首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasmid-borne sfpA gene encodes the pilin subunit in sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H-. We investigated the distribution of sfpA among 600 E. coli isolates comprising the complete E. coli standard reference (ECOR) and diarrheagenic E. coli (DEC) strain collections and clinical isolates associated with enteric disease. sfpA was detected in DEC3F SF EHEC O157:H- strain 493/89, each of 107 SF EHEC O157:H- clinical isolates, and 14 Shiga toxin-negative SF E. coli O157:H- strains which contained eae, which encodes gamma-intimin, and fliC, which encodes the H7 antigen. sfpA was absent from all other strains, including the ECOR strain collection, all non-SF EHEC O157:H7 strains, and all E. coli O55:H7 strains (E. coli O55:H7 is the postulated ancestor of Shiga toxin-producing E. coli [STEC] O157). These results suggest that there was a single acquisition of the sfpA gene in the nonmotile SF E. coli O157 branch, presumably after the eae-encoding pathogenicity island (the locus of enterocyte effacement) was acquired and motility was lost. We then applied the sfpA PCR in combination with rfbO157, stx, and eae PCRs to screen 636 stool samples from patients with diarrhea or hemolytic-uremic syndrome for SF STEC O157:H-. In 27 cases, the simultaneous presence of the sfpA, eae, and rfbO157 amplicons indicated the presence of SF E. coli O157:H- strains, and the result was subsequently confirmed by isolation. All but two of these strains possessed stx2. None of the other stool samples was positive by the sfpA PCR; 59 of these stool samples contained EHEC O157:H7. The sfpA gene can be recommended as a target for screening for SF E. coli O157:H-.  相似文献   

2.
The large virulence plasmid pSFO157 of sorbitol-fermenting E. coli O157:H(-) strain 3072/96 has a size of 121,239bp and contains 96 open reading frames >50bp. It is therefore 29,162bp larger (ca. 32%) than plasmid pO157 of E. coli O157:H7 strain EDL933. Major differences between the plasmids are the absence of katP, espP, and toxB in pSFO157 and, instead of these, the presence of the sfp fimbriae gene cluster and a large part of an F-plasmid transfer region, the latter accounting for most of the additional DNA. The differences in the order of the genes and their composition, as well as the presence of a number of replication-associated genes and mobile genetic elements suggests that the large E. coli O157 virulence plasmids have a complex evolutionary origin.  相似文献   

3.
Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H(-) have emerged as important causes of diarrheal diseases and the hemolytic-uremic syndrome in Germany. In this study, we characterized a 32-kb fragment of the plasmid of SF EHEC O157:H(-), pSFO157, which differs markedly from plasmid pO157 of classical non-sorbitol-fermenting EHEC O157:H7. We found a cluster of six genes, termed sfpA, sfpH, sfpC, sfpD, sfpJ, and sfpG, which mediate mannose-resistant hemagglutination and the expression of fimbriae. sfp genes are similar to the pap genes, encoding P-fimbriae of uropathogenic E. coli, but the sfp cluster lacks homologues of genes encoding subunits of a tip fibrillum as well as regulatory genes. The major pilin, SfpA, despite its similarity to PapA, does not cluster together with known PapA alleles in a phylogenetic tree but is structurally related to the PmpA pilin of Proteus mirabilis. The putative adhesin gene sfpG, responsible for the hemagglutination phenotype, shows significant homology neither to papG nor to other known sequences. Sfp fimbriae are 3 to 5 nm in diameter, in contrast to P-fimbriae, which are 7 nm in diameter. PCR analyses showed that the sfp gene cluster is a characteristic of SF EHEC O157:H(-) strains and is not present in other EHEC isolates, diarrheagenic E. coli, or other Enterobacteriaceae. The sfp gene cluster is flanked by two blocks of insertion sequences and an origin of plasmid replication, indicating that horizontal gene transfer may have contributed to the presence of Sfp fimbriae in SF EHEC O157:H(-).  相似文献   

4.
We compared a collection of sorbitol-fermenting (SF) Escherichia coli O157:H- strains with SF E. coli O157:H45 and non-SF E. coli O157:H7 and E. coli O157:H- strains by pulsed-field gel electrophoresis. The SF E. coli O157:H- strains had identical or closely related XbaI patterns that differed markedly from those for the other E. coli O157 strains. Plasmid content and the presence of Shiga-like toxin-converting phages were determined for the SF E. coli O157:H- strains, indicating that these strains harbor a single 90-kb plasmid. They are lysogenized by toxin-converting phages and harbor the eae gene. Nonmotile E. coli O157 strains were observed to adhere more efficiently to HEp-2 cells than the motile strains. From their phenotypic and genotypic features, the SF E. coli O157:H- strains may well represent a new clone with non-SF E. coli O157:H7 pathogenic characteristics.  相似文献   

5.
A total of 66 (98.5%) of 67 enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains had increased potassium tellurite (Te) MICs (32 to 1,024 microg/ml), grew on Te-containing media, and possessed Te resistance (ter) genes, whereas 83 (96.5%) of 86 sorbitol-fermenting (SF) EHEC O157:NM strains had Te MICs of 相似文献   

6.
We identified a cytolethal distending toxin (cdt) gene cluster in 87, 6, and 0% of sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H(-), EHEC O157:H7, and E. coli O55:H7/H(-) strains, respectively. The toxin was expressed by the wild-type EHEC O157 strains and by a cdt-containing cosmid from a library of SF EHEC O157:H(-) strain 493/89. The cdt flanks in strain 493/89 were homologous to bacteriophages P2 and lambda. Our data demonstrate that cdt, encoding a potential virulence factor, is present in the EHEC O157 complex and suggest that cdt may have been acquired by phage transduction.  相似文献   

7.
Non-sorbitol-fermenting (NSF) Escherichia coli O157:H7 is the primary Shiga toxin-producing E. coli (STEC) serotype associated with human infection. Since 1988, sorbitol-fermenting (SF) STEC O157:NM strains have emerged and have been associated with a higher incidence of progression to hemolytic-uremic syndrome (HUS) than NSF STEC O157:H7. This study investigated bacterial factors that may account for the increased pathogenic potential of SF STEC O157:NM. While no evidence of toxin or toxin expression differences between the two O157 groups was found, the SF STEC O157:NM strains adhered at significantly higher levels to a human colonic cell line. Under the conditions tested, curli were shown to be the main factor responsible for the increased adherence to Caco-2 cells. Notably, 52 of 66 (79%) European SF STEC O157:NM strains tested bound Congo red at 37οC and this correlated with curli expression. In a subset of strains, curli expression was due to increased expression from the csgBAC promoter that was not always a consequence of increased csgD expression. The capacity of SF STEC O157:NM strains to express curli at 37οC may have relevance to the epidemiology of human infections as curliated strains could promote higher levels of colonization and inflammation in the human intestine. In turn, this could lead to increased toxin exposure and an increased likelihood of progression to HUS.  相似文献   

8.
Adherence of enterohemorrhagic Escherichia coli (EHEC) to the intestinal epithelium is critical for initiation of a bacterial infection. An in vitro infection study previously indicated that EHEC bacteria initially adhere diffusely and then proliferate to develop MC, a process that is mediated by various secreted proteins, such as EspA, EspB, EspD, Tir, and intimin, as well as other putative adherence factors. In the present study, we investigated the role of a large 93-kb plasmid (pO157) in the adherence of O157:H7 (O157Sakai) and found the toxB gene to be involved in the full adherence phenotype. A pO157-cured strain of O157Sakai (O157Cu) developed microcolonies on Caco-2 cells; however, the number of microcolonies was lower than that of O157Sakai, as were the production and secretion levels of EspA, EspB, and Tir. Introduction of a mini-pO157 plasmid (pIC37) composed of the toxB and ori regions restored full adherence capacity to O157Cu, including production and secretion of the proteins. In contrast, introduction of a pO157 mutant possessing toxB::Km into O157Cu could not restore the full adherence phenotype. Expression of truncated versions of His-tagged ToxB also promoted EspB production and/or secretion by O157Cu. These results suggest that ToxB contributes to the adherence of EHEC to epithelial cells through promotion of the production and/or secretion of type III secreted proteins.  相似文献   

9.
Enterohemorrhagic Escherichia coli (EHEC) infections in humans are an important public health problem and are commonly acquired via contact with ruminant feces. The serogroups that are predominantly associated with human infection in the United States and Europe are O157 and O26. Serotypes O157:H7 and O26:H- differ in their virulence and tissue tropism in calves and therefore may colonize calves by distinct mechanisms. The mechanisms underlying EHEC intestinal colonization and pathogenesis are poorly understood. Signature-tagged mutagenesis was used to identify 59 genes of EHEC O26:H- that are required for the intestinal colonization of calves. Our results indicate important roles for locus of enterocyte effacement (LEE)-encoded type III secreted proteins in intestinal colonization. In addition, colonization is facilitated by cytotoxins, putative type III secreted proteins unlinked to the LEE, a putative fimbrial operon, and numerous genes involved in central metabolism and transport and genes of unknown function. Our data also imply that the elaboration of type I fimbriae by EHEC O26:H- is disadvantageous for persistence within the bovine intestines. These observations have important implications for the design of vaccines to control these important zoonotic pathogens.  相似文献   

10.
Adherence of enterohemorrhagic Escherichia coli (EHEC) to the intestinal epithelium is essential for initiation of infection. Intimin is the only factor demonstrated to play a role in intestinal colonization by EHEC O157:H7. Other attempts to identify additional adhesion factors in vitro have been unsuccessful, suggesting that expression of these factors is under tight regulation. We sought to identify genes involved in the control of adherence of EHEC O157:H7 to cultured epithelial cells. A total of 5,000 independent transposon insertion mutants were screened for their ability to adhere to HeLa cells, and 7 mutants were isolated with a markedly enhanced adherence. The mutants adhered at levels 113 to 170% that of the wild-type strain, and analysis of the protein profiles of these mutants revealed several proteins differentially expressed under in vitro culture conditions. We determined the sequence of the differentially expressed proteins and further investigated the function of OmpA, whose expression was increased in a mutant with an insertionally inactivated tcdA gene. An isogenic ompA mutant showed reduced adherence compared to the parent strain. Disruption of the ompA gene in the tdcA mutant strain abolished the hyperadherent phenotype, and anti-OmpA serum inhibited adhesion of wild-type and tdcA mutant strains to HeLa cells. Enhanced adhesion mediated by OmpA was also observed with Caco-2 cells, and anti-OmpA serum blocked adherence to HeLa cells of other EHEC O157:H7 strains. Our results indicate that multiple elements control adherence and OmpA acts as an adhesin in EHEC O157:H7.  相似文献   

11.
12.
13.
Shiga-like toxin-producing Escherichia coli strains of serogroup O157 were identified in 26 of 104 patients with hemolytic-uremic syndrome and in 18 of 668 patients with diarrhea. All strains were identified by colony hybridization with DNA probes complementary to Shiga-like toxin I and Shiga-like toxin II gene sequences and characterized by biochemical tests and serotyping. Seventeen of these 44 patients had E. coli O157 strains which were unusual because they fermented sorbitol within 24 h of incubation and were positive for beta-glucuronidase activity. Culture filtrates of these sorbitol-fermenting strains were highly toxic to Vero cells in culture. Serological tests and DNA analysis performed by restriction endonuclease digestion of B-subunit toxin genes revealed that all 17 isolates produced Shiga-like toxin II. Although by using molecular probes we established a high frequency of sorbitol-fermenting E. coli O157 strains in the patients we examined, further studies on the prevalence of such isolates in other areas of endemic disease are clearly warranted.  相似文献   

14.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a diarrheal pathogen that causes attaching and effacing (A/E) lesions on intestinal epithelial cells. Strains of the O157 serogroup carry the large virulence plasmid pO157, which encodes the etp type II secretion system that secretes the genetically linked zinc metalloprotease StcE. The Ler regulator controls expression of many genes involved in A/E lesion formation, as well as StcE, suggesting StcE may be important at a similar time during colonization. Our laboratory has previously demonstrated that StcE cleaves C1-esterase inhibitor, a regulator of multiple inflammation pathways. Here we report two new substrates for StcE, mucin 7 and glycoprotein 340, and that purified StcE reduces the viscosity of human saliva. We tested the hypothesis that StcE contributes to intimate adherence of EHEC to host cells by cleavage of glycoproteins from the cell surface. The fluorescent actin stain (FAS) test was used to observe the intimate adherence represented by fluorescently stained bacteria colocalized with regions of bundled actin formed on HEp-2 cells. An E. coli O157:H7 strain with a stcE gene deletion was not affected in its ability to generally adhere to HEp-2 cells, but it did score threefold lower on the FAS test than wild-type or complemented strains. Addition of exogenous recombinant StcE increased intimate adherence of the mutant to wild-type levels. Thus, StcE may help block host clearance of E. coli O157:H7 by destruction of some classes of glycoproteins, and it contributes to intimate adherence of E. coli O157:H7 to the HEp-2 cell surface.  相似文献   

15.
The mechanisms underlying the adherence of Escherichia coli O157:H7 and other enterohemorrhagic E. coli (EHEC) strains to intestinal epithelial cells are poorly understood. We have identified a chromosomal region (designated lpfABCC'DE) in EHEC O157:H7 containing six putative open reading frames that was found to be closely related to the long polar (LP) fimbria operon (lpf) of Salmonella enterica serovar Typhimurium, both in gene order and in conservation of the deduced amino acid sequences. We show that lpfABCC'DE is organized as an operon and that its expression is induced during the exponential growth phase. The lpf genes from EHEC strain EDL933 were introduced into a nonfimbriated (Fim(-)) E. coli K-12 strain, and the transformed strain produced fimbriae as visualized by electron microscopy and adhered to tissue culture cells. Anti-LpfA antiserum recognized a ca. 16-kDa LpfA protein when expressed under regulation of the T7 promoter system. The antiserum also cross-reacted with the LP fimbriae in immunogold electron microscopy and Western blot experiments. Isogenic E. coli O157:H7 lpf mutants derived from strains 86-24 and AGT300 showed slight reductions in adherence to tissue culture cells and formed fewer microcolonies compared with their wild-type parent strains. The adherence and microcolony formation phenotypes were restored when the lpf operon was introduced on a plasmid. We propose that LP fimbriae participate in the interaction of E. coli O157:H7 with eukaryotic cells by assisting in microcolony formation.  相似文献   

16.
《Research in microbiology》2017,168(3):188-193
As major food-borne pathogens worldwide, Escherichia coli are capable of toxin production directly causing severe human disease. However, routine methods are incapable of detecting viable but non-culturable (VBNC) bacteria in food products and raw materials, leading to false-negative identification. In this study, VBNC E. coli O157 strains were acquired after cryopreservation at −20 °C, with and without freeze-thawing; morphology was observed to be of shorter rod-shape, and toxin expression remained at relatively high levels. PMA-PCR assay for VBNC detection was also validated. Therefore, these results suggest that VBNC E. coli O157 strains may represent a strong threat to public health and food safety.  相似文献   

17.
18.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) trigger actin polymerization at the site of bacterial adhesion by inducing different signaling pathways. Actin assembly by EPEC requires tyrosine phosphorylation of Tir, which subsequently binds the host adaptor protein Nck. In contrast, Tir(EHEC O157) is not tyrosine phosphorylated and instead of Nck utilizes the bacterially encoded Tir-cytoskeleton coupling protein (TccP)/EspF(U), which mimics the function of Nck. tccP is carried on prophage CP-933U/Sp14 (TccP). Typical isolates of EHEC O157:H7 harbor a pseudo-tccP gene that is carried on prophage CP-933 M/Sp4 (tccP2). Here we report that atypical, beta-glucuronidase-positive and sorbitol-fermenting, strains of EHEC O157 harbor intact tccP and tccP2 genes, both of which are secreted by the LEE-encoded type III secretion system. Non-O157 EHEC strains, including O26, O103, O111, and O145, are typically tccP negative and translocate a Tir protein that encompasses an Nck binding site. Unexpectedly, we found that most clinical non-O157 EHEC isolates carry a functional tccP2 gene that encodes a secreted protein that can complement an EHEC O157:H7 DeltatccP mutant. Using discriminatory, allele-specific PCR, we have demonstrated that over 90% of tccP2-positive non-O157 EHEC strains contain a Tir protein that can be tyrosine phosphorylated. These results suggest that the TccP pathway can be used by both O157 and non-O157 EHEC and that non-O157 EHEC can also trigger actin polymerization via the Nck pathway.  相似文献   

19.
Intimin, the product of the eaeA gene in enterohemorrhagic Escherichia coli O157:H7 (EHEC), is required for intimate adherence of these organisms to tissue culture cells and formation of the attaching and effacing lesion in the gnotobiotic pig. Because of the importance of intimin in the pathogenesis of EHEC O157:H7 infection in this animal model, we began a structure-function analysis of EaeA. For this purpose, we constructed amino-terminal fusions of the intimin protein with six histidine residues to form two independent fusions. The longer fusion, RIHisEae, contained 900 of the 935 predicted amino acids and included all but the extreme amino terminus. The second fusion, RVHdHisEae, consisted of the carboxyl two-thirds of the protein. Purified extracts of either construct enhanced binding of wild-type 86-24 to HEp-2 cells and conferred HEp-2 cell adherence on 86-24eaeDelta10, an eaeA deletion mutant, and B2F1, an EHEC O91:1-121 eaeA mutant strain. When 86-24eaeDelta10 was transformed with either of the plasmids encoding the intimin fusion proteins, the transformant behaved like the wild-type parent strain and displayed localized adherence to HEp-2 cells, with positive fluorescent-actin staining. In addition, polyclonal antisera raised against RIHisEae reacted with both fusion constructs and recognized an outer membrane protein of the same mass as intimin (97 kDa) in EHEC and enteropathogenic E. coli but not E. coli K-12. The intimin-specific antisera also blocked adherence of EHEC to HEp-2 cells. Thus, intimin (i) is a 97-kDa outer membrane protein in EHEC that serves as a requisite adhesin for attachment of the bacteria to epithelial cells, even when the protein is truncated by one-third at its amino terminus and (ii) can be added exogenously to specifically facilitate HEp-2 cell adherence of EHEC but not E. coli K-12.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号