首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reducing the acquisition time of whole-body fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) (corrected for attenuation) is of major importance in clinical practice. With the introduction of lutetium oxyorthosilicate (LSO), the acquisition time can be dramatically reduced, provided that patients are injected with larger amounts of tracer and/or the system is operated in 3D mode. The aim of this study was to determine the optimal dose of 18F-FDG required in order to achieve good-to-excellent image quality when a "3-min emission, 2-min transmission/bed position" protocol is used for an LSO PET camera. A total of 218 consecutive whole-body 18F-FDG PET studies were evaluated retrospectively. After excluding patients with liver metastases, hyperglycaemia and paravenous injections, the final study population consisted of 186 subjects (112 men, 74 women, age 59±15 years). Patients were injected with an activity of 18F-FDG ranging from 2.23 to 15.21 MBq/kg. Whole-body images corrected for attenuation (3 min emission, 2 min transmission/bed position) were acquired with an LSO PET camera (Ecat Accel,Siemens) 60 min after tracer administration. Patients were positioned with their arms along the body. Image reconstruction was done iteratively and a post-reconstruction filter was applied. Image quality was scored visually by two independent observers using a five-point scoring scale (poor, reasonable, good, very good, excellent). In addition, the coefficient of variability (COV) was measured in a region of interest over the liver in order to quantify noise. Of the images obtained in 118 patients injected with 8 MBq/kg 18F-FDG, 92% and 90% were classified as good, very good or excellent by observer 1 and observer 2, respectively. The COV averaged 10.63%±3.19% for doses 8 MBq/kg and 16.46%±5.14% for doses <8 MBq/kg. Administration of an 18F-FDG dose of 8 MBq/kg results in images of good to excellent quality in the vast majority of patients when using an LSO PET camera and applying a 3-min emission, 2-min transmission/bed position acquisition protocol. At lower doses, a rapid decline in image quality and increasing noise are observed. Alternative protocols should be adopted in order to compensate for the loss in image quality when doses <8 MBq/kg are used.  相似文献   

2.
Purpose In patients with medullary thyroid carcinoma (MTC), rising levels of the tumour markers calcitonin and CEA after primary surgery indicate tumour recurrence or metastases. The only chance of cure is the resection of localised tumour tissue. For positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) and 18F-dihydroxyphenylalanine (18F-DOPA), sensitivities of 78% and 63% have been reported, but in a considerable percentage of MTC patients the source of tumour marker elevation is not detected. The aim of this retrospective data evaluation was to compare the value of PET with 18F-FDG, 18F-DOPA and the amino acid tracer 3-O-methyl-6-[18F]fluoro-DOPA (18F-OMFD) in the detection of MTC recurrence. Methods Fifteen patients with elevated calcitonin were investigated with PET as part of their individual clinical work-up. All patients underwent 18F-FDG PET and 18F-DOPA PET, and ten patients underwent 18F-OMFD PET. Results With 18F-FDG, seven patients showed foci in the neck, mediastinum, upper abdomen or bone. In seven patients, 18F-DOPA revealed suspicious foci; five of these seven patients showed partially corresponding uptake of 18F-FDG in the neck and mediastinum. Two of these patients underwent surgery and metastases were verified. With 18F-OMFD, a small focus in the liver was suspected in one patient without a correlate on 18F-FDG PET, 18F-DOPA PET or conventional imaging. Conclusion 18F-FDG and 18F-DOPA showed foci that were highly suspicious for local recurrence or metastasis of MTC, although histological verification in these patients with numerous previous surgical interventions was performed in only two patients. The amino acid tracer 18F-OMFD had no diagnostic impact in these patients.  相似文献   

3.
Purpose  Angiotensin-converting enzyme (ACE) and soluble interleukin-2 receptor (sIL-2R) are serological markers, widely used for determining sarcoidosis activity. 18F-FDG PET has proven to be a sensitive technique in the imaging of sarcoidosis. The aim of this study was to determine sensitivity of 18F-FDG PET, genotype-corrected ACE and sIL-2R in active sarcoidosis as well as their correlation. Methods  This retrospective study included 36 newly diagnosed, symptomatic sarcoidosis patients. ACE and sIL-2R levels were simultaneously obtained within 4 weeks of 18F-FDG PET. ACE was corrected for genotype and expressed as Z-score. 18F-FDG PET was visually evaluated and scored as positive or negative. Maximum and average standardized uptake values (SUVmax and SUVavg) were compared with ACE and sIL-2R. Results   18F-FDG PET was found positive in 34 of 36 patients (94%). Thirteen patients (36%) showed an increased ACE with the highest sensitivity found in patients with the I/I genotype (67%). Seventeen patients (47%) showed an increased sIL-2R. No correlation was found between SUV and ACE or sIL-2R. Increased ACE and sIL-2R correlated with a positive 18F-FDG PET in 12 patients (92%) and 16 patients (94%), respectively. Conclusion   18F-FDG PET is a very sensitive technique to assess active sarcoidosis, in contrast with ACE and sIL-2R, suggesting a pivotal role for 18F-FDG PET in future sarcoidosis assessment.  相似文献   

4.
Takayasu arteritis (TA) is a rare, sporadic and chronic inflammatory arteritis, which predominantly affects the aorta and its branches. Diagnosis can be difficult and there are limitations to the current diagnostic work-up. By detecting areas of active glucose metabolism present in active vasculitis, imaging with fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) could potentially have a role in the management of TA. Our aim was to assess this role by reviewing 28 18F-FDG PET scans performed on 18 patients suspected of having TA. All patients had full clinical and laboratory assessment, cross-sectional imaging and angiography, and 16/18 satisfied the American College of Rheumatologists criteria for TA. 18F-FDG PET achieved a sensitivity of 92%, a specificity of 100%, and negative and positive predictive values of 85% and 100% respectively in the initial assessment of active vasculitis in TA. We conclude that 18F-FDG PET can be used to diagnose early disease, to detect active disease (even within chronic changes) and to monitor the effectiveness of treatment.  相似文献   

5.
Purpose Uterine carcinosarcomas clinically confined to the uterus usually harbor occult metastases. We conducted a pilot study to evaluate the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in uterine carcinosarcoma. Methods Patients with histologically confirmed uterine carcinosarcoma were enrolled. Abdominal and pelvic magnetic resonance imaging (MRI)/whole-body computed tomography (CT) scan, and whole-body 18F-FDG PET or PET/CT were undertaken for primary staging, evaluating response, and restaging/post-therapy surveillance. The clinical impact of 18F-FDG PET was determined on a scan basis. Results A total of 19 patients were recruited and 31 18F-FDG PET scans (including 8 scans performed on a PET/CT scanner) were performed. Positive impacts of scans were found in 36.8% (7/19) for primary staging, 66.7% (2/3) for monitoring response, and 11.1% (1/9) for restaging/post-therapy surveillance. PET excluded falsely inoperable disease defined by MRI in two patients. Aggressive treatment applying to three patients with PET-defined resectable stage IVB disease seemed futile. Two patients died of disease shortly after salvage therapy restaged by PET. With PET monitoring, one stage IVB patient treated by targeted therapy only was alive with good performance. Using PET did not lead to improvement of overall survival of this series compared with the historical control (n = 35) (P = 0.779). Conclusions The preliminary results suggest that 18F-FDG PET is beneficial in excluding falsely inoperable disease for curative therapy and in making a decision on palliation for better quality of life instead of aggressive treatment under the guidance of PET. PET seems to have limited value in post-therapy surveillance or restaging after failure.  相似文献   

6.
Purpose This study was aimed at evaluating the spatial resolution and sensitivity of two hand-held gamma probes. Radioguided surgery was tested in seven patients with iodine-negative differentiated thyroid cancer (DTC) recurrence using 18F-FDG PET. Methods Two gamma probes were evaluated: Clerad’s GammaSup with a collimated CsI(Tl) scintillator and Novelec’s Modelo2 with a BGO scintillator. Five measurement tests were performed following the NEMA guidelines (NU3-2004). Radioguided surgery was performed in patients with recurrent DTC and abnormal 18F-FDG uptake on preoperative 18F-FDG PET images. Patients were injected with rTSH 2 days before surgery. A mean activity of 211 MBq of 18F-FDG was injected 60 min before surgery. In vivo and ex vivo counts were recorded for suspected tumours and normal tissue. Results Spatial resolution was higher with the CsI(Tl) than with the BGO detector: 20.2–40.6 mm vs 20.6–55.3 mm from 0 to 20 mm depth. Sensitivity in air and water and through side shielding was higher for BGO but the signal-to-noise ratio was 88 and 22 with the BGO compared to 131 and 76 with the CsI(Tl) at 10 and 30 mm depth. Median in vivo SNR (tumour/non-tumour ratio) was 1.8 with both the BGO and the CsI(Tl) detector, while ex vivo ratios of 2.3 and 2.1, respectively, were obtained. Radioguided surgery allowed detection of all of the tumours identified by 18F-FDG PET images. Conclusion This study demonstrated the feasibility of high-energy photon detection with a conventional scintillator equipped with a collimator. The CsI(TI) probe detected more true events from background than did the BGO detector during surgery.  相似文献   

7.
Metastatic mucinous adenocarcinoma in an inguinal hernia is a rare disease and the image findings of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) are little known. Here, we introduce a 57-year-old man with metastatic mucinous adenocarcinoma in an inguinal hernia. On initial 18F-FDG PET/CT, hypermetabolism was observed in mucinous adenocarcinoma of the cecum, and adenocarcinomas of the transverse and ascending colon, respectively. Follow-up 18F-FDG PET/CT revealed newly developed multiple hypermetabolism in peritoneal seeding masses and nodules in the pelvic cavity and scrotum. Peritoneal carcinomatosis in the right pelvic side wall was extended to the incarcerated peritoneum and mesentery in the right inguinoscrotal hernia.18F-FDG PET/CT was useful to reveal unexpected peritoneal seeding within the inguinal hernia. Also, this case demonstrated that metastatic mucinous adenocarcinomas had variably intense FDG uptake.  相似文献   

8.
Purpose To retrospectively evaluate the diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Methods Thirty-three partial body 18F-FDG PET/CT scans were performed in 33 patients with trauma suspected of having chronic osteomyelitis. In 10 and 23 patients, infection was suspected in the axial and appendicular skeleton, respectively. In 18 patients, PET/CT was performed in the presence of metallic implants. Histopathology or bacteriological culture was used as the standard of reference. For statistical analysis, sensitivity, specificity and accuracy were calculated in relation to findings of the reference standard. Results Of 33 PET/CT scans, 17 were true positive, 13 true negative, two false positive and one false negative. Eighteen patients had chronic osteomyelitis and 15 had no osseous infection according to the reference standard. Sensitivity, specificity and accuracy for 18F-FDG PET/CT was 94%, 87% and 91% for the whole group, 88%, 100% and 90% for the axial skeleton and 100%, 85% and 91% for the appendicular skeleton, respectively. Conclusion 18F-FDG PET/CT is a highly sensitive and specific method for the evaluation of chronic infection in the axial and appendicular skeleton in patients with trauma. PET/CT allows precise anatomical localisation and characterisation of the infectious focus and demonstrates the extent of chronic osteomyelitis with a high degree of accuracy.  相似文献   

9.
Purpose (S,S)-[18F]FMeNER-D2 is a recently developed positron-emission tomography (PET) radioligand for in vivo quantification of the norepinephrine transporter system. The aim of this study was to provide dosimetry estimates for (S,S)-[18F]FMeNER-D2 based on human whole-body PET measurements. Methods PET scans were performed for a total of 6.4 h after the injection of 168.9 ± 31.5 MBq of (S,S)-[18F]FMeNER-D2 in four healthy male subjects. Volumes of interest were drawn on the coronal images. Estimates of the absorbed dose of radiation were calculated using the OLINDA software. Results Uptake was largest in lungs, followed by liver, bladder, brain and other organs. Peak values of the percent injected dose (%ID) at a time after radioligand injection were calculated for the lung (21.6%ID at 0.3 h), liver (5.1%ID at 0.3 h), bladder (12.2%ID at 6 h) and brain (2.3%ID at 0.3 h). The largest absorbed dose was found in the urinary bladder wall (0.039 mGy/MBq). The calculated effective dose was 0.017 mSv/MBq. Conclusion Based on the distribution and dose estimates, the estimated radiation burden of (S,S)-[18F]FMeNER-D2 is lower than that of [18F]FDG. The radioligand would allow multiple PET examinations in the same research subject per year.  相似文献   

10.
Objective This study was performed to evaluate the effects of intravenous (i.v.) contrast agent on semi-quantitative values and lymph node (LN) staging of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in patients with lung cancer. Methods Thirty-five patients with lung cancer were prospectively included. Whole-body PET and nonenhanced CT images were acquired 60 min following the i.v. injection of 370 MBq 18F-FDG and subsequently, enhanced-CT images were acquired with the i.v. administration of 400 mg iodinated contrast agent without positional change. PET images were reconstructed with both nonenhanced and enhanced CTs, and the maximum and average standardized uptake values (SUVmax and SUVave) calculated from lung masses, LNs, metastatic lesions, and normal structures were compared. To evaluate the effects of the i.v. contrast agent on LN staging, we compared the LN status on the basis of SUVs (cut-offs; SUVmax = 3.5, SUVave = 3.0). Results The mean differences of SUVmax in normal structures between enhanced and nonenhanced PET/CT were 15.23% ± 13.19% for contralateral lung, 8.53% ± 6.11% for aorta, 5.85% ± 4.99% for liver, 5.47% ± 6.81% for muscle, and 2.81% ± 3.05% for bone marrow, and those of SUVave were 10.17% ± 9.00%, 10.51% ± 7.89%, 4.95% ± 3.89%, 5.66% ± 9.12%, and 2.49% ± 2.50%, respectively. The mean differences of SUVmax between enhanced and nonenhanced PET/CT were 5.89% ± 3.92% for lung lesions (n = 41), 6.27% ± 3.79% for LNs (n = 76), and 3.55% ± 3.38% for metastatic lesions (n = 35), and those of SUVave were 3.22% ± 3.01%, 2.86% ± 1.71%, and 2.33% ± 3.95%, respectively. Although one LN status changed from benign to malignant because of contrast-related artifact, there was no up- or down-staging in any of the patients after contrast enhancement. Conclusions An i.v. contrast agent may be used in PET/CT without producing any clinically significant artifact.  相似文献   

11.
Aim  To compare the diagnostic impact of 68Ga-DOTA-TATE and 18F-DOPA PET in the diagnosis of well-differentiated metastatic neuroendocrine tumours (NET). Methods  PET/CT using both 68Ga-DOTA-TATE and 18F-DOPA was performed in 25 patients with histologically proven metastatic NET (nine gut, five pancreas, six lung, one paranasal sinus, four with unknown primary). Analyses of PET examinations were patient-based (pathological uptake: yes/no), and based on tumour regions (primary tumour if present and metastases of liver, lung, bones and lymph nodes). The results were compared with the results of contrast enhanced CT, and with plasma serotonin levels, which were available in 24 of the 25 patients. Results  Patient-based sensitivities were 96% for 68Ga-DOTA-TATE PET and 56% for 18F-DOPA PET. 68Ga-DOTA-TATE PET delineated metastases in 54 of 55 positive metastatic tumour regions in contrast to 29 of 55 delineated by 18F-DOPA PET. Overall, 68Ga-DOTA-TATE was superior to 18F-DOPA in 13 patients (two patients showed fewer positive tumour regions with 18F-DOPA PET). The results were comparable in 12 patients. In 13 of 24 patients, plasma serotonin levels were elevated, and 11 of these 13 patients showed pathological uptake of 18F-DOPA. Of the 11 patients with normal levels of serotonin, 3 also showed positive 18F-DOPA uptake. In patients positive for 18F-DOPA uptake the maximum tumour SUVs were correlated with the levels of serotonin (r=0.66, p=0.01). Conclusion  In this study 68Ga-DOTA-TATE PET proved clearly superior to 18F-DOPA PET for detection and staging of NET. 18F-DOPA uptake tended to be increased in those patients with elevated plasma serotonin. We conclude that 18F-DOPA PET should be employed in patients with NET with negative 68Ga-DOTA-TATE PET and elevated plasma serotonin.  相似文献   

12.
Purpose This prospective and bi-centric study was conducted in order to determine the impact of antidiabetic treatments (AD) on 18F-FDG bowel uptake in type 2 diabetic patients. Methods Fifty-five patients with previously diagnosed and treated type 2 diabetes mellitus (group 1) were divided in two subgroups: AD treatment including metformin (n=32; group 1a) and AD treatment excluding metformin (n=23; group 1b). The 95 patients without diabetes mellitus made up controls (group 2). 18F-FDG uptake in small intestine and colon was visually graded and semi-quantitatively measured using the maximum standardized uptake value. Results 18F-FDG bowel uptake was significantly increased in AD patients (group 1) as compared to controls (group 2) (p<0.001). Bowel uptake was significantly higher in AD patients including metformin (group 1a) as compared to AD patients excluding metformin (group 1b) (p<0.01), whose bowel uptake was not significantly different from controls (group 2). A metformin treatment was predictive of an increased bowel uptake in the small intestine (odds ratio OR=16.9, p<0.0001) and in the colon (OR=95.3, p<0.0001), independently of the other factors considered in the multivariate analysis. Bowel uptake pattern in the patients treated with metformin was typically intense, diffuse and continuous along the bowel, strongly predominant in the colon, in both the digestive wall and lumen. Conclusion This study emphasizes that metformin significantly increases 18F-FDG uptake in colon and, to a lesser extent, in small intestine. It raises the question of stopping metformin treatment before an 18F-FDG PET/CT scan is performed for intra-abdominal neoplasic lesion assessment.  相似文献   

13.

Purpose

The aim of this study was to evaluate the relationship between semiquantitative parameters on 18F-FDG PET/CT including maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) and the expression level of Ki-67 in small-cell lung cancer (SCLC).

Methods

Ninety-four consecutive patients with SCLC were enrolled in this study. They underwent 18F-FDG PET/CT for initial evaluation of SCLC, and we measured SUVmax, avgSUVmean, MTVsum, and TLGtotal on 18F-FDG PET/CT images. The protein expression of Ki-67 was examined by immunohistochemical staining.

Results

Significant correlations were found between the MTVsum and Ki-67 labeling index (r = 0.254, p = 0.014) and the TLGtotal and Ki-67 labeling index (r = 0.239, p = 0.020). No correlation was found between the SUVmax and Ki-67 labeling index (r = 0.116, p = 0.264) and the avgSUVmean and Ki-67 labeling index (r = 0.031, p = 0.770). Dividing the Ki-67 expression level into three categories, it was suggested that increasing Ki-67 expression level caused a stepwise increase in the MTVsum and TLGtotal. (p = 0.028 and 0.039, respectively), but not the SUVmax and avgSUVmean (p = 0.526 and 0.729, respectively).

Conclusion

In conclusion, the volume-based parameters of 18F-FDG PET/CT correlate with immunohistochemical staining of Ki-67 in SCLC. Measurement of the MTVsum and TLGtotal by 18F-FDG PET/CT might be a simple, noninvasive, and useful method to determine the proliferative potential of cancer cells.  相似文献   

14.
Purpose  To evaluate the usefulness of 18F-FDG PET in the imaging of pulmonary lesions related to disease activity and in monitoring responses to treatment in patients with pulmonary mycobacteriosis (PM). Materials and methods  We used high-resolution computed tomography (HRCT) and 18F-FDG PET to evaluate 47 consecutive untreated patients with PM, 25 with tuberculosis (TB) and 22 with Mycobacterium avium-intracellulare complex (MAC), who presented with small peripheral pulmonary nodules ≤3 cm, and compared the findings. The diagnosis of mycobacteriosis was confirmed by bacteriological examinations of bronchoscopic or surgically resected specimens. PET scans were visually and quantitatively analysed using SUVmax. In addition, 14 patients with PM underwent repeat PET scanning during antimycobacterial therapy, and changes in 18F-FDG uptake were clinically evaluated (6 during treatment and 12 after treatment). Results  Of all the lesions, 87.2% had SUVmax levels ranging from 3 to 7 (5.05 ± 1.56, range 2.5–7.6, n = 47). Further, SUV levels in patients with PM reflected disease activity as estimated by HRCT, but did not differ significantly between those with TB (4.96 ± 1.61, n = 25) and MAC (5.15 ± 1.53, n = 22). 18F-FDG uptake was significantly decreased in all 14 patients who received chemotherapy, indicating a positive response to treatment. Conclusion   18F-FDG PET is considered to be useful for the diagnosis and evaluation of disease activity along with HRCT findings, and in monitoring response to chemotherapy in patients with PM.  相似文献   

15.
Giant cell tumor (GCT) is a generally benign bone tumor accounting for approximately 5 % of all primary bone neoplasms. Cystic components in GCTs that indicate secondary aneurysmal bone cysts (ABCs) are reported in 14 % of GCTs. Although both of them have been described separately in previous reports that may show considerable fluorodeoxyglucose (FDG) uptake despite their benign nature, the findings of GCT with secondary ABC on 18F-FDG positron emission tomography/computed tomography (PET/CT) have not been well-known. We report a case of GCT with secondary ABC in a 26-year-old woman. 18F-FDG PET/CT revealed a heterogeneous hypermetabolic lesion in the left proximal femur with the maximum standardized uptake value of 4.7. The solid components of the tumor showed higher FDG uptake than the cystic components. These observations suggest that the ABC components in GCTs show heterogeneous metabolic patterns on 18F-FDG PET/CT.  相似文献   

16.
Purpose Metastatic cancer of unknown primary origin is a syndrome characterised by a poor prognosis, with a typical survival rate from diagnosis of no longer than 1 year. Only 20–27% of primary tumours are identified by conventional radiological imaging. By contrast, it has been reported that 18F-fluorodeoxyglucose positron emission tomography (FDG PET) allows the identification of 24–40% of otherwise unrecognised primary tumours. To our knowledge, the studies on this topic have been conducted using 18F-FDG PET imaging alone. The aim of this study was to evaluate the potential additional diagnostic role of fused 18F-FDG PET-CT imaging for the detection of metastatic occult primary tumours.Methods The study population consisted of 21 consecutive patients with biopsy-proven metastatic disease and negative conventional diagnostic procedures. Each patient underwent a PET scan, carried out according to a standard procedure (6 h of fasting, i.v. injection of 370 MBq of 18F-FDG and image acquisition with a dedicated PET-CT scanner for 4 min per bed position).Results 18F-FDG PET-CT detected the occult primary tumour in 12 patients (57% of cases), providing a detection rate higher than that reported with any other imaging modality, including conventional 18F-FDG PET.Conclusion The favourable results of this study need to be confirmed in larger patient populations with long-term follow-up.  相似文献   

17.
Purpose Our aim was to assess the diagnostic potential of 18F-FDG PET using partial volume correction and dual-time-point imaging in the assessment of solitary pulmonary nodules. Methods We included 265 patients in this retrospective study (171 men; 94 women; age range, 41–92 years). All had pulmonary nodules on CT, and diagnosis was confirmed by biopsy or follow-up CT. All underwent whole body FDG PET, 60 min after FDG injection. Of the 265 patients, 255 underwent second FDG PET for chest 100 min after injection. Maximum SUVs for nodules were calculated from both scans. Partial volume correction for first time SUVs was applied, using coefficient factor. Malignancy was defined using the following criteria: (1) Visual assessment; (2) First time SUV ≥ 2.5; (3) Partial volume corrected first time SUV ≥ 2.5; (4) second time SUV ≥ 2.5; (5) Increase in SUV over time; (6) Increase or no change in SUV; (7) First time SUV ≥ 2.5 and/or increase or no change in SUV. Results Biopsy and follow-up revealed 72 malignant lung nodules and 193 benign nodules. Sensitivity, specificity and accuracy for the five criteria were as follows: (1) 97, 58 and 68%; (2) 65, 92 and 85%; (3) 84, 91 and 89%; (4) 90, 80 and 83%; (5) 84, 95 and 92%; (6) 92, 92, and 92%; (7) 95, 90 and 91%, respectively. Conclusion Dual-time-point 18F-FDG PET has potential impact on improving the diagnostic accuracy for malignant lung nodules. Dual-time-point 18F-FDG PET imaging should be included in the clinical work-up of patients with pulmonary nodule.  相似文献   

18.
Iterative reconstruction algorithms, such as the ordered subsets expectation maximisation (OS-EM), are a promising alternative to filtered backprojection (FBP). The aims of this study were first to optimise the OS-EM algorithm in terms of iteration number and to study the usefulness of post-filtering, and second to compare OS-EM and FBP for image reconstruction on a fluorine-18 fluorodeoxyglucose (18F-FDG) dual-head camera (DHC). These two goals were addressed using phantom acquisitions. The performances of these algorithms were also studied in patient acquisitions performed on a DHC and a PET on the same day. Phantom experiments were performed on a DHC using a Jaszczak phantom containing six spheres filled with 18F-FDG, two background levels (0.95, 6.80 kBq/ml) and three object contrasts (5.9, 3.7, 2.7). The reconstruction algorithms were FBP with a Gaussian filter (FWHM 0.5–2 pixel width) and OS-EM using 8–128 equivalent iterations (equivalent to the ML-EM algorithm) with and without Gaussian post-filtering [OS-EM (iterations, pixel width)]. Contrast recovery coefficient (CRC) and noise characteristics were assessed. Twenty-two patients (21 male, one female; age 55±15 years) with lung cancer underwent, on the same day, PET (1 h post injection of 37 MBq/kg 18F-FDG) and DHC acquisitions (3 h post injection). DHC data were reconstructed using six methods: FBP (1), OS-EM (16), (40), (40,1), (64) and (64,1). These sets were evaluated by two observers and compared to PET reconstructed with OS-EM (16). The number of detected lesions and the visual quality were assessed. A marked improvement in CRC was observed with OS-EM as compared with FBP when more than 24 iterations were used. The CRC increased markedly from 8 to 40 iterations and then reached a plateau. The noise was stable until 40 iterations and then increased. The best compromise was obtained for OS-EM (32) and OS-EM (40,1). For the patient study, OS-EM provided images of better visual quality, but with no significant difference in detection sensitivity. OS-EM was superior to FBP in terms of contrast recovery and noise level. The optimal compromise between contrast recovery and noise was obtained for OS-EM (32) and (40,1) on the phantom study. The clinical study showed that OS-EM yielded images of better visual quality but with no improvement in terms of detection of lung cancer.  相似文献   

19.
Recently carbon-11 acetate (AC) positron emission tomography (PET) has been reported to be of clinical value for the diagnosis of cancer that is negative on fluorine-18 fluorodeoxyglucoce (FDG) PET. We investigated the uptake of AC in lung cancer to determine whether this tracer is of potential value for tumour detection and characterisation, and to compare AC PET imaging with FDG PET and technetium-99m sestamibi (MIBI) single-photon emission tomography (SPET). Twenty-three patients with 25 lung cancers underwent AC and FDG PET. Twenty of 23 patients were also investigated with MIBI SPET. Dynamic images were acquired for 26 min after the injection of 555 MBq of AC. Standardised uptake values (SUVs) and/or tumour to non-tumour activity ratios (T/N) for each tumour were investigated at 10–20 min after AC administration, 40–60 min after administration of 185 MBq FDG and 15–45 min after administration of 555 MBq MIBI. Twenty lung cancers were resected surgically, and the degree of tracer uptake in the primary lesion was correlated with histopathological features (cell dedifferentiation and aggressiveness) and prognosis. Rapid uptake of AC followed by extremely slow clearance was observed. For the purpose of tumour identification, AC PET was inferior to FDG PET in 8 of 25 (32%) lung cancers, and the T/N of AC was lower than that of FDG. However, AC PET was superior to FDG PET in the identification of a slow-growing tumour (bronchiolo-alveolar carcinoma). There was a positive correlation between AC uptake (T/N) and MIBI uptake (T/N) (r=0.799, P<0.0001). A positive correlation was not observed between either AC or MIBI uptake and the degree of cell dedifferentiation in lung adenocarcinomas, whereas FDG uptake did correlate with the degree of cell dedifferentiation. In lung adenocarcinoma, there was a weak correlation between aggressiveness and FDG uptake, but no correlation was evident for AC and MIBI. In addition, a positive correlation was not observed between AC or MIBI uptake and postoperative recurrence in lung adenocarcinoma, whereas FDG uptake did correlate with postoperative recurrence. Thus, the greater the FDG uptake, the higher the malignant grade. In conclusion, for the purpose of tumour identification, AC PET was inferior to FDG PET but superior to MIBI SPET. Neither AC nor MIBI uptake reflects the malignant grade in lung adenocarcinoma, whereas FDG uptake does. AC PET is less diagnostically informative than FDG PET in patients with lung cancer. However, AC PET may play a complementary role in the identification of low-grade malignancies that are not FDG avid.  相似文献   

20.
OBJECTIVES: Carbon-11-L-methyl-methionine (11C-methionine) has been reported to be useful for evaluating brain tumors, but several other brain disorders have also shown signs of high methionine uptake. We retrospectively evaluated the significance of 11C-methionine uptake in cerebrovascular diseases, and also compared our results with those for 18F-FDG PET and 99mTc-HMPAO SPECT. METHODS: Seven patients, including 3 patients with a cerebral hematoma and 4 patients with a cerebral infarction, were examined. All 7 patients underwent both 11C-methionine PET and 99mTc-HMPAO SPECT, and 6 of them underwent 18F-FDG PET. RESULTS: A high 11C-methionine uptake was observed in all 3 patients with cerebral hematoma. Increased 99mTc-HMPAO uptake was observed in 2 out of 3 patients, and all 3 patients had decreased 18F-FDG uptake. Of 4 patients with a cerebral infarction, high 11C-methionine uptake was observed in 3. Increased 99mTc-HMPAO uptake was also observed in one patient, whereas 3 patients had decreased 18F-FDG uptake. CONCLUSIONS: We should keep in mind that high 11C-methionine uptake is frequently observed in cerebrovascular diseases. CVD should therefore be included in the differential diagnosis when encounting patients with a high 11C-methionine uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号