首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orthotropic liver transplantation is the only established treatment for end-stage liver diseases. Utilization of hepatocyte transplantation and bio-artificial liver devices as alternative therapeutic approaches requires an unlimited source of hepatocytes. Stem cells, especially embryonic stem cells, possessing the ability to produce functional hepatocytes for clinical applications and drug development, may provide the answer to this problem. New discoveries in the mechanisms of liver development and the emergence of induced pluripotent stem cells in 2006 have provided novel insights into hepatocyte differentiation and the use of stem cells for therapeutic applications. This review is aimed towards providing scientists and physicians with the latest advancements in this rapidly progressing field.  相似文献   

2.
3.
Reprogramming of somatic cells into inducible pluripotent stem cells (iPSCs) provides an alternative to using embryonic stem cells (ESCs). Mesenchymal stem cells derived from human hair follicles (hHF-MSCs) are easily accessible, reproducible by direct plucking of human hairs. Whether these hHF-MSCs can be reprogrammed has not been previously reported. Here we report the generation of iPSCs from hHF-MSCs obtained by plucking several hairs. hHF-MSCs were isolated from hair follicle tissues and their mesenchymal nature confirmed by detecting cell surface antigens and multilineage differentiation potential towards adipocytes and osteoblasts. They were then reprogrammed into iPSCs by lentiviral transduction with Oct4, Sox2, c-Myc and Klf4. hHF-MSC-derived iPSCs appeared indistinguishable from human embryonic stem cells (hESCs) in colony morphology, expression of alkaline phosphotase, and expression of specific hESCs surface markers, SSEA-3, SSEA-4, Tra-1-60, Tra-1-81, Nanog, Oct4, E-Cadherin and endogenous pluripotent genes. When injected into immunocompromised mice, hHF-MSC-derived iPSCs formed teratomas containing representatives of all three germ layers. This is the first study to report reprogramming of hHF-MSCs into iPSCs.  相似文献   

4.
Optimization and development of better defined culture methods for human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) will provide an invaluable contribution to the field of regenerative medicine. However, one problem is the vulnerability of hESCs and hiPSCs to apoptosis that causes a low plating efficiency upon passaging. Herein, we have developed a novel hESCs and hiPSCs culture technique that uses ROCK inhibitor (ROCKi) Y-27632 (10 μM) in Matrigel-coated dishes in both serum- and feeder-free culture conditions. This increases plating efficiency during enzymatic and mechanical passaging as compared to its presence solely in culture medium. Under these conditions, hESCs (three lines) and hiPSCs (two lines) retain their typical morphology, a stable karyotype, express pluripotency markers and have the potential to differentiate into derivatives of all three germ layers after long-term culture. Real-time RT-PCR analysis of stemness-related integrins (αV, α6, and β1) has demonstrated that their expression increases in the presence of ROCKi. Similar plating efficiencies have been obtained in both hESCs and hiPSCs with a lower concentration of Y-27632 (800 nM) and another ROCKi (HA-1077/Fasudil), thus ruling out the non-specific effects of Y-27632. These results show that addition of ROCKi in the extracellular matrix can increase the plating efficiency of hESCs and hiPSCs during passaging of clusters. This is due not only to an anti-apoptotic effect, but also to an increase in the ECM-cells interaction. Therefore, we believe this method will be useful for both current and future applications of these pluripotent stem cells.  相似文献   

5.
A major road-block in stem cell therapy is the poor homing and integration of transplanted stem cells with the targeted host tissue. Human induced pluripotent stem (hiPS) cells are considered an excellent alternative to embryonic stem (ES) cells and we tested the feasibility of using small, physiological electric fields (EFs) to guide hiPS cells to their target. Applied EFs stimulated and guided migration of cultured hiPS cells toward the anode, with a stimulation threshold of <30 mV/mm; in three-dimensional (3D) culture hiPS cells remained stationary, whereas in an applied EF they migrated directionally. This is of significance as the therapeutic use of hiPS cells occurs in a 3D environment. EF exposure did not alter expression of the pluripotency markers SSEA-4 and Oct-4 in hiPS cells. We compared EF-directed migration (galvanotaxis) of hiPS cells and hES cells and found that hiPS cells showed greater sensitivity and directedness than those of hES cells in an EF, while hES cells migrated toward cathode. Rho-kinase (ROCK) inhibition, a method to aid expansion and survival of stem cells, significantly increased the motility, but reduced directionality of iPS cells in an EF by 70–80%. Thus, our study has revealed that physiological EF is an effective guidance cue for the migration of hiPS cells in either 2D or 3D environments and that will occur in a ROCK-dependent manner. Our current finding may lead to techniques for applying EFs in vivo to guide migration of transplanted stem cells.  相似文献   

6.
The need for new and improved pharmacotherapies in medicine, high late-stage compound attrition in drug discovery, and upcoming patent expirations is driving interest by the pharmaceutical industry in pluripotent stem cells for in vitro modeling and early-stage testing of toxicity and target engagement. In particular, human embryonic and induced pluripotent stem cells represent potentially cost-effective and accessible sources of organ-specific cells that foretell in vivo human tissue response to new chemical entities. Here we consider the potential of these cells as novel tools for drug development, including toxicity screening and metabolic profiling. We hold that despite various challenges to translating proof-of-concept screening platforms to industrial use, the promise of research is considerable, and close to being realized.  相似文献   

7.
The generation of human induced pluripotent stem cells (hiPSCs) with a high differentiation potential provided a new source for hepatocyte generation not only for drug discovery and in vitro disease models, but also for cell replacement therapy. However, the reported hiPSC-derived hepatocyte-like cells (HLCs) were not well characterized and their transplantation, as the most promising clue of cell function was not reported. Here, we performed a growth factor-mediated differentiation of functional HLCs from hiPSCs and evaluated their potential for recovery of a carbon tetrachloride (CCl4)-injured mouse liver following transplantation. The hiPSC-derived hepatic lineage cells expressed hepatocyte-specific markers, showed glycogen and lipid storage activity, secretion of albumin (ALB), alpha-fetoprotein (AFP), urea, and CYP450 metabolic activity in addition to low-density lipoprotein (LDL) and indocyanin green (ICG) uptake. Similar results were observed with human embryonic stem cell (hESC)-derived HLCs. The transplantation of hiPSC-HLCs into a CCl4-injured liver showed incorporation of the hiPSC-HLCs into the mouse liver which resulted in a significant enhancement in total serum ALB after 1 week. A reduction of total serum LDH and bilirubin was seen when compared with the control and sham groups 1 and 5 weeks post-transplantation. Additionally, we detected human serum ALB and ALB-positive transplanted cells in both the host serum and livers, respectively, which showed functional integration of transplanted cells within the mouse livers. Therefore, our results have opened up a proof of concept that functional HLCs can be generated from hiPSCs, thus improving the general condition of a CCl4-injured mouse liver after their transplantation. These results may bring new insights in the clinical applications of hiPSCs once safety issues are overcome.  相似文献   

8.
通过病毒载体导入4个外源转录因子Oct4、Sox2、c-Myc、Klf或者Oct4、Sox2、Nanog、Lin28入体细胞,可以诱导产生具有胚胎干细胞特性相似的诱导多潜能干细胞(induced pluripotent stem cells,iPS).iPS在疾病治疗和药物研究等领域具有非常重要的应用前景,但是目前存在诱导效率低以及致肿瘤性等缺点,采用改良方法诱导产生iPS是将来研究的重点.  相似文献   

9.
10.
Seven years have passed since the initial report of the generation of induced pluripotent stem cells (iPSCs) from adult human somatic cells, and in the intervening time the field of neuroscience has developed numerous disease models using this technology. Here, we review progress in the field and describe both the advantages and potential pitfalls of modeling neurodegenerative and neurodevelopmental diseases using this technology. We include tables with information on neural differentiation protocols and studies that developed human iPSC lines to model neurological diseases. We also discuss how one can: investigate effects of genetic mutations with iPSCs, examine cell fate-specific phenotypes, best determine the specificity of a phenotype, and bring in vivo relevance to this in vitro technique.  相似文献   

11.
12.
Background: A biotooth is defined as a complete living tooth, made in laboratory cultures from a spontaneous interplay between epithelial and mesenchymal cell-based frontal systems. A good solution to these problems is to use induced pluripotent stem cells (iPSCs). However, no one has yet formulated culture conditions that effectively differentiate iPSCs into dental epithelial and dental mesenchymal cells phenotypes analogous to those present in tooth development. Results: Here, we tried to induce differentiation methods for dental epithelial cells (DEC) and dental mesenchymal cells from iPSCs. For the DEC differentiation, the conditional media of SF2 DEC was adjusted to embryoid body. Moreover, we now report on a new cultivation protocol, supported by transwell membrane cell culture that make it possible to differentiate iPSCs into dental epithelial and mesenchymal cells with abilities to initiate the first stages in de novo tooth formation. Conclusions: Implementation of technical modifications to the protocol that maximize the number and rate of iPSC differentiation, into mesenchymal and epithelial cell layers, will be the next step toward growing an anatomically accurate biomimetic tooth organ. Developmental Dynamics 248:129–139, 2019. © 2018 Wiley Periodicals, Inc.  相似文献   

13.
14.
目的:探讨盐酸克伦特罗对人类诱导多能干细胞(iPSC)来源心肌细胞的毒性作用。方法:将人皮肤来源的iPSC成功定向分化为心肌细胞,加入不同浓度盐酸克伦特罗,使之分为对照组(0μg/ml)、1μg/ml组、10μg/ml组、20μg/ml组、50μg/ml组、100μg/ml组等6组(n均=3),相同条件共培养7天后,观察盐酸克伦特罗对心肌细胞形态大小、搏动频率及凋亡率的影响。结果:不同浓度盐酸克伦特罗均可使心肌细胞缩小(P0.05),50-100μg/ml盐酸克伦特罗可致心肌细胞骨架断裂,甚至呈颗粒状。各种浓度盐酸克伦特罗均致心肌细胞搏动频率加快(P0.05),且有浓度越高搏动越快的趋势。10μg/ml组和50μg/ml组所致心肌细胞凋亡率显著高于对照组(P0.05)。结论:盐酸克伦特罗对人类皮肤来源iPSC分化的心肌细胞有毒性作用。  相似文献   

15.
诱导多功能性干细胞(induced pluripotent stem cells,iPS细胞)是通过导入特定的转录因子(如Oct3/4、Sox2、c-Myc和Klf4等)将体细胞诱导重编程为多能性干细胞,其功能与胚胎干细胞相似.iPS细胞的建立,在生命科学领域引起了新的轰动.目前,iPS细胞的研究领域在转录因子的优化、iPS细胞的筛选、载体的运用、体细胞种类的选择和iPS细胞的应用等方面取得突破进展,但仍然存在致癌性、效率低等一系列急需解决的问题.  相似文献   

16.
17.
18.
人胚脑皮层神经干细胞的分离培养及鉴定   总被引:3,自引:2,他引:3  
目的 从人胚脑皮层中分离培养并鉴定神经干细胞,方法 利用无血清培养和单细胞克隆技术在人胚脑皮层中分离出具有单细胞克隆能力的细胞,并进行培养、传代、分化观察,采用间接免疫荧光检测克隆细胞的神经巢蛋白(Nestin)抗原和分化后特异性成熟神经细胞抗原的表达。结果 从胚龄10周的新鲜人胚脑皮层中成功分离出神经干细胞,该细胞具有连续克隆能力,可传代培养,表达神经巢蛋白抗原,分化后的细胞表达神经元细胞,胶质细胞和少突胶质细胞的特异性抗原。结论 人胚脑皮层中存在具有自我更新能力和多分化潜能的神经干细胞。  相似文献   

19.
Lee YK  Ng KM  Lai WH  Chan YC  Lau YM  Lian Q  Tse HF  Siu CW 《Stem cell reviews》2011,7(4):976-986

Rationale  

Cardiomyocytes generated from human induced pluripotent stem cells (hiPSCs) are suggested as the most promising candidate to replenish cardiomyocyte loss in regenerative medicine. Little is known about their calcium homeostasis, the key process underlying excitation-contraction coupling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号