首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM tissue grafts to PD patients indicate that one reason for the poor outcome of neural transplantation is the low survival and differentiation of grafted dopaminergic neurons. To improve dopaminergic cell survival through a gene-therapeutic approach we have established and report here results of lipid-mediated transfer of the gene for human glial cell line-derived neurotrophic factor (GDNF) to embryonic (E27/28) porcine VM tissue kept as organotypic explant cultures. Treatment of the developing VM with two mitogens, basic fibroblast growth factor and epidermal growth factor, prior to transfection significantly increased transfection yields. Expression of human GDNF via an episomal vector could be detected by in situ hybridization and by the measuring of GDNF protein secreted into the culture medium. When compared to mock-transfected controls, VM tissue expressing recombinant GDNF contained significantly higher numbers of tyrosine hydroxylase-positive neurons in the cultured VM tissue. We conclude that lipid-mediated gene transfer employed on embryonic pig VM explant cultures is a safe and effective method to improve survival of dopaminergic neurons and may become a valuable tool to improve allo- and xenotransplantation treatment in Parkinson's disease.  相似文献   

2.
Cell replacement therapy (CRT) offers great promise as the future of regenerative medicine in Parkinson′s disease (PD). Three decades of experiments have accumulated a wealth of knowledge regarding the replacement of dying neurons by new and healthy dopaminergic neurons transplanted into the brains of animal models and affected patients. The first clinical trials provided the proof of principle for CRT in PD. In these experiments, intrastriatal transplantation of human embryonic mesencephalic tissue reinnervated the striatum, restored dopamine levels and showed motor improvements. Sequential controlled studies highlighted several problems that should be addressed prior to the wide application of CRT for PD patients. Moreover, owing to ethical and practical problems, embryonic stem cells require replacement by better-suited stem cells. Several obstacles remain to be surpassed, including identifying the best source of stem cells for A9 dopaminergic neuron generation, eliminating the risk of tumor formation and the development of graft-induced dyskinesias, and standardizing dopaminergic cell production in order to enable clinical application. In this article, we present an update on CRT for PD, reviewing the research milestones, various stem cells used and tailored differentiation methods, and analyze the information gained from the clinical trials.  相似文献   

3.
Stem cell replacement has emerged as the novel therapeutic strategy for Parkinson's disease (PD). Control of motor behavior is lost in PD due to the selective degeneration of mesencephalic dopamine neurons (DA) in the substantia nigra. This progressive loss of DA neurons results in devastating symptoms for which there is no cure. Debilitating side effects often result from chronic pharmacological treatment, hence current investigations into cell transplantation therapy as a substitute and/or adjuvant to other therapeutics. Clinical trials with fetal DA tissue have provided evidence that cell transplantation could be a viable alternative. Limited availability of fetal tissue, combined with variable outcome led to emphasis on other sources of cells, such as stem cells. This review focuses on three stem cell sources (embryonic, neural, and adult mesenchymal). Also discussed is the molecular differentiation into mature DA neurons, the various protocols that have been developed to generate DA neurons from various stem cells, and the current state of stem cell therapy for PD.  相似文献   

4.
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons of the substantia nigra pars compacta in the brain with an unknown cause. Current pharmacological treatments for PD are only symptomatic and there is still no cure for this disease nowadays. In fact, transplantation of human fetal ventral midbrain cells into PD brains has provided a proof of concept that cell replacement therapy can be used for some PD patients, beneficial for improving their symptoms. However, the ethical and practical issues of human fetal tissue will inevitably limit its widespread clinical use. Therefore, it is essential to find alternative cell sources for the future cell transplantation for PD patients. With recent development in stem cell technology, here, we review the different types of stem cells and their main properties currently explored, which could be developed as a possible cell therapy for PD treatment.  相似文献   

5.
The loss of dopaminergic neurons of the substantia nigra is the pathological hallmark characteristic of Parkinson’s disease (PD). The strategy of replacing these degenerating neurons with other cells that produce dopamine has been the main approach in the cell transplantation field for PD research. The isolation, differentiation, and long-term cultivation of human embryonic stem cells and the therapeutic research discovery made in relation to the beneficial properties of neurotrophic and neural growth factors has advanced the transplantation field beyond dopamine-producing cells. The present review addresses recent advances in human embryonic stem cell experimentation in relation to treating PD, as well as cell transplantation techniques in conjunction with alternative therapeutics.  相似文献   

6.

Parkinson’s disease (PD) is one of the most frequent neurodegenerative diseases and represents a major therapeutic challenge because of the so far missing therapeutic means to influence the ongoing loss of dopaminergic innervation to the striatum. Cell replacement has raised hope to offer the first restorative treatment option. Clinical trials have provided “proof of principle” that transplantation of dopamine-producing neurons into the striatum of PD patients can achieve symptomatic relief given that the striatum is sufficiently re-innervated. Various cell sources have been tested, including fetal ventral midbrain tissue, embryonic stem cells, fetal and adult neural stem cells and, after a ground-breaking discovery, induced pluripotent stem cells. Although embryonic and induced pluripotent stem cells have emerged as the most promising candidates to overcome most of the obstacles to clinical successful cell replacement, each cell source has its unique drawbacks. This review does not only provide a comprehensive overview of the different cellular candidates, including their assets and drawbacks, but also of the various additional issues that need to be addressed in order to convert cellular replacement therapies from an experimental to a clinically relevant therapeutic alternative.

  相似文献   

7.
Parkinson's disease (PD) is a neurodegenerative condition which causes a characteristic movement disorder secondary to loss of dopaminergic neurons in the substanitia nigra. The motor disorder responds well to dopamine-replacement therapies, though these result in significant adverse effects due to non-physiolog-ical release of dopamine in the striatum, and off-target effects. Cell-based regenerative treatments offer a potential means for targeted replacement of dopamine, in a physiological manner. Dopaminergic neurons for cell-based therapies can be obtained from several sources. Fetal ventral mesencephalon tissue contains dopaminergic neuron progenitors, and has been transplanted into the striatum of PD patients with good results in a number of cases. However, the ethical implications and logistical challenges of using fetal tissue mean that fetal ventral mesencephalon is unlikely to be used in a widespread clinical setting. Induced plu-ripotent stem cells can be used to generate dopaminergic neurons for transplantation, providing a source of autologous tissue for grafting. This approach means that challenges associated with allografts, such as the potential for immune rejection, can be circumvented. However, the associated cost and difficulty in producing a standardized product from different cell lines means that, at present, this approach is not com-mercially viable as a cell-based therapy. Dopaminergic neurons derived from embryonic stem cells offer the most promising basis for a cell-based therapy for Parkinson's disease, with trials due to commence in the next few years. Though there are ethical considerations to take into account when using embryonic tissue, the possibility of producing a standardized, optimized cell product means that this approach can be both effective, and commercially viable.  相似文献   

8.
Isolation and transplantation of dopaminergic neurons and neural stem cells   总被引:9,自引:0,他引:9  
Although transplantation of mesencephalic tissue is considered a promising therapy for Parkinson's disease (PD), its clinical use is still restricted to a very few cases. A major limiting factor of this therapy is the difficulty of obtaining sufficient quantities of viable embryonic mesencephalic tissue. To overcome this limitation, techniques to produce dopaminergic (DA) neurons in vitro have been developed. However, these cultures are likely to contain a variety of unidentified cells, which must be removed before implantation. Specific cell-surface markers to sort DA neurons or their precursors are not available. We have developed an alternative strategy, by which these cells can be labeled with green fluorescent protein and isolated with fluorescent activated cell sorter. Transplantation of the sorted cells resulted in recovery of a rat model of the PD. This strategy should be useful for developing new therapies for PD.  相似文献   

9.
Poor survival of transplanted dopaminergic (DA) neurons remains a serious obstacle to the success of cell replacement therapy as an alternative to the current treatments for Parkinson's disease (PD). We have examined the temporal release profile of an inflammatory cytokine, tumor necrosis factor-alpha (TNFalpha), following transplantation of fetal mesencephalic tissue into the rat striatum. The amounts of TNFalpha released in vivo when added to cultures of embryonic DA neurons, significantly reduced the survival of DA neurons in vitro, and this cell death could be prevented by the inclusion of an antibody to the TNFalpha receptor type 1. Inclusion of this antibody in cell suspensions during transplantation also increased the survival of transplanted fetal DA neurons by approximately 250%. Use of this therapeutic antibody approach may offer significant improvements to neural transplantation as a treatment for PD.  相似文献   

10.
The neurobiology of cell transplantation in Parkinson's disease   总被引:1,自引:0,他引:1  
Over the past decade, neural grafting has emerged as a new treatment option for Parkinson's disease. When performed successfully, grafts of human embryonic neural tissue can give rise to major symptomatic relief in patients. However, a recent report on a double-blind placebo control study, which received worldwide attention, described less pronounced beneficial effects of the grafts, and found them to be significant only in patients younger than 60 years of age. Moreover, a subgroup of patients developed disabling dyskinesias as a result of the surgery. These findings, and great logistical problems in coordinating the harvesting of sufficient amounts of suitable human embryonic donor tissue with the transplantation surgery, have led the scientific community to question whether cell transplantation really has a future as a therapy for Parkinson's disease. In this review, we argue that the future of neural transplantation for Parkinson's disease is still bright. We relate clinical findings to observations made in experimental animals grafted with embryonic neural tissue and seek explanations for the variability in outcome seen in the clinical trials. We also briefly discuss alternative sources of donor tissue that may be applied in future clinical trials, and mention what features of cells may be crucial for them to be suitable as donor tissue for transplantation in Parkinson's disease.  相似文献   

11.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of midbrain dopaminergic (DA) neurons and a subsequent reduction in striatal dopamine. As a treatment for advanced Parkinson's disease, deep brain stimulation (DBS) of the thalamus was introduced in 1987 to treat tremor, and was applied in 1993 to the subthalamic nucleus. Now high-frequency stimulation of the subthalamic nucleus has become a surgical therapy of choice. Another surgical treatment is a cell replacement therapy. Transplantation of fetal dopaminergic (DA) neurons can produce symptomatic relief, however, the technical and ethical difficulties in obtaining sufficient and appropriate donor fetal brain tissue have limited the application of this therapy. Then, neural precursor cells and embryonic stem (ES) cells are expected to be candidates of potential donor cells for transplantation. We induced DA neurons from monkey ES cells, and analyzed the effect of transplantation of the DA neurons into MPTP-treated monkeys as a primate model of Parkinson's disease. Behavioral studies and functional imaging revealed that the transplanted cells functioned as DA neurons, attenuating the MPTP-induced neurological symptoms. DA neurons have also been generated from several human ES cell lines. Furthermore, functional recovery of rat PD models after transplantation was observed. One of the major problems in ES cell transplantation is tumor formation, which is caused by a small fraction of undifferentiated ES cells in the graft. So, it is essential for undifferentiated ES cells to be eliminated from the graft in order for transplantation to be feasible. These efforts will lead to clinical application of ES cell transplantation to the patients with PD.  相似文献   

12.
Parkinson's disease (PD) is a neurodegenerative disorder, characterised by the progressive loss of dopaminergic neurons in the substantia nigra, and typically treated by dopamine replacement. This treatment, although very effective in the early stages of the disease, is not curative and has side-effects. As such there has been a search for a more definitive treatment for this condition, which has mainly concentrated on replacing the lost neurons with neural grafts. Possible cell sources for replacement range from autologous grafts of dopamine secreting cells to allografts of fetal ventral mesencephalon and neural precursor cells derived from fetal tissue or embryonic stem cells. Some of these cells have been the subject of clinical trials, which to date have produced disparate outcomes. Therefore, whilst cell therapies remain a promising treatment for PD, there is need for further refinement of the techniques involved in this experimental procedure, before any new trials in patients are undertaken.  相似文献   

13.
Regeneration or restoration of lost or damaged neurons is very likely to profoundly alter the disability and needs of many patients. The replacement of dopaminergic (DA) neurons in patients with Parkinson's disease via implantation of embryonic midbrain tissue was taken from animal experiments to clinical applications. Ethical concerns related to the use of fetal tissue derived from abortions further argue for the search for alternative tissue sources. Today, it seems possible to generate functional DA neurons from a variety of stem cells, including embryonic and neural stem cells. Bone marrow stromal cells are another source for cell replacement. Neural stem cells derived from human fetal midbrain tissue maintain a considerable capacity to self-renew and to differentiate into DA neurons. Therefore, these cells may be a promising source to generate functional human DA neurons.  相似文献   

14.
Parkinson's disease (PD) is a common neurodegenerative disease, characterized by a selective loss of midbrain Dopaminergic (DA) neurons. To address this problem, various types of stem cells that have potential to differentiate into DA neurons are being investigated as cellular therapies for PD, including cells derived from embryonic or adult donor tissue, and embryonic stem cells. These cell sources, however, have raised certain questions with regard to ethical and rejection issues. Recent progress in adult stems has further proved that the cells derived from adult tissue could be expanded and differentiated into DA precursor cells in vitro, and cell therapy with adult stem cells could produce a clear improvement for PD models. Using adult stem cells for clinic application may not only overcome the ethical problem inherent in using human fetal tissue or embryonic stem cells, but also open the possibility for autologous transplantation. The patient-specific adult stem cell is therefore a potential and prospective candidate for PD treatment.  相似文献   

15.
The rationale behind the use of cells as therapeutic modalities for neurodegenerative diseases in general, and in Parkinson's disease (PD) in particular, is that they will improve patient's functioning by replacing the damaged cell population. It is reasoned that these cells will survive, grow neurites, establish functional synapses, integrate best and durably with the host tissue mainly in the striatum, renew the impaired wiring, and lead to meaningful clinical improvement. To increase the generation of dopamine, researchers have already transplanted non-neuronal cells, without any genetic manipulation or after introduction of genes such as tyrosine hydroxylase, in animal models of PD. Because these cells were not of neuronal origin, they developed without control, did not integrate well into the brain parenchyma, and their survival rates were low. Clinical experiments using cell transplantation as a therapy for PD have been conducted since the 1980s. Most of these experiments used fetal dopaminergic cells originating in the ventral mesencephalic tissue obtained from fetuses. Although it was shown that the transplanted cells survived and some patients benefited from this treatment, others suffered from severe dyskinesia, probably caused by the graft's excessive and uncontrolled production and release of dopamine. It is now recognized that cell-replacement strategy will be effective in PD only if the transplanted cells have the same abilities, such as dopamine synthesis and control release, reuptake, and metabolizing dopamine, as the original dopaminergic neurons. Recent studies on embryonic and adult stem cells have demonstrated that cells are able to both self-renew and produce differentiated tissues, including dopaminergic neurons. These new methods offer real hope for tissue replacement in a wide range of diseases, especially PD. In this review we summarize the evidence of dopaminergic neuron generation from embryonic and adult stem cells, and discuss their application for cell therapy in PD.  相似文献   

16.
Cell Therapeutics in Parkinson’s Disease   总被引:1,自引:0,他引:1  
The main pathology underlying motor symptoms in Parkinson’s disease (PD) is a rather selective degeneration of nigrostriatal dopamine (DA) neurons. Intrastriatal transplantation of immature DA neurons, which replace those neurons that have died, leads to functional restoration in animal models of PD. Here we describe how far the clinical translation of the DA neuron replacement strategy has advanced. We briefly summarize the lessons learned from the early clinical trials with grafts of human fetal mesencephalic tissue, and discuss recent findings suggesting susceptibility of these grafts to the disease process long-term after implantation. Mechanisms underlying graft-induced dyskinesias, which constitute the only significant adverse event observed after neural transplantation, and how they should be prevented and treated are described. We summarize the attempts to generate DA neurons from stem cells of various sources and patient-specific DA neurons from fully differentiated somatic cells, with particular emphasis on the requirements of these cells to be useful in the clinical setting. The rationale for the new clinical trial with transplantation of fetal mesencephalic tissue is described. Finally, we discuss the scientific and clinical advancements that will be necessary to develop a competitive cell therapy for PD patients.  相似文献   

17.
The rationale behind the use of cells as therapeutic modalities for neurodegenerative diseases in general, and in Parkinson’s disease (PD) in particular, is that they will improve patient’s functioning by replacing the damaged cell population. It is reasoned that these cells will survive, grow neurites, establish functional synapses, integrate best and durably with the host tissue mainly in the striatum, renew the impaired wiring, and lead to meaningful clinical improvement. To increase the generation of dopamine, researchers have already transplanted non-neuronal cells, without any genetic manipulation or after introduction of genes such as tyrosine hydroxylase, in animal models of PD. Because these cells were not of neuronal origin, they developed without control, did not integrate well into the brain parenchyma, and their survival rates were low. Clinical experiments using cell transplantation as a therapy for PD have been conducted since the 1980s. Most of these experiments used fetal dopaminergic cells originating in the ventral mesencephalic tissue obtained from fetuses. Although it was shown that the transplanted cells survived and some patients benefited from this treatment, others suffered from severe dyskinesia, probably caused by the graft’s excessive and uncontrolled production and release of dopamine. It is now recognized that cell-replacement strategy will be effective in PD only if the transplanted cells have the same abilities, such as dopamine synthesis and control release, reuptake, and metabolizing dopamine, as the original dopaminergic neurons. Recent studies on embryonic and adult stem cells have demonstrated that cells are able to both self-renew and produce differentiated tissues, including dopaminergic neurons. These new methods offer real hope for tissue replacement in a wide range of diseases, especially PD. In this review we summarize the evidence of dopaminergic neuron generation from embryonic and adult stem cells, and discuss their application for cell therapy in PD.  相似文献   

18.
Fetal cell transplantation therapies are being developed for the treatment of a number of neurodegenerative disorders including Parkinson's disease [10-12,21,22,24,36,43]. Massive apoptotic cell death is a major limiting factor for the success of neurotransplantation. We have explored a novel protein kinase pathway for its role in apoptosis of dopamine neurons. We have discovered that inhibitors of p38 MAP kinase (the pyridinyl imidazole compounds: PD169316, SB203580, and SB202190) improve survival of rat dopamine neurons in vitro and after transplantation into hemiparkinsonian rats. In embryonic rat ventral mesencephalic cultures, serum withdrawal led to 80% loss of dopamine neurons due to increased apoptosis. Incubation of the cultures with p38 MAP kinase inhibitors at the time of serum withdrawal prevented dopaminergic cell death by inhibiting apoptosis. In the hemiparkinsonian rat, preincubation of ventral mesencephalic tissue with PD169316 prior to transplantation accelerated behavioral recovery and doubled the survival of transplanted dopamine neurons. We conclude that inhibitors of stress-activated protein kinases improve the outcome of cell transplantation by preventing apoptosis of neurons after grafting.  相似文献   

19.
The clinical findings on neural transplantation for Parkinson's disease (PD) reported thus far are promising but many issues must be addressed before neural transplantation can be considered a routine therapeutic option for PD. The future of neural transplantation for the treatment of neurological disorders may rest in the discovery of a suitable alternative cell type for fetal tissue. One such alternative may be neurons derived from a human teratocarcinoma (hNT). hNT neurons have been shown to survive and integrate within the host brain following transplantation and provide functional recovery in animal models of stroke and Huntington's disease. In this study, we describe the transplantation of hNT neurons in the substantia nigra (SN) and striatum of the rat model for PD. Twenty-seven rats were grafted with one of three hNT neuronal products; hNT neurons, hNT-DA neurons, or lithium chloride (LiCl) pretreated hNT-DA neurons. Robust hNT grafts could be seen with anti-neural cell adhesion molecule and anti-neuron-specific enolase immunostaining. Immunostaining for tyrosine hydroxylase (TH) expression revealed no TH-immunoreactive (THir) neurons in any animals with hNT neuronal grafts. THir cells were observed in 43% of animals with hNT-DA neuronal grafts and all animals with LiCl pretreated hNT-DA neuronal grafts (100%). The number of THir neurons in these animals was low and not sufficient to produce significant functional recovery. In summary, this study has demonstrated that hNT neurons survive transplantation and express TH in the striatum and SN. Although hNT neurons are promising as an alternative to fetal tissue and may have potential clinical applications in the future, further improvements in enhancing TH expression are needed.  相似文献   

20.
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, classically characterized by a triad of motor features: bradykinesia, rigidity and resting tremor. Neurodegeneration in PD critically involves the dopaminergic neurons of the substantia nigra pars compacta, which results in a severe reduction in dopamine levels in the dorsal striatum. However, the disease also exhibits extensive non-nigral pathology and as many non-motor as motor features. Nevertheless, owing to the relatively circumscribed nature of the nigrostriatal lesion in PD, dopaminergic cell transplantation has emerged as a potentially reparative therapy for the disease. Sources for such cells are varied and include the developing ventral mesencephalon, several autologous somatic cell types, embryonic stem cells and induced pluripotent stem cells. In this article, we review the origins of dopaminergic transplantation for PD and the emergent hunt for a suitable long-term source of transplantable dopaminergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号