首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Previously, we and others documented that statins including‐lovastatin (LOV) promote the differentiation of oligodendrocyte progenitor cells (OPCs) and remyelination in experimental autoimmune encephalomyelitis (EAE), an multiple sclerosis (MS) model. Conversely, some recent studies demonstrated that statins negatively influence oligodendrocyte (OL) differentiation in vitro and remyelination in a cuprizone‐CNS demyelinating model. Therefore, herein, we first investigated the cause of impaired differentiation of OLs by statins in vitro settings. Our observations indicated that the depletion of cholesterol was detrimental to LOV treated OPCs under cholesterol/serum‐deprived culture conditions similar to that were used in conflicting studies. However, the depletion of geranylgeranyl‐pp under normal cholesterol homeostasis conditions enhanced the phenotypic commitment and differentiation of LOV‐treated OPCs ascribed to inhibition of RhoA‐Rho kinase. Interestingly, this effect of LOV was associated with increased activation and expression of both PPAR‐γ and PTEN in OPCs as confirmed by various pharmacological and molecular based approaches. Furthermore, PTEN was involved in an inhibition of OPCs proliferation via PI3K‐Akt inhibition and induction of cell cycle arrest at G1 phase, but without affecting their cell survival. These effects of LOV on OPCs in vitro were absent in the CNS of normal rats chronically treated with LOV concentrations used in EAE indicating that PPAR‐γ induction in normal brain may be tightly regulated‐providing evidences that statins are therapeutically safe for humans. Collectively, these data provide initial evidence that statin‐mediated activation of the PPAR‐γ‐PTEN cascade participates in OL differentiation, thus suggesting new therapeutic‐interventions for MS or related CNS‐demyelinating diseases. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
Interest in erythropoietin (EPO) as a neuroprotective mediator has grown since it was found that systemically administered EPO is protective in several animal models of disease. However, given that the blood–brain barrier limits EPO entry into the brain, alternative approaches that induce endogenous EPO production in the brain may be more effective clinically and associated with fewer untoward side‐effects. Astrocytes are the main source of EPO in the central nervous system. In the present study we investigated the effect of the inflammatory cytokine tumor necrosis factor α (TNFα) on hypoxia‐induced upregulation of EPO in rat brain. Hypoxia significantly increased EPO mRNA expression in the brain and kidney, and this increase was suppressed by TNFα in vivo. In cultured astrocytes exposed to hypoxic conditions for 6 and 12 h, TNFα suppressed the hypoxia‐induced increase in EPO mRNA expression in a concentration‐dependent manner. TNFα inhibition of hypoxia‐induced EPO expression was mediated primarily by hypoxia‐inducible factor (HIF)‐2α rather than HIF‐1α. The effects of TNFα in reducing hypoxia‐induced upregulation of EPO mRNA expression probably involve destabilization of HIF‐2α, which is regulated by the nuclear factor (NF)‐κB signaling pathway. TNFα treatment attenuated the protective effects of astrocytes on neurons under hypoxic conditions via EPO signaling. The effective blockade of TNFα signaling may contribute to the maintenance of the neuroprotective effects of EPO even under hypoxic conditions with an inflammatory response.  相似文献   

5.
6.
7.
We earlier documented that lovastatin (LOV)‐mediated inhibition of small Rho GTPases activity protects vulnerable oligodendrocytes (OLs) in mixed glial cell cultures stimulated with Th1 cytokines and in a murine model of multiple sclerosis (MS). However, the precise mechanism of OL protection remains unclear. We here employed genetic and biochemical approaches to elucidate the underlying mechanism that protects LOV treated OLs from Th1 (tumor necrosis factor‐α) and Th17 (interleukin‐17) cytokines toxicity in in vitro. Cytokines enhanced the reactive oxygen species (ROS) generation and mitochondrial membrane depolarization with corresponding lowering of glutathione (reduced) level in OLs and that were reverted by LOV. In addition, the expression of ROS detoxifying enzymes (catalase and superoxide‐dismutase 2) and the transactivation of peroxisome proliferators‐activated receptor (PPAR)‐α/‐β/‐γ including PPAR‐γ coactivator‐1α were enhanced by LOV in similarly treated OLs. Interestingly, LOV‐mediated inhibition of small Rho GTPases, i.e., RhoA and cdc42, and Rho‐associated kinase (ROCK) activity enhanced the levels of PPAR ligands in OLs via extracellular signal regulated kinase (1/2)/p38 mitogen‐activated protein kinase/cytoplasmic phospholipase 2/cyclooxygenase‐2 signaling cascade activation. Small hairpin RNA transfection‐based studies established that LOV mainly enhances PPAR‐α and less so of PPAR‐β and PPAR‐γ transactivation that enhances ROS detoxifying defense in OLs. In support of this, the observed LOV‐mediated protection was lacking in PPAR‐α‐deficient OLs exposed to cytokines. Collectively, these data provide unprecedented evidence that LOV‐mediated inhibition of the Rho–ROCK signaling pathway boosts ROS detoxifying defense in OLs via PPAR‐α‐dependent mechanism that has implication in neurodegenerative disorders including MS.  相似文献   

8.
9.
Steroid receptor coactivator‐3 (SRC‐3) has been demonstrated to regulate lipid metabolism by inhibiting adipocyte differentiation. In this study, the potential role of SRC‐3 in experimental autoimmune encephalomyelitis (EAE), which characterized by inflammatory demyelination in central nervous system (CNS), was examined by analyzing disease progression in SRC‐3‐deficient (SRC‐3−/−) mice. We found that SRC‐3 deficiency significantly attenuated the disease severity of EAE along with decreased inflammatory infiltration and demyelination. However, these effects are not caused by inhibition of peripheral T cell response, but by upregulated expression of peroxisome proliferator‐activated receptor (PPAR)‐β in CNS, which induced an alternative activation state of microglia in SRC‐3−/− mice. These alternatively activated microglia inhibited CNS inflammation through inhibition of proinflammatory cytokines and chemokines, such as TNF‐α, IFN‐γ, CCL2, CCL3, CCL5, and CXCL10, as well as upregulation of anti‐inflammatory cytokine IL‐10 and opsonins, such as C1qa and C1qb. Moreover, microglia alternative activation promoted myelin regeneration through increased accumulation of oligodendrocyte precursors in white matter and elevated expression of myelin genes in the spinal cords of SRC‐3−/− mice. Our results build up a link between lipid metabolic regulation and immune functions, and the modulation of the expression of SRC‐3 or PPAR‐β may hopefully has therapeutic modality in MS and possibly other neurodegenerative diseases. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
α‐Synuclein is known to be a major component of Lewy bodies and glial cytoplasmic inclusions in the brains of patients with α‐synucleinopathies. Synphilin‐1, an α‐synuclein‐associated protein, is also present in these inclusions. However, little is known about the post‐translational modifications of synphilin‐1. In the present study, it is reported that synphilin‐1 is phosphorylated by glycogen synthase kinase‐3βin vitro. It is well known that protein phosphorylation is involved in various physiological phenomena, including signal transduction and protein degradation. Therefore, phosphorylation of synphilin‐1 may play an important role in the function of this protein in the brain.  相似文献   

11.
In the central nervous system, the extracellular matrix (ECM) compound laminin‐2, present on developing axons, is essential in regulating oligodendrocyte (OLG) maturation. For example, laminin‐2 is involved in mediating interactions between integrins and growth factors, initially localizing in separate membrane microdomains. The galactosphingolipid sulfatide is an important constituent of these microdomains and may serve as a receptor for laminin‐2. Here, we investigated whether sulfatide interferes with ECM–integrin interactions and, in this manner, modulates OLG maturation. Our data reveal that disruption of laminin‐2–sulfatide interactions impeded OLG differentiation and myelin‐like membrane formation. On laminin‐2, but not on (re)myelination‐inhibiting fibronectin, sulfatide laterally associated with integrin α6 in membrane microdomains. Sulfatide was partly excluded from membrane microdomains on fibronectin, thereby likely precluding laminin‐2‐mediated myelination. Anti‐sulfatide antibodies disrupted integrin α6‐PDGFαR interactions on laminin‐2 and induced demyelination in myelinated spheroid cultures, but intriguingly stimulated myelin‐like membrane formation on fibronectin. Taken together, these findings highlight the importance of laminin–sulfatide interactions in the formation of functional membrane microdomains essential for myelination. Thus, laminin–sulfatide interactions might control the asynchronous localized differentiation of OLGs, thereby allowing myelination to be triggered by axonal demand. Given the accumulation of fibronectin in multiple sclerosis lesions, the findings also provide a molecular rationale for the potential of anti‐sulfatide antibodies to trigger quiescent endogenous OLG progenitor cells in axon remyelination. GLIA 2014;62:927–942  相似文献   

12.
13.
PRP19α and CDC5L are major components of the active spliceosome. However, their association process is still unknown. Here, we demonstrated that PRP19α/14‐3‐3β/CDC5L complex formation is regulated by Akt during nerve growth factor (NGF)‐induced neuronal differentiation of PC12 cells. Analysis of PRP19α mutants revealed that the phosphorylation of PRP19α at Thr 193 by Akt was critical for its binding with 14‐3‐3β to translocate into the nuclei and for PRP19α/14‐3‐3β/CDC5L complex formation in neuronal differentiation. Forced expression of either sense PRP19α or sense 14‐3‐3β RNAs promoted NGF‐induced neuronal differentiation, whereas down‐regulation of these mRNAs showed a suppressive effect. The nonphosphorylation mutant PRP19αT193A lost its binding ability with 14‐3‐3β and acted as a dominant‐negative mutant in neuronal differentiation. These results imply that Akt‐dependent phosphorylation of PRP19α at Thr193 triggers PRP19α/14‐3‐3β/CDC5L complex formation in the nuclei, likely to assemble the active spliceosome against neurogenic pre‐mRNAs. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Glial activation and neuroinflammation contribute to pathogenesis of neurodegenerative diseases, linked to neuron loss and dysfunction. α‐Synuclein (α‐syn), as a metabolite of neuron, can induce microglia activation to trigger innate immune response. However, whether α‐syn, as well as its mutants (A53T, A30P, and E46K), induces astrocyte activation and inflammatory response is not fully elucidated. In this study, we used A53T mutant and wild‐type α‐syns to stimulate primary astrocytes in dose‐ and time‐dependent manners (0.5, 2, 8, and 20 μg/ml for 24 hr or 3, 12, 24, and 48 hr at 2 μg/ml), and evaluated activation of several canonical inflammatory pathway components. The results showed that A53T mutant or wild‐type α‐syn significantly upregulated mRNA expression of toll‐like receptor (TLR)2, TLR3, nuclear factor‐κB and interleukin (IL)‐1β, displaying a pattern of positive dose–effect correlation or negative time–effect correlation. Such upregulation was confirmed at protein levels of TLR2 (at 20 μg/ml), TLR3 (at most doses), and IL‐1β (at 3 hr) by western blotting. Blockage of TLR2 other than TLR4 inhibited TLR3 and IL‐1β mRNA expressions. By contrast, interferon (IFN)‐γ was significantly downregulated at mRNA, protein, and protein release levels, especially at high concentrations of α‐syns or early time‐points. These findings indicate that α‐syn was a TLRs‐mediated immunogenic agent (A53T mutant stronger than wild‐type α‐syn). The stimulation patterns suggest that persistent release and accumulation of α‐syn is required for the maintenance of innate immunity activation, and IFN‐γ expression inhibition by α‐syn suggests a novel immune molecule interaction mechanism underlying pathogenesis of neurodegenerative diseases.  相似文献   

15.
β‐Amyloid (Aβ) deposits and hyperphosphorylated tau aggregates are the chief hallmarks in the Alzheimer's disease (AD) brains, but the strategies for controlling these pathological events remain elusive. We hypothesized that CK2‐coupled SIRT1 activation stimulated by cilostazol suppresses tau acetylation (Ac‐tau) and tau phosphorylation (P‐tau) by inhibiting activation of P300 and GSK3β. Aβ was endogenously overproduced in N2a cells expressing human APP Swedish mutation (N2aSwe) by exposure to medium containing 1% fetal bovine serum for 24 hr. Increased Aβ accumulation was accompanied by increased Ac‐tau and P‐tau levels. Concomitantly, these cells showed increased P300 and GSK3β P‐Tyr216 expression; their expressions were significantly reduced by treatment with cilostazol (3–30 μM) and resveratrol (20 μM). Moreover, decreased expression of SIRT1 and its activity by Aβ were significantly reversed by cilostazol as by resveratrol. In addition, cilostazol strongly stimulated CK2α phosphorylation and its activity, and then stimulated SIRT1 phosphorylation. These effects were confirmed by using the pharmacological inhibitors KT5720 (1 μM, PKA inhibitor), TBCA (20 μM, inhibitor of CK2), and sirtinol (20 μM, SIRT1 inhibitor) as well as by SIRT1 gene silencing and overexpression techniques. In conclusion, increased cAMP‐dependent protein kinase‐linked CK2/SIRT1 expression by cilostazol can be a therapeutic strategy to suppress the tau‐related neurodegeneration in the AD brain. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
Peroxisome proliferator‐activated receptors γ coactivator‐1α (PGC‐1α) may regulate the mitochondrial antioxidant defense system under many neuropathological settings. However, the exact role of PGC‐1α in ischemic brain damage is still under debate. Based on an experimental model of transient global ischemia (TGI), this study evaluated the hypothesis that the activation of PGC‐1α signaling pathway protects hippocampal CA1 neurons against delayed neuronal death after TGI. In Sprague‐Dawley rats, significantly increased content of oxidized proteins in the hippocampal CA1 tissue was observed as early as 30 min after TGI, followed by augmentation of PGC‐1α expression at 1 hr. Expression of uncoupling protein 2 (UCP2) and superoxide dismutases 2 (SOD2) in the hippocampal CA1 neurons was upregulated 4–48 hr after TGI. In addition, knock‐down of PGC‐1α expression by pretreatment with a specific antisense oligodeoxynucleotide in the hippocampal CA1 subfield downregulated the expression of UCP2 and SOD2 with resultant exacerbation of oxidative stress and augmentation of delayed neuronal cell death in the hippocampus after TGI. Overall, our results indicate that PGC‐1α is induced by cerebral ischemia leading to upregulation of UCP2 and SOD2, thereby providing a neuroprotective effect against ischemic brain injury in the hippocampus by ameliorating oxidative stress. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The aggregation of β‐amyloid protein (Aβ) and α‐synuclein (αS) are hypothesized to be the key pathogenic event in Alzheimer's disease (AD) and Lewy body diseases (LBD), with oligomeric assemblies thought to be the most neurotoxic. Inhibitors of oligomer formation, therefore, could be valuable therapeutics for patients with AD and LBD. Here, we examined the effects of antiparkinsonian agents (dopamine, levodopa, trihexyphenidyl, selegiline, zonisamide, bromocriptine, peroxide, ropinirole, pramipexole, and entacapone) on the in vitro oligomer formation of Aβ40, Aβ42, and αS using a method of photo‐induced cross‐linking of unmodified proteins (PICUP), electron microscopy, and atomic force microscopy. The antiparkinsonian agents except for trihexyphenidyl inhibited both Aβ and αS oligomer formations, and, among them, dopamine, levodopa, pramipexole, and entacapone had the stronger in vitro activity. Circular dichroism and thioflavin T(S) assays showed that secondary structures of Aβ and αS assemblies inhibited by antiparkinsonian agents were statistical coil state and that their seeding activities had disappeared. The antiparkinsonian agents could be potential therapeutic agents to prevent or delay AD and LBD progression. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号