首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular recordings in an in vitro neocortical slice preparation from immature rats were used to investigate the Ca2 source for slow afterhyperpolarization (sAHP) generation in pyramidal neurons that exhibit complete spike frequency adaptation (CA neurons). In pyramidal neurons that maintain repetitive firing for long periods of time (RF neurons), N-, P- and Q-type Ca2+ channels supply Ca2+ for sAHP generation. In CA neurons, the sAHP was reduced by only 50% by the combination of antagonists for these Ca2+ channel types and L-type channels. Ryanodine and dantrolene, blockers of Ca2(+)-induced Ca2+ release, reduced the sAHP by approximately 45% in CA neurons, but caused no reduction of the sAHP in RF neurons. Dantrolene application caused CA neurons to fire throughout a 1s suprathreshold current injection (as do RF neurons).  相似文献   

2.
The CA3 area of the mature hippocampus is known for its ability to generate intermittent network activity both in physiological and in pathological conditions. We have recently shown that in the early postnatal period, the intrinsic bursting of interconnected CA3 pyramidal neurons generates network events, which were originally called giant depolarizing potentials (GDPs). The voltage-dependent burst activity of individual pyramidal neurons is promoted by the well-known depolarizing action of endogenous GABA on immature neurons. In the present work, we show that a persistent Na+ current, I-Nap, accounts for the slow regenerative depolarization that triggers the intrinsic bursts in the neonatal rat CA3 pyramidal neurons (postnatal day 3-6), while a slow Ca2+ -activated K+ current, sI-K(Ca), is primarily responsible for the postburst slow afterhyperpolarization and consequent burst termination. In addition, we exploited pharmacological data obtained from intracellular recordings to study the mechanisms involved in network events recorded with field potential recordings. The data as a whole indicate that I-Nap and sI-K(Ca) are involved in the initiation and termination, respectively, of the pyramidal bursts and consequent network events underlying GDPs.  相似文献   

3.
The synaptic regulatory mechanism of resting membrane potential of layer III and V pyramidal neurons was analyzed intracellularly in the slice preparation of cat sensorimotor cortex. During the tetanic stimulation of white matter, subthreshold membrane depolarization was induced, and after that, a slowly developing hyperpolarization was induced in the normal solution. When the membrane potential showed a slow change, spike duration and input resistance did not change and evoked single synaptic response did not reveal the enhancement of slow IPSPs. However, afterhyperpolarization following action potential was enhanced. The slow hyperpolarization and the enhancement of afterhyperpolarization were not observed in the cells treated with an NMDA receptor antagonist or a calcium channel blocker Ni(2+) (50-100 microM), or the cells hyperpolarized more than -80 mV before the tetanic stimulation.  相似文献   

4.
Intrinsic membrane potential oscillations in hippocampal neurons in vitro   总被引:6,自引:0,他引:6  
Membrane potential oscillations (MPOs) of 2-10 Hz and up to 6 mV were found in almost all stable hippocampal CA1 and CA3 neurons in the in vitro slice preparation. MPOs were prominent for pyramidal cells but less pronounced in putative interneurons. MPOs were activated at threshold depolarizations that evoked a spike and the frequency of the MPOs increased with the level of depolarization. MPOs were distinct from and seemed to regulate spiking, with a spike often riding near the top of a depolarizing MPO wave. Analysis of the periodicity of the oscillations indicate that the period of MPOs did not depend on the afterhyperpolarization (AHP) following a single spike. MPOs persisted in low (0-0.1 mM) Ca2+ medium, with or without Cd2+ (0.2 mM), when synaptic transmission was blocked. Choline-substituted low-Na+ (0-26 mM) medium, 3 microM tetrodotoxin (TTX) or intracellular injection of QX-314 reduced or abolished the fast Na(+)-spike and reduced inward anomalous rectification. About 40% of CA1 neurons had no MPOs after Na+ currents were blocked, suggesting that these MPOs were Na(+)-dependent. In about 60% of the cells, a large depolarization activated Ca(2+)-dependent MPOs and slow spikes. MPOs were not critically affected by extracellular Ba2+ or Cs2+, or by 0.2 mM 4-aminopyridine, with or without 2 mM tetraethylammonium (TEA). However, in 5-10 mM TEA medium, MPOs were mostly replaced by 0.2-3 Hz spontaneous bursts of wide-duration spikes followed by large AHPs. Low Ca2+, Cd2+ medium greatly reduced the spike width but not the spike-bursts. In conclusion, each cycle of an MPO in normal medium probably consists of a depolarization phase mediated by Na+ currents, possibly mixed with Ca2+ currents activated at a higher depolarization. The repolarization/hyperpolarization phase may be mediated by Na+/Ca2+ current inactivation and partly by TEA-sensitive, possibly the delayed rectifier, K+ currents. The presence of prominent intrinsic, low-threshold MPOs in all hippocampal pyramidal neurons suggests that MPOs may play an important role in information processing in the hippocampus.  相似文献   

5.
The entorhinal cortex (EC) is a key structure in memory formation, relaying sensory information to the hippocampal formation and processed information to the neocortex. EC neurons in the deep layers modulate the transfer of sensory information by the superficial layers and the dentate gyrus, and form the output to the neocortex. Here we characterize two types of EC layer V neurons by their fluorescence morphology, electrophysiology and intracellular Ca2+ signalling using intracellular recording and Ca2+ imaging. Pyramidal neurons show, in response to depolarizing current pulses, regular firing with strong adaptation and a fast and medium afterhyperpolarization (AHP) which are separated by a depolarizing notch and, with hyperpolarizing current injection, a transient sag. Multipolar cells respond to depolarization with delayed firing with very weak adaptation and have no depolarizing notch between fast and medium AHP and no sag with hyperpolarization. The delayed firing was blocked by 30 micro m 4-aminopyridine, indicating mediation by the D-type potassium current. Subthreshold depolarization evoked membrane potential oscillations of 2-5 Hz in both cell types and an increase in [Ca2+]i of 37 nm in pyramidal and 59 nm in multipolar neurons. Repetitive firing at 10 Hz for 30 s increased [Ca2+]i in pyramidal and multipolar neurons by 194 and 295 nm, respectively. Differential temporal firing and Ca2+ signalling suggest specific information processing and synaptic memory storage possibilities in these two layer V cell types of the EC.  相似文献   

6.
The effects of metrifonate, a second generation cholinesterase inhibitor, were examined on CA1 pyramidal neurons from hippocampal slices of young and aging rabbits using current-clamp, intracellular recording techniques. Bath perfusion of metrifonate (10-200 microM) dose-dependently decreased both postburst afterhyperpolarization (AHP) and spike frequency adaptation (accommodation) in neurons from young and aging rabbits (AHP: p < 0.002, young; p < 0.050, aging; accommodation: p < 0.024, young; p < 0.001, aging). These reductions were mediated by muscarinic cholinergic transmission, because they were blocked by addition of atropine (1 microM) to the perfusate. The effects of chronic metrifonate treatment (12 mg/kg for 3 weeks) on CA1 neurons of aging rabbits were also examined ex vivo. Neurons from aging rabbits chronically treated with metrifonate had significantly reduced spike frequency accommodation, compared with vehicle-treated rabbits. Chronic metrifonate treatment did not result in a desensitization to metrifonate ex vivo, because bath perfusion of metrifonate (50 microM) significantly decreased the AHP and accommodation in neurons from both chronically metrifonate- and vehicle-treated aging rabbits. We propose that the facilitating effect of chronic metrifonate treatment on acquisition of hippocampus-dependent tasks such as trace eyeblink conditioning by aging subjects may be caused by this increased excitability of CA1 pyramidal neurons.  相似文献   

7.
The blockade of a slow Ca2+-activated K+-dependent afterhyperpolarization (AHPs) in rabbit visceral sensory neurons by the prostaglandins, PGE1 and PGD2, was investigated to determine whether the blockade was indirectly due to a reduction in Ca2+ influx. The prostaglandins (PGs) could block the AHPs in the absence of any change in Ca2+-dependent spikes elicited in the presence of tetrodotoxin and tetraethylammonium bromide. A PG-induced decrease in Ca2+-dependent spike width observed in some neurons was temporally dissociated from the PG-induced block of the AHPs. In addition, a slow afterhyperpolarization produced by the application of the Ca2+ ionophore, A23187, was blocked by the PGs. It is concluded that a reduction in Ca2+ influx is not responsible for the PG-induced blockade of the AHPs.  相似文献   

8.
The actions of serotonin (5HT) on passive and active membrane properties of neurons in the rat dorsal lateral septal nucleus (LSN) were studied by using intracellular recordings in transverse, septal slices. Superfusion with 10 microM 5HT induced a hyperpolarization of the membrane in almost all neurons tested in the dorsolateral part of the LSN. The hyperpolarization was accompanied by a decrease in membrane resistance. These effects of 5HT persisted in a low-Ca2+/high-Mg2+-containing medium or medium with tetrodotoxin, indicating a post-synaptic site of action for 5HT. The reversal potential for the hyperpolarizing effect was ca. -95 mV. If the extracellular K+-concentration was raised, the reversal potential became less negative. These data suggest that 5HT hyperpolarizes LSN neurons by increasing a K+-conductance. Spontaneous, synaptically evoked action potentials and action potentials induced in LSN neurons by a depolarizing current step typically display a fast Na+-spike with a subsequent K+-afterhyperpolarization, followed by a much slower Ca2+-dependent afterdepolarization. The amplitude of the K+-afterhyperpolarization was decreased by 5HT, while at the same time the afterdepolarization became more pronounced. The Ca2+-spike of LSN neurons was not affected by 5HT. Synaptic responses that were evoked in LSN neurons by stimulation of the dorsal part of the LSN consisted of a fast EPSP or spike, followed by a Cl(-)-dependent fast IPSP and a K+-dependent late IPSP. Of these synaptic responses, 5HT suppressed particularly the late IPSP. The present data indicate that 5HT affects the conductance for active and passive K+-channels in LSN neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The control of firing pattern in nigral dopamine neurons: single spike firing   总被引:19,自引:0,他引:19  
Dopamine (DA) neurons have been recorded in vivo in four states of activity: hyperpolarized, nonfiring; single spike firing; burst firing; and depolarization inactivation. Nonfiring DA neurons can be made to fire by iontophoretic application of the excitatory substances glutamate and cholecystokinin, or by depolarizing current injection. Spontaneously active DA cells typically fire in a slow (3 to 8 Hz) irregular pattern. In vivo intracellular recordings revealed that this pattern is sustained by the alternation of two currents: a spontaneously occurring slow depolarization (13 +/- 3 mV amplitude, 78 +/- 40 msec duration) which brings the membrane potential of the DA cell to spike threshold (-42 mV), and an afterhyperpolarization mediated by a calcium-activated potassium conductance (IK(Ca)). The slow depolarization is a pacemaker-like conductance, with a rate of rise proportional to the membrane potential. The regular pacemaker pattern of the spontaneously occurring slow depolarization is interrupted by the IK(Ca) which appears to be triggered by calcium entry during the action potential. Thus, intracellular injection of the calcium chelator EGTA will cause DA cells to fire in a regular, pacemaker pattern. The IK(Ca) is observed after single spikes and trains of spikes with the amplitude of the afterhyperpolarization being proportional to the number of spikes in a train. Both the afterhyperpolarization and the firing accommodation observed during depolarizing current injection can be blocked by intracellular injection of the calcium chelator EGTA.  相似文献   

10.
Inversion of the early component of IPSPs in pyramidal neurons of the sensorimotor cortex by intracellular injection of chloride ions was demonstrated in cats immobilized by myorelaxants in acute experiments under moderate composed anesthesia (40 mg/kg nembutal and 20 mg/kg chloralose intraperitoneally). The late component of IPSPs as well as the post-burst hyperpolarization in pyramidal neurons were not inverted. It is concluded that during the early component of IPSPs of both pyramidal and nonpyramidal neurons the membrane permeability is increased for chloride ions, while both the late component of IPSPs and the post-burst hyperpolarization in pyramidal neurons are less dependent on the chloride permeability.  相似文献   

11.
Evidence is accumulating that voltage-gated channels are distributed nonuniformly throughout neurons and that this nonuniformity underlies regional differences in excitability within the single neuron. Previous reports have shown that Ca2+, Na+, A-type K+, and hyperpolarization-activated, mixed cation conductances have varying distributions in hippocampal CA1 pyramidal neurons, with significantly different densities in the apical dendrites compared with the soma. Another important channel mediates the large-conductance Ca2+-activated K+ current (IC), which is responsible in part for repolarization of the action potential (AP) and generation of the afterhyperpolarization that follows the AP recorded at the soma. We have investigated whether this current is activated by APs retrogradely propagating in the dendrites of hippocampal pyramidal neurons using whole-cell dendritic patch-clamp recording techniques. We found no IC activation by back-propagating APs in distal dendritic recordings. Dendritic APs activated IC only in the proximal dendrites, and this activation decayed within the first 100-150 micrometer of distance from the soma. The decay of IC in the proximal dendrites occurred despite AP amplitude, plus presumably AP-induced Ca2+ influx, that was comparable with that at the soma. Thus we conclude that IC activation by action potentials is nonuniform in the hippocampal pyramidal neuron, which may represent a further example of regional differences in neuronal excitability that are determined by the nonuniform distribution of voltage-gated channels in dendrites.  相似文献   

12.
NMDA receptors (NMDARs) are important for the propagation of seizures. To understand the role of NR1 subunits in the propagation of seizures we knocked down the NR1 subunit by intracranial injection of antisense deoxyoligonucleotides (NR1-AS-ODNs) into the right hippocampus during a window of maximal seizure susceptibility in development. Control missense and sense ODNs followed by focal injection of NMDA (2.5–25 nmoles) into the hippocampal CA1 and sensorimotor cortex of P15 rat pups resulted in behavioral and electrographic (EEG) seizures. After NR1 knockdown, low- and high-doses produced little or no spike activity in the hippocampus and overlying sensorimotor cortex as predicted. Despite reduced activity in the hippocampal and cortical EEG, intracranial NMDA or peripheral kainate (KA)-induced seizures led to paradoxical cell death of CA1 neurons, which is not typically observed in this age group. Histological changes were modest or absent in the cortex away from the infusion site. Signal specificity of the targeted CA1 or cortex was observed in autoradiograms, immunohistochemistry and Western blots. After knockdown, Ca2+ influx was suppressed as both NMDA and muscimol-stimulated Ca2+ permeability of the immature CA1 was blocked in ex-vivo slices measured with FURA-2AM optical dye imaging. Data suggest that certain constituent levels of NMDA receptors distributed on excitatory and/or inhibitory interneurons may be developmentally required for survival of CA1 pyramidal neurons during a critical period when ictal activity is present. Moreover, selective NR1 subunit downregulation simultaneously reduces NMDA and GABAA receptor Ca2+ ion permeability properties that may contribute to a premature cell death mechanism.  相似文献   

13.
Slice preparations were made from the hippocampus of gerbils after 5 min of ischemia by carotid artery occlusion and the membrane properties of pyramidal neurons were examined. A majority of CA1 neurons lost the capacity for long-term potentiation following tetanic stimulation of the input fibers. CA3 pyramidal neurons, in contrast, preserved responses similar to those in the normal gerbil. Following ischemia, CA1 pyramidal neurons showed increased spontaneous firing that was highly voltage dependent and was blocked by intracellular injection of the Ca2+ chelator, EGTA. Thirty-five percent of CA1 neurons showed an abnormal slow oscillation of the membrane potential after 24 h following ischemia. Intracellular injection of GTP gamma S or IP3 produced facilitation of the oscillations followed by irreversible depolarization. Our results indicate that ischemia-damaged CA1 neurons suffer from abnormal Ca2+ homeostasis, involving IP3-induced liberation of Ca2+ from internal stores.  相似文献   

14.
The effects of charybdotoxin and leiurotoxin I were examined on several classes of K+ currents in bullfrog sympathetic ganglion and hippocampal CA1 pyramidal neurons. Highly purified preparations of charybdotoxin selectively blocked a large voltage- and Ca(2+)-dependent K+ current (IC) responsible for action potential repolarization (IC50 = 6 nM) while leiurotoxin I selectively blocked a small Ca(2+)-dependent K+ conductance (IAHP) responsible for the slow afterhyperpolarization following an action potential (IC50 = 7.5 nM) in bullfrog sympathetic ganglion neurons. Neither of the toxins had significant effects on other K+ currents (M-current [IM], A-current [IA] and the delayed rectifier [IK]) present in these cells. Leiurotoxin I at a concentration of 20 nM had no detectable effect on currents in hippocampal CA1 pyramidal neurons. This lack of effect on IAHP in central neurons suggests that the channels underlying slow AHPs in those neurons are pharmacologically distinct from analogous channels in peripheral neurons.  相似文献   

15.
Electrophysiological properties of guinea pig ambiguus (AMB) neurons were studied in a brainstem slice preparation. During subthreshold depolarization AMB neurons displayed an early slow depolarization and a late outward rectification both of which were blocked by replacing Ca2+ with Co2+ in the extracellular solution. AMB neurons showed hyperpolarizing inward rectification which was blocked by extracellular Cs+ and is likely caused by the activation of Ih. In 58% (n = 49) of AMB neurons spike firing was restricted to the early phase of a long-lasting depolarizing current injection (phasic firing). The remaining AMB neurons showed repetitive firing throughout the depolarization (tonic firing). A Ca2+-mediated K+ current (IK(Ca)) caused an afterhyperpolarization that followed both single and repetitive spike firing. IK(Ca) also controlled the firing pattern in both types of firing, especially in the phasic firing. Norepinephrine (NE) blocked both the hyperpolarizing inward rectification and the Ca2+-dependent AHP. These effects of NE were antagonized by propranolol. It is proposed that the blockade of IK(Ca) and Ih contribute to the improvement of the ‘signal-to-noise ratio’ by NE in AMB neurons.  相似文献   

16.
Intracellular correlates of evoked rhythmic cortical "spike-and-wave" potentials produced in sensorimotor cortex during 3/s stimulation of the thalamic relay nucleus (VPL) and of self-sustained "spike-and-wave" afterdischarges following 8-14/s stimulation of the same nucleus were studied in acute experiments on cats immobilized by myorelaxants. Intracellular recordings of pyramidal tract neurons revealed that different components of evoked "spike-and-wave" potentials, i. e. the spike-like negative wave and the long lasting negative wave, are postsynaptic in origin: the first is due to EPSPs with spike discharges, and the latter--to IPSPs of cortical neurons. Components of "spike-and-wave" afterdischarge mostly reflect the paroxysmal depolarizing shifts of the membrane potential of cortical neurons. After cessation of sustained "spike-and-wave" activity the long-lasting hyperpolarization accompanied by inhibition of spike discharges and subsequent recovery was observed in cortical neurons. It is presumed that the negative wave of the evoked "spike-and-wave" potential as well as slow negative potentials of direct cortical and primary responses reflect IPSPs of deeper parts of pyramidal tract neurons, while the waves of the sustained "spike-and-wave" afterdischarges are due to paroxysmal depolarizing shifts in cortical neurons.  相似文献   

17.
The density of distribution of callosal neurons in rabbit sensorimotor cortex was studied by means of horseradish peroxidase injection into the homotopic cortical area. The irregularity of density was evaluated visually and/or computed. Labelled callosal units were mostly small and medium-size pyramidal cells located primarily in layer III-IV and more rarely in layers V and VI. Layer III-IV revealed different patterns of labelled units grouping: in pairs, in 5-8 vertically situated cells, in clusters 120-200 micron wide, separated by areas with decreased density. The obtained results confirm previously made conclusion based on electrophysiological studies about the modular organization of callosal connections in sensorimotor cortex of rabbits.  相似文献   

18.
H Kita 《Brain research》1992,589(1):84-90
The responses of globus pallidus (GP) neurons to stimulation of the sensorimotor cortex, the neostriatum, and the subthalamic nucleus were intracellularly recorded in anesthetized rats. Stimulation of the cortex evoked a sequence of postsynaptic responses including an initial short EPSP, a short IPSP, and a late EPSP with multiple spikes in most of the repetitively firing GP neurons. The response pattern was very similar to those evoked by striatal stimulation, except that the latencies were longer. An acute knife cut placed immediately caudal to the substantia nigra caused no significant change in the responses to cortical and striatal stimulation. Stimulation of the subthalamic nucleus evoked a short latency EPSP overlapped with an IPSP. The polarity of all the IPSPs was reversed by a Cl- injection. A systemic injection of picrotoxin abolished all the IPSPs and unmasked large depolarizations with multiple spikes. An ibotenic acid lesion of the subthalamic nucleus eliminated both the initial short latency and late EPSPs to cortical and striatal stimulation and disclosed a prominent IPSP. Stimulation of the lesioned subthalamic nucleus also evoked large, short latency IPSPs without noticeable EPSPs. These results indicate that (i) the IPSPs evoked by cortical, striatal, and subthalamic stimulation were mediated by a GABAA receptor, (ii) both the initial and late EPSPs to cortical and striatal stimulation involved activation of the subthalamic nucleus but not brainstem nuclei, and (iii) cortically derived signals mediated through the neostriatum (i.e. long latency IPSPs) and the subthalamic nucleus (i.e. short latency EPSPs) converged on most GP neurons.  相似文献   

19.
The temperature dependence of intrinsic membrane conductances and synaptic potentials in guinea pig hippocampal CA1 pyramidal neurons were examined in vitro as they were cooled from 37 degrees C to between 33 and 27 degrees C. Cooling reversibly increased resting input resistance in a voltage-independent manner (Q10 = 0.58 to 0.75). The amplitude and duration of orthodromically evoked action potentials were increased by cooling (Q10 = 0.87 and 0.52 to 0.53, respectively), whereas the maximum rates of rise and fall were reduced (Q10 = 1.27 to 1.49 and 2.19 to 2.44, respectively). The amplitude and duration of the afterhyperpolarization which follows a directly evoked train of action potentials were substantially increased at low temperatures. It is possible to attribute this increase to an augmentation of Ca2+ influx during the train and also to a slowing of Ca2+ removal from the cytoplasm. Spike frequency adaptation during prolonged depolarizing pulses was enhanced at low temperatures. In addition, there was a decrement in spike amplitude during the train of action potentials. These observations all suggest an increase in Ca2+-activated K+ conductance at low temperature. A late, slow, hyperpolarizing synaptic potential in response to orthodromic stimulation became apparent at low temperature. This potential had an apparent reversal potential more negative than the early inhibitory postsynaptic potential, suggesting that it was mediated by a K+ conductance, possibly activated by Ca2+ influx. We conclude that reductions in temperature of as little as 5 to 10 degrees C from normal can significantly alter the intrinsic and synaptic physiology of hippocampal neurons and should, therefore, be considered an important variable in in vitro brain slice experiments.  相似文献   

20.
Opioids have an excitatory effect on CA1 pyramidal neurons in the hippocampus due to the inhibition of γ-aminobutyric acid (GABA) release from interneurons. Electrophysiologically, this pyramidal cell excitation is manifest as an increase in extracellularly recorded population spikes, while the reduction in synaptic GABA release is manifest as a decrease in the amplitude of intracellularly recorded inhibitory postsynaptic potentials (IPSPs). Recent studies suggest that some of the behavioral effects of opioids, such as antinociception, can be inhibited antiopioid peptides such as neuropeptide FF (NPFF). In the present study, we have used the hippocampal response to opioids to examine the potential interactions between morphine and NPFF in vitro. Morphine alone (20–200 μM) caused reversible concentration-dependent increases in population spikes and decreases in IPSPs. In extracellular experiments, NPFF (1 μM) alone had no effect on population spikes, but significantly and concentration-dependently inhibited the morphine-induced increases in these responses. Intracellular experiments indicated that while NPFF had no effect on IPSP amplitude, or other pyramidal neurons membrane properties (membrane potential, input resistance, afterhyperpolarization, action potential frequency), it significantly reduced the decrease in IPSP amplitude caused by morphine. These results demonstrate that NPFF can attenuate the effects of morphine on population spikes and IPSPs in the hippocampus, and suggest that this effect occurs at a presynaptic site, possibly involving GABAergic interneurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号