首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies of bone marrow-derived stem cell transdifferentiation into neurons have not involved purified cell populations and determined their exact phenotype prior to differentiation. The present study investigates whether highly purified mouse adult hematopoietic stem cells (HSCs), characterized by lineage marker depletion and expression of the cell surface markers Sca1 and c-Kit (Lin(-) Sca1(+) c-Kit(+) [LSK]), can be stimulated to adopt a neuronal fate. When the HSC(LSK) cells were cultured in vitro in neuronal differentiation medium supplemented with retinoic acid, 50% of the cells expressed the neural progenitor marker nestin and no cells had become postmitotic. Electrophysiological recordings on neuron-like cells showed that these cells were incapable of generating action potentials. When the HSC(LSK) cells either were grown in vitro together with neural precursor cells or were transplanted into the striatum or cerebellum of wild-type mouse, they either differentiated into Iba1-immunopositive macrophage/microglia or died. In conclusion, we demonstrate that adult HSC(LSK) cells do not have the capacity to leave the hematopoietic lineage and differentiate into neurons.  相似文献   

2.
3.
Hematopoietic stem cell (HSC) self-renewal is tightly regulated by a complex crosstalk between many cell-intrinsic regulators and a variety of extrinsic signals from the stem cell niche. In this study, we examined whether the p38 mitogen-activated protein kinase (p38) is one of the intrinsic regulators that can negatively regulate HSC self-renewal in vitro and whether inhibition of p38 activity with a small molecule inhibitor can promote HSC expansion ex vivo. The results from this study showed that sorted mouse bone marrow Lin(-)Sca1(+)c-kit(+) cells (LSK(+) cells) exhibited selective activation of p38 after culture in a serum-free medium supplemented with 100 ng/mL stem cell factor, thrombopoietin, and Flt3 ligand. The activation of p38 was associated with a significant reduction in HSCs and induction of apoptosis and cellular senescence in LSK(+) cells and their progeny. Addition of the specific p38 inhibitor SB203580 (SB, 5 μM) to the culture inhibited the activation of p38 in LSK(+) cells, which led to increase in HSC self-renewal and ex vivo expansion as shown by the cobblestone area forming cell assay, competitive repopulation, and serial transplantation. The increase in HSC expansion is likely attributable to SB-mediated inhibition of HSC apoptosis and senescence and upregulation of HoxB4 and CXCR4. These findings suggest that p38 plays an important role in the regulation of HSC self-renewal in vitro and inhibition of p38 activation with a small molecule inhibitor may represent a novel approach to promote ex vivo expansion of HSCs.  相似文献   

4.
目的:探讨体外定向分化胚胎干细胞(ESCs)为造血干细胞(HSCs)对体内造血功能的重建作用。方法:将小鼠E14.1胚胎干细胞采用“三步诱导法”在体外分化发育为HSCs,造血克隆形成(CFU)实验观察其体外造血集落形成情况,免疫磁珠分选纯化HSCs移植给经亚致死剂量γ射线照射的雌性SCID小鼠,观察其植入及小鼠造血功能恢复情况。结果: 经过分阶段诱导,多种造血刺激因子联合应用能有效促进ESCs定向分化发育为HSCs,流式细胞仪检测HSCs特异性表面标志物CD34+/Sca-1+表达最高为(58.64±4.20)%,CFU培养能形成较多的红系、粒系/巨噬细胞系及混合细胞集落, Wright-Giemsa 染色显示为原始的造血细胞。此阶段的HSCs经分选纯化后移植给经γ射线照射后的小鼠,移植组小鼠+10 d造血功能开始恢复,观察40 d后除血小板恢复较慢外,白细胞、红细胞、血红蛋白等指标已接近正常,植入率为71.4%,存活率为43.0%,染色体检测证实已由受体鼠的XX转为供体鼠的XY。结论: 采用分阶段诱导的方法,可在体外定向诱导小鼠ESCs分化发育为HSCs,此来源的HSCs可以有效重建体内造血功能。  相似文献   

5.
In this study, we demonstrate that extended culture of unfractionated mouse bone marrow (BM) cells, in serum-free medium, supplemented only with fibroblast growth factor (FGF)-1, FGF-2, or FGF-1 +2 preserves long-term repopulating hematopoietic stem cells (HSCs). Using competitive repopulation assays, high levels of stem cell activity were detectable at 1, 3, and 5 weeks after initiation of culture. FGFs as single growth factors failed to support cultures of highly purified Lin(-)Sca-1(+)c-Kit(+)(LSK) cells. However, cocultures of purified CD45.1 LSK cells with whole BM CD45.2 cells provided high levels of CD45.1 chimerism after transplant, showing that HSC activity originated from LSK cells. Subsequently, we tested the reconstituting potential of cells cultured in FGF-1 + 2 with the addition of early acting stimulatory molecules, stem cell factor +interleukin-11 + Flt3 ligand. The addition of these growth factors resulted in a strong mitogenic response, inducing rapid differentiation and thereby completely overriding FGF-dependent stem cell conservation. Importantly, although HSC activity is typically rapidly lost after short-term culture in vitro, our current protocol allows us to sustain stem cell repopulation potential for periods up to 5 weeks.  相似文献   

6.
Successful hematopoietic stem cell (HSC) transplantation is often limited by the numbers of HSCs, and robust methods to expand HSCs ex vivo are needed. We previously showed that angiopoietin-like proteins (Angptls), a group of growth factors isolated from a fetal liver HSC-supportive cell population, improved ex vivo expansion of HSCs. Here, we demonstrate that insulin-like growth factor-binding protein 2 (IGFBP2), secreted by a tumorigenic cell line, also enhanced ex vivo expansion of mouse HSCs. On the basis of these findings, we established a completely defined, serum-free culture system for mouse HSCs, containing SCF, thrombopoietin, fibroblast growth factor 1, Angptl3, and IGFBP2. As measured by competitive repopulation analyses, there was a 48-fold increase in numbers of long-term repopulating mouse HSCs after 21 days of culture. This is the first demonstration that IGFBP2 stimulates expansion or proliferation of murine stem cells. Our finding also suggests that certain cancer cells synthesize proteins that can stimulate HSC expansion. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

7.
Geminin is implicated in regulation of the cell cycle and differentiation. Although loss of Geminin triggers unscheduled DNA rereplication as a result of interruption of its interaction with Cdt1 in some somatic cancer cells, whether such cell cycle regulation also operates in embryonic stem cells (ESCs) has remained unclear. To characterize the Geminin‐Cdt1 axis in ESCs and compare it with that in somatic cells, we established conditional knockout (KO) of Geminin in mouse ESCs and mouse embryonic fibroblasts (MEFs). Geminin KO ESCs manifest a large flattened morphology, develop polyploidy accompanied by DNA damage and G2‐M checkpoint activation, and subsequently undergo apoptosis. Rereplication in Geminin KO ESCs was attenuated by inhibition of G2‐M checkpoint signaling or by expression of wild‐type Geminin, but not by expression of a Geminin mutant that does not bind to Cdt1, indicating the importance of sequestration of Cdt1 by Geminin in G2 phase. In contrast, Geminin KO MEFs did not manifest disturbance of the cell cycle unless they were treated to force abnormal accumulation of Cdt1. Together, our results indicate that Geminin is a key inhibitor of Cdt1 in mouse ESCs, but that it plays a backup role in MEFs to compensate for accidental up‐regulation of Cdt1.  相似文献   

8.
目的: 探讨主动脉-性腺-中肾(aorta-gonad-mesonephros,AGM)来源的基质细胞对造血干细胞(HSC)增殖的促进作用,为探寻HSC的体外扩增方法奠定实验基础。 方法: 分别从孕11 d BALB/c小鼠胚胎AGM区及6周龄小鼠骨髓分离、培养基质细胞,流式细胞仪等对基质细胞进行鉴定;利用小鼠胚胎干细胞(ESC)向造血细胞定向分化的模型,结合高增殖潜能集落(HPP-CFC)、原始细胞集落(BL-CFC)形成实验及流式细胞仪分析CD34+、CD34+Sca-1+细胞比例,对比研究AGM及骨髓基质细胞对ESC来源的HSC的扩增作用。 结果: 小鼠AGM和骨髓基质细胞在形态及表型上基本相似,均符合基质细胞的特征。AGM和骨髓基质细胞均可促进ESC来源的HPP-CFC的形成,但AGM基质细胞还可促进ESC来源的 BL-CFC的形成;流式细胞仪检测发现:在骨髓基质细胞支持下,CD34+细胞增加了3-4倍,但CD34+/Sca-1+却无明显增加;而在AGM基质细胞支持下CD34+、CD34+Sca-1+细胞均明显增加了4-5倍。 结论: AGM基质细胞在有效扩增小鼠HSC同时,能很好地维持HSC自我更新及多向分化的潜能。  相似文献   

9.
Insufficient numbers of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) sometimes limit allogenic transplantation of umbilical cord blood (UCB). Ex vivo expansion may overcome this limitation. Mesenchymal stem cells (MSCs), as non-hematopoietic, well-characterized skeletal and connective-tissue progenitor cells within the bone marrow stroma, have been investigated as support cells for the culture of HSCs/HPCs. MSCs are attractive for the rich environmental signals that they provide and for immunological compatibility in transplantation. Thus far, HSC/MSC co-cultures have mainly been performed in 2-dimensional (2D) configuration. We postulate that a 3-dimensional (3D) culture environment that resembles the natural in vivo hematopoietic compartment might be more conducive for regulating HSC expansion. In this study, we compared the co-culture of HSCs and MSCs in 2D and 3D configurations. The results demonstrated the benefit of MSC inclusion in HSC expansion ex vivo. Direct contact between MSCs and HSCs in 3D cultures led to statistically significantly higher expansion of cord blood CD34+ cells than in 2D cultures (891- versus 545-fold increase in total cells, 96- versus 48-fold increase of CD34+ cells, and 230- versus 150-fold increase in colony-forming cell assay [CFC]). Engraftment assays in non-obese diabetic/severe combined immunodeficiency mice also indicated a high success rate of hematopoiesis reconstruction with these expanded cells.  相似文献   

10.
Identifying the molecular pathways regulating hematopoietic stem cell (HSC) specification, self-renewal, and expansion remains a fundamental goal of both basic and clinical biology. Here, we analyzed the effects of Notch signaling on HSC number during zebrafish development and adulthood, defining a critical pathway for stem cell specification. The Notch signaling mutant mind bomb displays normal embryonic hematopoiesis but fails to specify adult HSCs. Surprisingly, transient Notch activation during embryogenesis via an inducible transgenic system led to a Runx1-dependent expansion of HSCs in the aorta-gonad-mesonephros (AGM) region. In irradiated adults, Notch activity induced runx1 gene expression and increased multilineage hematopoietic precursor cells approximately threefold in the marrow. This increase was followed by the accelerated recovery of all the mature blood cell lineages. These data define the Notch-Runx pathway as critical for the developmental specification of HSC fate and the subsequent homeostasis of HSC number, thus providing a mechanism for amplifying stem cells in vivo.  相似文献   

11.
背景:前期已分别制备人主动脉-性腺-中肾区基质细胞系及胎肝基质细胞系,发现前者可促进小鼠胚胎干细胞定向分化为造血干细胞。 目的:模拟胚胎发育过程中永久造血发育的时空顺序,探讨人主动脉-性腺-中肾(AGM)区、胎肝(FL)及骨髓(BM)基质细胞对小鼠胚胎干细胞体外诱导分化为造血干细胞的支持作用,以寻求更佳的诱导条件。 方法:将小鼠E14胚胎干细胞诱导为拟胚体(EB),并利用Transwell非接触共培养体系依次在人主动脉-性腺-中肾区、胎肝及骨髓基质细胞饲养层上进一步诱导分化,按不同诱导阶段分为拟胚体对照、EB/AGM、EB/AGM+FL和EB/AGM+FL+BM共4组。共培养6 d后分别收获各组拟胚体来源细胞,以流式细胞仪检测Sca-1+c-Kit+细胞含量,进行各系造血细胞集落形成单位分析并观察细胞形态。 结果与结论:①EB/AGM+FL组和EB/AGM+FL+BM组收获细胞涂片均发现原始造血细胞。②拟胚体来源细胞经AGM区基质细胞诱导后Sca-1+c-Kit+ 细胞明显升高(P < 0.05)。③拟胚体对照组造血细胞集落形成单位低于其他各组(P < 0.05), 而EB/AGM+FL、EB/AGM+FL+BM组造血细胞集落形成单位计数亦较EB/AGM组明显增高。提示AGM+FL和AGM+FL+骨髓基质细胞微环境对原始造血干细胞的扩增效应均明显高于单纯主动脉-性腺-中肾饲养层。  相似文献   

12.
13.
Clinical and preclinical applications of human hematopoietic stem cells (HSCs) are often limited by scarcity of cells. Expanding human HSCs to increase their numbers while maintaining their stem cell properties has therefore become an important area of research. Here, we report a robust HSC coculture system wherein cord blood CD34(+) CD133(+) cells were cocultured with mesenchymal stem cells engineered to express angiopoietin-like-5 in a defined medium. After 11 days of culture, SCID repopulating cells were expanded ~60-fold by limiting dilution assay in NOD-scid Il2rg(-/-) (NSG) mice. The cultured CD34(+) CD133(+) cells had similar engraftment potential to uncultured CD34(+) CD133(+) cells in competitive repopulation assays and were capable of efficient secondary reconstitution. Further, the expanded cells supported a robust multilineage reconstitution of human blood cells in NSG recipient mice, including a more efficient T-cell reconstitution. These results demonstrate that the expanded CD34(+) CD133(+) cells maintain both short-term and long-term HSC activities. To our knowledge, this ~60-fold expansion of SCID repopulating cells is the best expansion of human HSCs reported to date. Further development of this coculture method for expanding human HSCs for clinical and preclinical applications is therefore warranted.  相似文献   

14.
Hematopoietic stem cells (HSCs) have enormous potential for use in transplantation and gene therapy. However, the frequency of repopulating HSCs is often very low; thus, highly effective techniques for cell enrichment and maintenance are required to obtain sufficient cell numbers for therapeutic use and for studies of HSC physiology. Common methods of HSC enrichment use antibodies recognizing HSC surface marker antigens. Because antibodies are known to alter the physiology of other cell types, we investigated the effect of such enrichment strategies on the physiology and lineage commitment of HSCs. We sorted HSCs using a method that does not require antibodies: exclusion of Hoechst 33342 to isolate side population (SP) cells. To elucidate the effect of antibody binding on this HSC population, we compared untreated SP cells with SP cells treated with the Sca-1(+)c-Kit(+)Lin(-) (SKL) antibody cocktail prior to SP sorting. Our findings revealed that HSCs incubated with the antibody cocktail had decreased expression of the stem cell-associated genes c-Kit, Cd34, Tal-1, and Slamf1 relative to untreated SP cells or to cells treated with polyclonal isotype control antibodies. Moreover, SKL antibodies induced cycling in SP cells and diminished their ability to confer long-term hematopoietic engraftment in lethally irradiated mice. Taken together, these data suggest that antibody-based stem cell isolation procedures can have negative effects on HSC physiology.  相似文献   

15.
We previously showed that HOXB4 is a potent stimulator of hematopoietic stem cell (HSC) proliferation in vivo and ex vivo. As a result, HOXB4 overexpressing HSCs are 20- to 50-times more competitive than untransduced cells when transplanted into mice. By knocking down the expression of PBX1 (PBX1(K.D.)) in HOXB4 overexpressing cells, we now present the possibility of generating HSCs that are >20-times more competitive than those that overexpress HOXB4. The differentiation activity of these cells appears intact, since they competitively contributed to the reconstitution of normal myeloid and lymphoid compartments in vivo. We also show that the in vivo expansion of HOXB4-PBX1(K.D.)-expressing HSCs regenerated normal stem cell pools and did not lead to HSC levels above those detected in unmanipulated mice. The vigorous competitive nature of these cells in vivo compared to HOXB4-transduced HSCs suggests the existence of a distinct, non-cell autonomous mechanism that limits the expansion of HOXB4-transduced hemopoietic stem cells in mice.  相似文献   

16.
Extensive amplification of hematopoietic stem cells (HSCs) and their multipotent primitive progenitors (MPPs) in culture would greatly benefit not only clinical transplantation but also provide a potential tool to manipulate all cellular lineages derived from these cells for gene therapy and experimental purposes. Here, we demonstrate that mouse bone marrow cultures containing cells engineered to over-express NUP98-HOXB4 fusion protein support self-renewal of physiologically normal HSC and MPP for several weeks leading practically to their unlimited expansion. This allows time consuming and cumulative in vitro experimental manipulations without sacrificing their ability to differentiate in vivo or in vitro to any hematopoietic lineage.  相似文献   

17.
The Polycomb group (PcG) gene Bmi-1 has recently been implicated in the maintenance of hematopoietic stem cells (HSC) from loss-of-function analysis. Here, we demonstrate that increased expression of Bmi-1 promotes HSC self-renewal. Forced expression of Bmi-1 enhanced symmetrical cell division of HSCs and mediated a higher probability of inheritance of stemness through cell division. Correspondingly, forced expression of Bmi-1, but not the other PcG genes, led to a striking ex vivo expansion of multipotential progenitors and marked augmentation of HSC repopulating capacity in vivo. Loss-of-function analyses revealed that among PcG genes, absence of Bmi-1 is preferentially linked with a profound defect in HSC self-renewal. Our findings define Bmi-1 as a central player in HSC self-renewal and demonstrate that Bmi-1 is a target for therapeutic manipulation of HSCs.  相似文献   

18.
Life and death in hematopoietic stem cells   总被引:1,自引:0,他引:1  
Hematopoietic stem cells (HSCs) are defined as primitive cells that are capable of both self-renewal and differentiation into any of the hematopoietic cell lineages. HSC numbers need to be precisely regulated to maintain hematopoietic homeostasis. HSCs undergo several cell fate decisions, including decisions on life and death and self-renewal and differentiation, which have crucial roles in the regulation of their numbers and lifespan. Defects in these processes have been found to contribute to hematopoietic insufficiencies and the development of hematopoietic malignancies. Recent studies have begun to elucidate how HSCs make life and death decisions and the underlying molecular mechanisms involved, highlighting the importance of a balance between survival and death in the regulation of HSCs.  相似文献   

19.
Migration of hematopoietic stem cells (HSCs) is essential during embryonic development and throughout adult life. During embryogenesis, trafficking of HSCs is responsible for the sequential colonization of different hematopoietic organs by blood-producing cells. In adulthood, circulation of HSCs maintains homeostasis of the hematopoietic system and participates in innate immune responses. HSC trafficking is also crucial in clinical settings such as bone marrow (BM) and stem cell transplantation. This review provides an overview of the molecular and cellular signals that control and fine-tune trafficking of HSCs and hematopoietic progenitor cells in embryogenesis and during postnatal life. We also discuss the potential clinical utility of therapeutic approaches to modulate HSC trafficking in patients.  相似文献   

20.
Fanconi anemia (FA) is a human rare genetic disorder characterized by congenital defects, bone marrow (BM) failure and predisposition to leukemia. The progressive aplastic anemia suggests a defect in the ability of hematopoietic stem cells (HSC) to sustain hematopoieis. We have examined the role of the nuclear FA core complex gene Fancg in the functionality of HSC. In Fancg-/- mice, we observed a decay of long-term HSC and multipotent progenitors that account for the reduction in the LSK compartment containing primitive hematopoietic cells. Fancg-/- lymphoid and myeloid progenitor cells were also affected, and myeloid progenitors show compromised in vitro functionality. HSC from Fancg-/- mice failed to engraft and to reconstitute at short and long term the hematopoiesis in a competitive transplantation assay. Fancg-/- LSK cells showed a loss of quiescence, an impaired migration in vitro in response to the chemokine CXCL12 and a defective homing to the BM after transplantation. Finally, the expression of several key genes involved in self-renewal, quiescence and migration of HSC was dysregulated in Fancg-deficient LSK subset. Collectively, our data reveal that Fancg should play a role in the regulation of physiological functions of HSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号