首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In genome‐wide association studies (GWAS) genetic loci that influence complex traits are localized by inspecting associations between genotypes of genetic markers and the values of the trait of interest. On the other hand, admixture mapping, which is performed in case of populations consisting of a recent mix of two ancestral groups, relies on the ancestry information at each locus (locus‐specific ancestry). Recently it has been proposed to jointly model genotype and locus‐specific ancestry within the framework of single marker tests. Here, we extend this approach for population‐based GWAS in the direction of multimarker models. A modified version of the Bayesian information criterion is developed for building a multilocus model that accounts for the differential correlation structure due to linkage disequilibrium (LD) and admixture LD. Simulation studies and a real data example illustrate the advantages of this new approach compared to single‐marker analysis or modern model selection strategies based on separately analyzing genotype and ancestry data, as well as to single‐marker analysis combining genotypic and ancestry information. Depending on the signal strength, our procedure automatically chooses whether genotypic or locus‐specific ancestry markers are added to the model. This results in a good compromise between the power to detect causal mutations and the precision of their localization. The proposed method has been implemented in R and is available at http://www.math.uni.wroc.pl/~mbogdan/admixtures/ .  相似文献   

2.
Association analysis using admixed populations imposes challenges and opportunities for disease mapping. By developing some explicit results for the variance of an allele of interest conditional on either local or global ancestry and by simulation of recently admixed genomes we evaluate power and false‐positive rates under a variety of scenarios concerning linkage disequilibrium (LD) and the presence of unmeasured variants. Pairwise LD patterns were compared between admixed and nonadmixed populations using the HapMap phase 3 data. Based on the above, we showed that as follows:
    相似文献   

3.
The family-based admixture mapping test (AMT) identifies disease-related genes using family data from admixed individuals with the disease of interest (cases). The cases' genotypes at a set of markers are used to infer their DNA ancestry as it varies in blocks along the chromosomes. The test compares the cases' inferred ancestries to those expected from their family histories. Deviation between observed and expected ancestries in a region suggests the presence of a disease gene. We use a likelihood-based development of the AMT to compare it with the transmission disequilibrium test (TDT) as applied to admixed populations. The two tests have a common framework but differ significantly when the disease locus is untyped. The TDT infers disease-locus genotypes using the markers with which it is in linkage disequilibrium (LD). In contrast, the AMT infers disease locus ancestries using those of its linked markers. Thus, TDT power depends on LD between disease and marker loci, while AMT power depends on the lengths of the ancestry blocks containing the disease locus. We compare the power of the two tests when applied to cases with descent from two ancestral populations. The AMT outperforms the TDT when case marker ancestries are correctly specified and LD between disease and marker loci is less than one-third its maximal value (Delta' < 1/3). However, the TDT performs better in the presence of uncertain marker ancestries, even for weak LD between disease and marker loci (Delta' = 0.1). These findings have implications for the design of studies using admixed populations.  相似文献   

4.
Recent studies suggest that rare variants play an important role in the etiology of many traits. Although a number of methods have been developed for genetic association analysis of rare variants, they all assume a relatively homogeneous population under study. Such an assumption may not be valid for samples collected from admixed populations such asAfricanAmericans andHispanicAmericans as there is a great extent of local variation in ancestry in these populations. To ensure valid and more powerful rare variant association tests performed in admixed populations, we have developed a local ancestry‐based weighted dosage test, which is able to take into account local ancestry of rare alleles, uncertainties in rare variant imputation when imputed data are included, and the direction of effect that rare variants exert on phenotypic outcome. We used simulated sequence data to show that our proposed test has controlled typeIerror rates, whereas naïve application of existing rare variants tests and tests that adjust for global ancestry lead to inflated type I error rates. We showed that our test has higher power than tests without proper adjustment of ancestry. We also applied the proposed method to a candidate gene study on low‐density lipoprotein cholesterol. Our results suggest that it is important to appropriately control for potential population stratification induced by local ancestry difference in the analysis of rare variants in admixed populations.  相似文献   

5.
We describe a novel method for inferring the local ancestry of admixed individuals from dense genome‐wide single nucleotide polymorphism data. The method, called MULTIMIX, allows multiple source populations, models population linkage disequilibrium between markers and is applicable to datasets in which the sample and source populations are either phased or unphased. The model is based upon a hidden Markov model of switches in ancestry between consecutive windows of loci. We model the observed haplotypes within each window using a multivariate normal distribution with parameters estimated from the ancestral panels. We present three methods to fit the model—Markov chain Monte Carlo sampling, the Expectation Maximization algorithm, and a Classification Expectation Maximization algorithm. The performance of our method on individuals simulated to be admixed with European and West African ancestry shows it to be comparable to HAPMIX, the ancestry calls of the two methods agreeing at 99.26% of loci across the three parameter groups. In addition to it being faster than HAPMIX, it is also found to perform well over a range of extent of admixture in a simulation involving three ancestral populations. In an analysis of real data, we estimate the contribution of European, West African and Native American ancestry to each locus in the Mexican samples of HapMap, giving estimates of ancestral proportions that are consistent with those previously reported.  相似文献   

6.
Admixture mapping is potentially a powerful method for mapping genes for complex human diseases, when the disease frequency due to a particular disease-susceptible gene is different between founding populations of different ethnicity. The method tests for association of the allele ancestry with the disease. Since the markers used to define ancestral populations are not fully informative for the ancestry status, direct test of such association is not possible. In this report, we develop a unified hidden Markov model (HMM) framework for estimating the unobserved ancestry haplotypes across a chromosomal region based on marker haplotype or genotype data. The HMM efficiently utilizes all the marker data to infer the latent ancestry states at the putative disease locus. In this HMM modelling framework, we develop a likelihood test for association of allele ancestry and the disease risk based on case-control data. Existence of such association may imply linkage between the candidate locus and the disease locus. We evaluate by simulations how several factors affect the power of admixture mapping, including sample size, ethnicity relative risk, marker density, and the different admixture dynamics. Our simulation results indicate correct type 1 error rates of the proposed likelihood ratio tests and great impact of marker density on the power. The simulation results also indicate that the methods work well for the admixed populations derived from both hybrid-isolation and continuous gene-flowing models. Finally, we observed that the genotype-based HMM performs very similarly in power as the haplotype-based HMM when the haplotypes are known and the set of markers is highly informative.  相似文献   

7.
Genetic association studies in admixed populations allow us to gain deeper understanding of the genetic architecture of human diseases and traits. However, population stratification, complicated linkage disequilibrium (LD) patterns, and the complex interplay of allelic and ancestry effects on phenotypic traits pose challenges in such analyses. These issues may lead to detecting spurious associations and/or result in reduced statistical power. Fortunately, if handled appropriately, these same challenges provide unique opportunities for gene mapping. To address these challenges and to take these opportunities, we propose a robust and powerful two‐step testing procedure Local Ancestry Adjusted Allelic (LAAA) association. In the first step, LAAA robustly captures associations due to allelic effect, ancestry effect, and interaction effect, allowing detection of effect heterogeneity across ancestral populations. In the second step, LAAA identifies the source of association, namely allelic, ancestry, or the combination. By jointly modeling allele, local ancestry, and ancestry‐specific allelic effects, LAAA is highly powerful in capturing the presence of interaction between ancestry and allele effect. We evaluated the validity and statistical power of LAAA through simulations over a broad spectrum of scenarios. We further illustrated its usefulness by application to the Candidate Gene Association Resource (CARe) African American participants for association with hemoglobin levels. We were able to replicate independent groups’ previously identified loci that would have been missed in CARe without joint testing. Moreover, the loci, for which LAAA detected potential effect heterogeneity, were replicated among African Americans from the Women's Health Initiative study. LAAA is freely available at https://yunliweb.its.unc.edu/LAAA .  相似文献   

8.
Genetic association studies in admixed populations may be biased if individual ancestry varies within the population and the phenotype of interest is associated with ancestry. However, recently admixed populations also offer potential benefits in association studies since markers informative for ancestry may be in linkage disequilibrium across large distances. In particular, the enhanced LD in admixed populations may be used to identify alleles that underlie a genetically determined difference in a phenotype between two ancestral populations. Asthma is known to have different prevalence and severity among ancestrally distinct populations. We investigated several asthma-related phenotypes in two ancestrally admixed populations: Mexican Americans and Puerto Ricans. We used ancestry informative markers to estimate the individual ancestry of 181 Mexican American asthmatics and 181 Puerto Rican asthmatics and tested whether individual ancestry is associated with any of these phenotypes independently of known environmental factors. We found an association between higher European ancestry and more severe asthma as measured by both forced expiratory volume at 1 second (r=-0.21, p=0.005) and by a clinical assessment of severity among Mexican Americans (OR: 1.55; 95% CI 1.25 to 1.93). We found no significant associations between ancestry and severity or drug responsiveness among Puerto Ricans. These results suggest that asthma severity may be influenced by genetic factors differentiating Europeans and Native Americans in Mexican Americans, although differing results for Puerto Ricans require further investigation.  相似文献   

9.
The role played by epistasis between alleles at unlinked loci in shaping population fitness has been debated for many years and the existing evidence has been mainly accumulated from model organisms. In model organisms, fitness epistasis can be systematically inferred by detecting nonindependence of genotypic values between loci in a population and confirmed through examining the number of offspring produced in two‐locus genotype groups. No systematic study has been conducted to detect epistasis of fitness in humans owing to experimental constraints. In this study, we developed a novel method to detect fitness epistasis by testing the correlation between local ancestries on different chromosomes in an admixed population. We inferred local ancestry across the genome in 16,252 unrelated African Americans and systematically examined the pairwise correlations between the genomic regions on different chromosomes. Our analysis revealed a pair of genomic regions on chromosomes 4 and 6 that show significant local ancestry correlation (P‐value = 4.01 × 10?8) that can be potentially attributed to fitness epistasis. However, we also observed substantial local ancestry correlation that cannot be explained by systemic ancestry inference bias. To our knowledge, this study is the first to systematically examine evidence of fitness epistasis across the human genome.  相似文献   

10.
The power of transmission/disequilibrium tests (TDTs) for detecting disease susceptibility loci is expected to be influenced by population admixture through its impact on the degree of linkage disequilibrium (LD) between the genetic marker and the DSL. However, few studies have been done to systematically examine this behavior of the TDTs in admixed populations. In the present study, extensive computer simulations were conducted to explore how population admixture affects the power of TDTs. It was found that (1) in newly admixed populations, the LD due to admixture makes no contribution to the power of TDTs, and it is the averaged background LD in the parental populations that determines the power of TDTs; but (2) after random mating between the admixed populations, the LD due to admixture becomes effective in increasing or decreasing the power of the tests, and (3) incomplete random mating can prolong the time for the LD due to admixture to become effective. This study clarifies the potential influence of population admixture on the performance of TDTs.  相似文献   

11.
During the last decade genome-wide association studies have proven to be a powerful approach to identifying disease-causing variants. However, for admixed populations, most current methods for association testing are based on the assumption that the effect of a genetic variant is the same regardless of its ancestry. This is a reasonable assumption for a causal variant but may not hold for the genetic variants that are tested in genome-wide association studies, which are usually not causal. The effects of noncausal genetic variants depend on how strongly their presence correlate with the presence of the causal variant, which may vary between ancestral populations because of different linkage disequilibrium patterns and allele frequencies. Motivated by this, we here introduce a new statistical method for association testing in recently admixed populations, where the effect size is allowed to depend on the ancestry of a given allele. Our method does not rely on accurate inference of local ancestry, yet using simulations we show that in some scenarios it gives a substantial increase in statistical power to detect associations. In addition, the method allows for testing for difference in effect size between ancestral populations, which can be used to help determine if a given genetic variant is causal. We demonstrate the usefulness of the method on data from the Greenlandic population.  相似文献   

12.
Admixed populations arise when two or more previously isolated populations interbreed. Admixture mapping (AM) methods are used for tracing the ancestral origin of disease-susceptibility genetic loci in the admixed population such as African American and Latinos. AM is different from genome-wide association studies in that ancestry rather than genotypes are tracked in the association process. The power and sample size of AM primarily depend on proportion of admixture and differences in the risk allele frequencies among the ancestral populations. Ensuring sufficient power to detect the effect of ancestry on disease susceptibility is critical for interpretability and reliability of studies using AM approach. However, there is no power and sample size analysis tool existing for AM studies in admixed population. In this study, we developed power analysis of multiancestry AM (PAMAM) to estimate power and sample size for two-way and three-way population admixtures. PAMAM is the first web-based bioinformatics tool developed to calculate power and sample size in admixed population under a variety of genetic and disease phenotype models. It is a valuable resource for investigators to design a cost-efficient study and develop grant application to pursue AM studies. PAMAM is built on JavaScript back-end with HTML front-end. It is accessible through any modern web browser such as Firefox, Internet Explorer, and Google Chrome regardless of operating system. It is a user-friendly tool containing links for support information including user manual and examples, and freely available at https://research.cchmc.org/mershalab/PAMAM/login.html .  相似文献   

13.
Imputation in admixed populations is an important problem but challenging due to the complex linkage disequilibrium (LD) pattern. The emergence of large reference panels such as that from the 1,000 Genomes Project enables more accurate imputation in general, and in particular for admixed populations and for uncommon variants. To efficiently benefit from these large reference panels, one key issue to consider in modern genotype imputation framework is the selection of effective reference panels. In this work, we consider a number of methods for effective reference panel construction inside a hidden Markov model and specific to each target individual. These methods fall into two categories: identity‐by‐state (IBS) based and ancestry‐weighted approach. We evaluated the performance on individuals from recently admixed populations. Our target samples include 8,421 African Americans and 3,587 Hispanic Americans from the Women' Health Initiative, which allow assessment of imputation quality for uncommon variants. Our experiments include both large and small reference panels; large, medium, and small target samples; and in genome regions of varying levels of LD. We also include BEAGLE and IMPUTE2 for comparison. Experiment results with large reference panel suggest that our novel piecewise IBS method yields consistently higher imputation quality than other methods/software. The advantage is particularly noteworthy among uncommon variants where we observe up to 5.1% information gain with the difference being highly significant (Wilcoxon signed rank test P‐value < 0.0001). Our work is the first that considers various sensible approaches for imputation in admixed populations and presents a comprehensive comparison.  相似文献   

14.
In case‐control single nucleotide polymorphism (SNP) data, the allele frequency, Hardy Weinberg Disequilibrium, and linkage disequilibrium (LD) contrast tests are three distinct sources of information about genetic association. While all three tests are typically developed in a retrospective context, we show that prospective logistic regression models may be developed that correspond conceptually to the retrospective tests. This approach provides a flexible framework for conducting a systematic series of association analyses using unphased genotype data and any number of covariates. For a single stage study, two single‐marker tests and four two‐marker tests are discussed. The true association models are derived and they allow us to understand why a model with only a linear term will generally fit well for a SNP in weak LD with a causal SNP, whatever the disease model, but not for a SNP in high LD with a non‐additive disease SNP. We investigate the power of the association tests using real LD parameters from chromosome 11 in the HapMap CEU population data. Among the single‐marker tests, the allelic test has on average the most power in the case of an additive disease, but for dominant, recessive, and heterozygote disadvantage diseases, the genotypic test has the most power. Among the four two‐marker tests, the Allelic‐LD contrast test, which incorporates linear terms for two markers and their interaction term, provides the most reliable power overall for the cases studied. Therefore, our result supports incorporating an interaction term as well as linear terms in multi‐marker tests. Genet. Epidemiol. 34:67–77, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
This study investigated cumulative vulnerability/protection models of individual‐level factors (child's attachment relationship and sense of coherence –SOC) and family‐level factors (mothers' emotional resources), as explaining differences in socio‐emotional and behavioral adjustment among children with learning disabilities (LD) or typical development, age 8–12. Participants included 205 mother‐child dyads (107 LD, 98 typical). Preliminary analyses indicated significant group differences on all but one child measure. SEM analysis revealed high fit between the theoretical model and empirical findings. Model components interrelated differently for the two populations. Outcomes accentuated the potentially meaningful role of mothers' affect and attachment for children's adjustment and children's mediating variables. Findings also highlighted children's attachment and SOC as mediating associations between maternal emotional resources and children's well‐adjusted functioning.  相似文献   

17.
Genome‐wide association studies (GWAS) of common disease have been hugely successful in implicating loci that modify disease risk. The bulk of these associations have proven robust and reproducible, in part due to community adoption of statistical criteria for claiming significant genotype‐phenotype associations. As the cost of sequencing continues to drop, assembling large samples in global populations is becoming increasingly feasible. Sequencing studies interrogate not only common variants, as was true for genotyping‐based GWAS, but variation across the full allele frequency spectrum, yielding many more (independent) statistical tests. We sought to empirically determine genome‐wide significance thresholds for various analysis scenarios. Using whole‐genome sequence data, we simulated sequencing‐based disease studies of varying sample size and ancestry. We determined that future sequencing efforts in >2,000 samples of European, Asian, or admixed ancestry should set genome‐wide significance at approximately P = 5 × 10?9, and studies of African samples should apply a more stringent genome‐wide significance threshold of P = 1 × 10?9. Adoption of a revised multiple test correction will be crucial in avoiding irreproducible claims of association.  相似文献   

18.

1 Background

Epistasis and gene‐environment interactions are known to contribute significantly to variation of complex phenotypes in model organisms. However, their identification in human association studies remains challenging for myriad reasons. In the case of epistatic interactions, the large number of potential interacting sets of genes presents computational, multiple hypothesis correction, and other statistical power issues. In the case of gene‐environment interactions, the lack of consistently measured environmental covariates in most disease studies precludes searching for interactions and creates difficulties for replicating studies.

2 Results

In this work, we develop a new statistical approach to address these issues that leverages genetic ancestry, defined as the proportion of ancestry derived from each ancestral population (e.g., the fraction of European/African ancestry in African Americans), in admixed populations. We applied our method to gene expression and methylation data from African American and Latino admixed individuals, respectively, identifying nine interactions that were significant at . We show that two of the interactions in methylation data replicate, and the remaining six are significantly enriched for low P‐values ().

3 Conclusion

We show that genetic ancestry can be a useful proxy for unknown and unmeasured covariates in the search for interaction effects. These results have important implications for our understanding of the genetic architecture of complex traits.  相似文献   

19.
Accurate genetic association studies are crucial for the detection and the validation of disease determinants. One of the main confounding factors that affect accuracy is population stratification, and great efforts have been extended for the past decade to detect and to adjust for it. We have now efficient solutions for population stratification adjustment for single‐SNP (where SNP is single‐nucleotide polymorphisms) inference in genome‐wide association studies, but it is unclear whether these solutions can be effectively applied to rare variation studies and in particular gene‐based (or set‐based) association methods that jointly analyze multiple rare and common variants. We examine here, both theoretically and empirically, the performance of two commonly used approaches for population stratification adjustment—genomic control and principal component analysis—when used on gene‐based association tests. We show that, different from single‐SNP inference, genes with diverse composition of rare and common variants may suffer from population stratification to various extent. The inflation in gene‐level statistics could be impacted by the number and the allele frequency spectrum of SNPs in the gene, and by the gene‐based testing method used in the analysis. As a consequence, using a universal inflation factor as a genomic control should be avoided in gene‐based inference with sequencing data. We also demonstrate that caution needs to be exercised when using principal component adjustment because the accuracy of the adjusted analyses depends on the underlying population substructure, on the way the principal components are constructed, and on the number of principal components used to recover the substructure.  相似文献   

20.
Polygenic risk scores (PRSs) are a method to summarize the additive trait variance captured by a set of SNPs, and can increase the power of set‐based analyses by leveraging public genome‐wide association study (GWAS) datasets. PRS aims to assess the genetic liability to some phenotype on the basis of polygenic risk for the same or different phenotype estimated from independent data. We propose the application of PRSs as a set‐based method with an additional component of adjustment for linkage disequilibrium (LD), with potential extension of the PRS approach to analyze biologically meaningful SNP sets. We call this method POLARIS: POlygenic Ld‐Adjusted RIsk Score. POLARIS identifies the LD structure of SNPs using spectral decomposition of the SNP correlation matrix and replaces the individuals' SNP allele counts with LD‐adjusted dosages. Using a raw genotype dataset together with SNP effect sizes from a second independent dataset, POLARIS can be used for set‐based analysis. MAGMA is an alternative set‐based approach employing principal component analysis to account for LD between markers in a raw genotype dataset. We used simulations, both with simple constructed and real LD‐structure, to compare the power of these methods. POLARIS shows more power than MAGMA applied to the raw genotype dataset only, but less or comparable power to combined analysis of both datasets. POLARIS has the advantages that it produces a risk score per person per set using all available SNPs, and aims to increase power by leveraging the effect sizes from the discovery set in a self‐contained test of association in the test dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号