide association studies, and propose a sex-differentiated test of association with quantitative or dichotomous traits, which allows for heterogeneity of allelic effects between males and females. We perform detailed simulations to compare the power of the proposed sex-differentiated meta-analysis with the more traditional "sex-combined" approach, which is ambivalent to gender. The results of this study highlight only a small loss in power for the sex-differentiated meta-analysis when the allelic effects of the causal variant are the same in males and females. However, over a range of models of heterogeneity in allelic effects between genders, our sex-differentiated meta-analysis strategy offers substantial gains in power, and thus has the potential to discover novel loci contributing effects to complex human traits with existing genome-wide association data.  相似文献   

13.
Admixture mapping is potentially a powerful method for mapping genes for complex human diseases, when the disease frequency due to a particular disease-susceptible gene is different between founding populations of different ethnicity. The method tests for association of the allele ancestry with the disease. Since the markers used to define ancestral populations are not fully informative for the ancestry status, direct test of such association is not possible. In this report, we develop a unified hidden Markov model (HMM) framework for estimating the unobserved ancestry haplotypes across a chromosomal region based on marker haplotype or genotype data. The HMM efficiently utilizes all the marker data to infer the latent ancestry states at the putative disease locus. In this HMM modelling framework, we develop a likelihood test for association of allele ancestry and the disease risk based on case-control data. Existence of such association may imply linkage between the candidate locus and the disease locus. We evaluate by simulations how several factors affect the power of admixture mapping, including sample size, ethnicity relative risk, marker density, and the different admixture dynamics. Our simulation results indicate correct type 1 error rates of the proposed likelihood ratio tests and great impact of marker density on the power. The simulation results also indicate that the methods work well for the admixed populations derived from both hybrid-isolation and continuous gene-flowing models. Finally, we observed that the genotype-based HMM performs very similarly in power as the haplotype-based HMM when the haplotypes are known and the set of markers is highly informative.  相似文献   

14.
Genome-wide association studies (GWAS) have been used to establish thousands of genetic associations across numerous phenotypes. To improve the power of GWAS and generalize associations across ethnic groups, transethnic meta-analysis methods are used to combine the results of several GWAS from diverse ancestries. The goal of this study is to identify genetic associations for eight quantitative metabolic syndrome (MetS) traits through a meta-analysis across four ethnic groups. Traits were measured in the GENetics of Noninsulin dependent Diabetes Mellitus (GENNID) Study which consists of African-American (families = 73, individuals = 288), European-American (families = 79, individuals = 519), Japanese-American (families = 17, individuals = 132), and Mexican-American (families = 113, individuals = 610) samples. Genome-wide association results from these four ethnic groups were combined using four meta-analysis methods: fixed effects, random effects, TransMeta, and MR-MEGA. We provide an empirical comparison of the four meta-analysis methods from the GENNID results, discuss which types of loci (characterized by allelic heterogeneity) appear to be better detected by each of the four meta-analysis methods in the GENNID Study, and validate our results using previous genetic discoveries. We specifically compare the two transethnic methods, TransMeta and MR-MEGA, and discuss how each transethnic method's framework relates to the types of loci best detected by each method.  相似文献   

15.
A genetic and epidemiological survey of non-insulin-dependent diabetes mellitus (NIDDM) was conducted among the Mexican Americans residing in three socioeconomically distinct areas of San Antonio, Texas: a low socioeconomic (SES) traditional area (barrio), a middle SES, ethnically balanced area (transitional), and a high SES, predominantly Anglo area (suburb). Seventeen polymorphic markers were used to relate the prevalences of NIDDM with the extent of Amerindian ancestry of 1,237 Mexican Americans of these three residential areas. While only the RH and haptoglobin loci showed evidence of association with NIDDM, an admixture analysis of the combined allele frequency data revealed a pattern of decreasing NIDDM prevalence with increasing socioeconomic status (as approximated by neighborhood of residence) and a parallel decrease in Amerindian ancestry. The rank-order correlation between NIDDM prevalence and Amerindian admixture is 0.943 (P less than .001) for the crude prevalence rate and 0.829 (P less than .02) for the age-adjusted rate. Nested gene diversity analysis revealed that the heterogeneity of allele frequencies is more pronounced when individuals were classified by their NIDDM disease status as compared to the classification by neighborhood. Estimation of Amerindian ancestry of each individual did not reveal any significant change in the shape of the distributions of individual admixture proportions in diabetics as compared to the controls. Nevertheless, the results suggest that genetic factors partially explain the differences in NIDDM prevalence observed between the Mexican American and Anglo populations in the southwestern United States.  相似文献   

16.
Populations of non-European ancestry are substantially underrepresented in genome-wide association studies (GWAS). As genetic effects can differ between ancestries due to possibly different causal variants or linkage disequilibrium patterns, a meta-analysis that includes GWAS of all populations yields biased estimation in each of the populations and the bias disproportionately impacts non-European ancestry populations. This is because meta-analysis combines study-specific estimates with inverse variance as the weights, which causes biases towards studies with the largest sample size, typical of the European ancestry population. In this paper, we propose two empirical Bayes (EB) estimators to borrow the strength of information across populations although accounting for between-population heterogeneity. Extensive simulation studies show that the proposed EB estimators are largely unbiased and improve efficiency compared to the population-specific estimator. In contrast, even though the meta-analysis estimator has a much smaller variance, it yields significant bias when the genetic effect is heterogeneous across populations. We apply the proposed EB estimators to a large-scale trans-ancestry GWAS of stroke and demonstrate that the EB estimators reduce the variance of the population-specific estimator substantially, with the effect estimates close to the population-specific estimates.  相似文献   

17.
Any genome-wide analysis is hampered by reduced statistical power due to multiple comparisons. This is particularly true for interaction analyses, which have lower statistical power than analyses of associations. To assess gene–environment interactions in population settings we have recently proposed a statistical method based on a modified two-step approach, where first genetic loci are selected by their associations with disease and environment, respectively, and subsequently tested for interactions. We have simulated various data sets resembling real world scenarios and compared single-step and two-step approaches with respect to true positive rate (TPR) in 486 scenarios and (study-wide) false positive rate (FPR) in 252 scenarios. Our simulations confirmed that in all two-step methods the two steps are not correlated. In terms of TPR, two-step approaches combining information on gene-disease association and gene–environment association in the first step were superior to all other methods, while preserving a low FPR in over 250 million simulations under the null hypothesis. Our weighted modification yielded the highest power across various degrees of gene–environment association in the controls. An optimal threshold for step 1 depended on the interacting allele frequency and the disease prevalence. In all scenarios, the least powerful method was to proceed directly to an unbiased full interaction model, applying conventional genome-wide significance thresholds. This simulation study confirms the practical advantage of two-step approaches to interaction testing over more conventional one-step designs, at least in the context of dichotomous disease outcomes and other parameters that might apply in real-world settings.  相似文献   

18.
Population stratification has long been recognized as an issue in genetic association studies because unrecognized population stratification can lead to both false‐positive and false‐negative findings and can obscure true association signals if not appropriately corrected. This issue can be even worse in rare variant association analyses because rare variants often demonstrate stronger and potentially different patterns of stratification than common variants. To correct for population stratification in genetic association studies, we proposed a novel method to Test the effect of an Optimally Weighted combination of variants in Admixed populations (TOWA) in which the analytically derived optimal weights can be calculated from existing phenotype and genotype data. TOWA up weights rare variants and those variants that have strong associations with the phenotype. Additionally, it can adjust for the direction of the association, and allows for local ancestry difference among study subjects. Extensive simulations show that the type I error rate of TOWA is under control in the presence of population stratification and it is more powerful than existing methods. We have also applied TOWA to a real sequencing data. Our simulation studies as well as real data analysis results indicate that TOWA is a useful tool for rare variant association analyses in admixed populations.  相似文献   

19.
Recent studies suggest that rare variants play an important role in the etiology of many traits. Although a number of methods have been developed for genetic association analysis of rare variants, they all assume a relatively homogeneous population under study. Such an assumption may not be valid for samples collected from admixed populations such asAfricanAmericans andHispanicAmericans as there is a great extent of local variation in ancestry in these populations. To ensure valid and more powerful rare variant association tests performed in admixed populations, we have developed a local ancestry‐based weighted dosage test, which is able to take into account local ancestry of rare alleles, uncertainties in rare variant imputation when imputed data are included, and the direction of effect that rare variants exert on phenotypic outcome. We used simulated sequence data to show that our proposed test has controlled typeIerror rates, whereas naïve application of existing rare variants tests and tests that adjust for global ancestry lead to inflated type I error rates. We showed that our test has higher power than tests without proper adjustment of ancestry. We also applied the proposed method to a candidate gene study on low‐density lipoprotein cholesterol. Our results suggest that it is important to appropriately control for potential population stratification induced by local ancestry difference in the analysis of rare variants in admixed populations.  相似文献   

20.
In a recent genome-wide association study (GWAS) from an international consortium, evidence of linkage and association in chr8q24 was much stronger among nonsyndromic cleft lip/palate (CL/P) case-parent trios of European ancestry than among trios of Asian ancestry. We examined marker information content and haplotype diversity across 13 recruitment sites (from Europe, United States, and Asia) separately, and conducted principal components analysis (PCA) on parents. As expected, PCA revealed large genetic distances between Europeans and Asians, and a north-south cline from Korea to Singapore in Asia, with Filipino parents forming a somewhat distinct Southeast Asian cluster. Hierarchical clustering of SNP heterozygosity revealed two major clades consistent with PCA results. All genotyped SNPs giving P < 10(-6) in the allelic transmission disequilibrium test (TDT) showed higher heterozygosity in Europeans than Asians. On average, European ancestry parents had higher haplotype diversity than Asians. Imputing additional variants across chr8q24 increased the strength of statistical evidence among Europeans and also revealed a significant signal among Asians (although it did not reach genome-wide significance). Tests for SNP-population interaction were negative, indicating the lack of strong signal for 8q24 in families of Asian ancestry was not due to any distinct genetic effect, but could simply reflect low power due to lower allele frequencies in Asians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号