首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine bone marrow (BM) cell preparations lack mature cytotoxic natural killer (NK) cells, but NK cells may be induced in these cell preparations by culturing with interleukin-2 (IL2). Present study was aimed at studying the role of interactions between Ly49 molecules and major histocompatibility complex (MHC) class I molecules during IL2-induced development of mature NK cells in BM cell cultures. Addition of monoclonal antibodies (mabs) specific to class I MHC molecules of H-2b haplotype, to block any interaction of MHC I molecules with their receptors, was found to inhibit NK cell development. Mouse NK cells express several types of Ly49 molecules including Ly49C, which is an inhibitory receptor specific to MHC I molecules of H-2b haplotype. Blocking Ly49-MHC I interaction by using anti-Ly49C mab inhibited the development of cytotoxic NK cells. Addition of anti-Ly49A (no specificity for H-2b MHC I molecules) or anti-Ly49D (activating receptor specific for MHC I molecules of many H-2 haplotypes including H-2b) mabs, however, had no effect on IL2-induced NK cell development in BM cells. Mabs specific to Ly49C molecule and MHC I molecules of H-2b haplotype inhibited the development of mature NK cells from highly purified NK precursor cell population. These results indicate that specific interaction between inhibitory self-reactive Ly49 molecules and MHC I molecules may be crucial for NK cell development. We propose a model in which Ly49-MHC I interaction may have a permissive role in allowing development of only such NK cell clones that expresses at least one self-reactive inhibitory Ly49 molecule so that lysis of autologous healthy cells by mature NK cells may be avoided.  相似文献   

2.
Murine natural killer (NK) cells are inhibited by target cell MHC class I molecules via Ly49 receptors. However, Ly49 receptors can be made inaccessible to target cell MHC class I by a cis interaction with its MHC class I ligand within the NK cell membrane. It has recently been demonstrated that MHC class I proteins transfer from the target cells to the NK cell. Here, we establish that the number of transferred MHC class I proteins is proportional to the number of Ly49A receptors at the NK cell surface. Ly49A+ NK cells from mice expressing the Ly49A ligand H-2D(d) showed a 90% reduction in Ly49A accessibility compared to Ly49A+ NK cells from H-2D(d)-negative mice. The reduction was caused both by lower expression of Ly49A and interactions in cis between Ly49A and H-2D(d) at the NK cell surface. Approximately 75% of the Ly49A receptors on H-2D(d)-expressing NK cells were occupied in cis with endogenous H-2D(d) and only 25% were free to interact with H-2D(d) molecules in trans. Thus, H-2D(d) ligands control Ly49A receptor accessibility through interactions both in cis and in trans.  相似文献   

3.
Ly49A is a C-type lectin-like receptor on NK cells that recognizes MHC class I ligands, H-2D(d) and D(k). The engagement of Ly49A with the ligands inhibits activation of NK cells and protects target cells from lysis by NK cells. Here we express the extracellular region of Ly49A with an N-terminal biotinylation tag in Escherichia coli to obtain soluble Ly49A (sLy49A) after refolding. sLy49A is indistinguishable from native Ly49A expressed on NK cells serologically and in the ability to specifically bind H-2D(d) after tetramerization with R-phycoerythrin-coupled streptavidin. The fluorescently labeled tetramer of sLy49A is applied to explore MHC class I haplotype specificity of Ly49A. We demonstrate the hierarchical reactivity of Ly49A with H-2 of various alleles in the order of d > k, r > p > v > q > s > z. Reactivity of sLy49A tetramer to spleen lymphocytes from B10.QBR mice (H-2K(b), I(b), D(q), Qa-1/Tla(b)) but not from C57BL/10 mice (H-2(b)) identifies H-2D(q) and L(q) as candidates for a Ly49A ligand. Binding of sLy49A tetramer to H-2D(q)- or L(q)-transfected cell lines demonstrates that the two highly related MHC class I molecules, H-2D(q) and L(q), are ligands for Ly49A. sLy49A tetramer staining also demonstrates preferential expression of Ly49A ligand on a subset of B cells in P/J mice. These results provide the basis to examine the molecular mechanism by which Ly49A discriminates polymorphic MHC class I molecules.  相似文献   

4.
NK cells acquire the ability to recognize MHC class I molecules during development. Studies with Qa-1(b) tetramers (Qa-1 tetramers) showed that nearly all NK1.1(+) cells from newborn C57BL/6 mice express Qa-1-binding receptors. Cytotoxic activity of these cells is fully inhibited by Qa-1 ligands on target cells. In contrast, neither receptors for H-2K(b) nor H-2D(b) were observed on NK1.1(+) cells from newborn mice. After birth, frequencies of Qa-1 tetramer(+)/ NK1.1(+) cells gradually decrease as the number of Ly49(+) /NK1.1(+) cells increases. Cell transfer studies showed that Qa-1 tetramer(+) cells from newborn mice do not lose expression of Qa-1 receptors, but that they further acquire expression of Ly49 molecules. Acquisition of Qa-1-binding receptors appears largely independent of host MHC class I molecules, as observed in studies using beta2-microglobulin-deficient (beta2m(-/-)) mice as well as K(b)/ D(b-/-) and K(b)/D(b)/beta2m(-/-) mice. The present results suggest that Qa-1-binding receptors play an important role in the specificity of developing NK cells, and suggest that these cells rely mainly on inhibitory receptors specific for non-classical MHC class I molecules to maintain self tolerance during the first weeks of life.  相似文献   

5.
Major histocompatibility complex (MHC) class I-specific inhibitory receptors are expressed not only on natural killer (NK) cells but also on some subsets of T cells. We here show Ly49 expression on gamma/delta T cells in the thymus and liver of beta2-microglobulin-deficient (beta2m-/-) and C57BL/6 (beta2m+/+) mice. Ly49C/I or Ly49A receptor was expressed on NK1.1+gamma/delta T cells but not on NK1.1-gamma/delta T cells. The numbers of NK1.1+gamma/delta T cells were significantly smaller in beta2m+/+ mice than in beta2m-/- mice with the same H-2b genetic background. Among NK1.1+gamma/delta T cells, the proportions of Ly49C/I+ cells but not of Ly49A+ cells, were decreased in beta2m+/+ mice, suggesting that cognate interaction between Ly49C/I and H-2Kb is involved in the reduction of the number of Ly49C/I+ gamma/delta T cells in beta2m+/+ mice. The frequency of Ly49C/I+ cells in NK1.1+gamma/delta T cells was lower in both lethally irradiated beta2m+/+ mice transplanted with bone marrow (BM) from beta2m-/- mice and lethally irradiated beta2m-/- mice transplanted with BM from beta2m+/+ mice than those in adult thymectomized BM-transplanted chimera mice. These results suggest that reduction of Ly49C/I+ NK1.1+gamma/delta T cells in beta2m+/+ mice is at least partly due to the down-modulation by MHC class I molecules on BM-derived haematopoietic cells or radioresistant cells in the thymus.  相似文献   

6.
Murine natural killer (NK) cells are inhibited from killing their targets by the interaction between inhibitory, C-type lectin like Ly49 receptors and major histocompatibility complex (MHC) class I molecules. The receptors have overlapping specificity, and it has been difficult to analyze specific aspects of the interaction between different Ly49 receptors and their respective ligands. We have addressed this problem using tetramers of bacterially expressed, non-glycosylated, MHC class I molecules refolded with different peptides. Our results indicate that this technology is useful for analysis of Ly49 receptor specificity as well as for monitoring of NK cell subsets, with the following major conclusions emerging from this study: (1) tetramers of H-2D(d) bound the Ly49A receptor; the MHC associated glycan, previously suggested to be involved in recognition by this receptor, is thus not required for Ly49A receptor binding; (2) in support and extension of a recent report indicating peptide selectivity in the recognition of H-2K(b) by Ly49C(+) cells, H-2K(b) tetramer binding to Ly49C receptors was strongly influenced by the peptide presented by the MHC class I molecule; (3) tetramer binding allowed visualization of interactions that have not previously been detected in functional studies, such as the recognition of H-2D(b) by Ly49A and Ly49C.  相似文献   

7.
Natural killer (NK) cells are an essential component of the innate immunity toward tumors and virally infected cells. The function of NK cells is regulated by a precise balance between inhibitory and activating signals. These signals are mediated by NK cell receptors that bind either classical MHC class I molecules or their structural relatives such as MICA, ULBP, RAE-1, and H-60. Two separate families of NK cell receptors have been identified: the immunoglobulin-like family (KIR, LIR) and C-type lectin-like family (Ly49, NKG2D, and CD94/NKG2). Here we summarize the structure of Ly49 C-type lectin-like proteins hitherto solved (Ly49A, Ly49C and Ly49I) and their interaction with MHC class I molecules as determined by the co-crystal structure of Ly49A/H-2Dd and Ly49C/H-2Kb.  相似文献   

8.
The Ly49 family of natural killer (NK) receptors regulates NK cell function by sensing major histocompatibility complex (MHC) class I. Ly49 receptors show complex patterns of MHC class I cross-reactivity and, in certain cases, peptide selectivity. To investigate whether specificity differences result from topological differences in MHC class I engagement, we determined the structure of the peptide-selective receptor Ly49C in complex with H-2K(b). The Ly49C homodimer binds two MHC class I molecules in symmetrical way, a mode distinct from that of Ly49A, which binds MHC class I asymmetrically. Ly49C does not directly contact the MHC-bound peptide. In addition, MHC crosslinking by Ly49C was demonstrated in solution. We propose a dynamic model for Ly49-MHC class I interactions involving conformational changes in the receptor, whereby variations in Ly49 dimerization mediate different MHC-binding modes.  相似文献   

9.
TAP1 −/−, β2-microglobulin (β2m) −/− and TAP1/β2m −/− mice all express low but quantitatively different levels of MHC class I molecules. Using these mice, we have addressed questions relating to the fine tuning of natural killer (NK) cell specificity and maintenance of self tolerance in the NK cell system. NK cells from B6 wild-type mice killed target cells from TAP1 −/−, β2m −/− and TAP1/β2m −/− mice in vivo and rejected bone marrow grafts from the same mice in vivo at equivalent levels. NK cells from TAP1 −/−, β2m −/− mice did not kill target cells or reject bone marrow grafts from TAP1/β2m −/− mice. NK cells in all MHC class I-deficient mice were tolerant to autologous MHC class I-deficient cells, as revealed by in vitro cytotoxicity assays using NK cell effectors activated with the interferon-inducing agent Tilorone, or by in vivo bone marrow graft experiments. However, the self-tolerant state of MHC class I-deficient NK cells was broken by in vitro stimulation with IL-2 for 4 days. Under these conditions, NK cells from the MHC class I-deficient mice killed autologous MHC class I-deficient cells while MHC class I-positive targets were spared. The C-type lectin inhibitory receptor Ly49C has a specificity for H-2Kb and is expressed on a subset of NK1.1+ cells in B6 mice. Wild-type and all MHC class I-deficient mice had similar numbers of Ly49C-positive NK1.1+ cells. However, Ly49C expression was markedly down-regulated on NK1.1+ cells from B6 mice, as compared to TAP1 −/−, β2m −/− and TAP1/β2m −/− mice. In vitro stimulation of NK cells with IL-2 for 4 days did not significantly change this pattern. The present results are discussed in relation to the role of MHC class I molecules and Ly49 receptors in shaping the NK cell repertoire and raise new questions about maintenance of self tolerance in the NK cell system.  相似文献   

10.
Expression of adenovirus E1A gene products in tumor cells enhances NK cell lysis in vitro and NK-mediated rejection in vivo, despite increasing class I molecules on tumor cells. It is unclear why the increased expression of MHC class I molecules does not appear to confer resistance to killing by NK cells. One possibility is the unique capacity of E1A to sensitize cells to multiple NK cell killing mechanisms including perforin/granzyme, Fas ligand, tumor necrosis factor-alpha and TRAIL. To examine this issue, MCA-102-E1A tumor cells (H-2(b)) that express E1A and are NK sensitive were transfected with H-2D(d), the ligand for the NK inhibitory receptor, Ly49A. Expression of H-2D(d) molecules by MCA-102-E1A cells protected them from lysis by a Ly49A(+) NK cell clone and Ly49A(+) NK cells isolated from C57BL/6 nude mice. In contrast, NK cell-mediated rejection of MCA-102-E1A tumor cells was not inhibited by the expression of H-2D(d) molecules, nor was killing by polyclonal populations of NK cells isolated from C57BL/6-nude mice. H-2D(d) interacts with several inhibitory Ly49 receptors that are non-clonally expressed on NK cells in C57BL/6 mice: Ly49A (20% of NK cells), Ly49G2 (54% of NK cells) and Ly49C/I (47% of NK cells). Our data indicate that while E1A sensitizes cells to NK cell killing, it does not interfere with signal transduction by inhibitory NK receptors. Therefore, a small population of NK cells that do not express Ly49A, Ly49G2 or Ly49C/I inhibitory receptors are likely responsible for the rejection of MCA-102-E1A-D(d) tumor cells in vivo.  相似文献   

11.
Inhibitory receptors expressed on natural killer (NK) cells and T cells specific for major histocompatibility complex (MHC) class I are believed to prevent these cells from responding to normal self tissues. To understand the regulation and function of Ly49 receptor molecules in vivo, we used the CD2 promoter to target Ly49A expression to all thymocytes, T cells, and NK cells. In animals expressing its MHC class I ligand, H-2Dd or H-2Dk, there was a large decrease in the expression of Ly49A on thymocytes, peripheral T cells, and NK1.1+ cells. The extent of the down-regulation of Ly49A was dependent on the expression of the MHC ligand for Ly49A and on the site where the cells were located. The level of expression of endogenous Ly49A was similarly found to be dependent upon the organ where the cells resided. Data from bone marrow chimeras indicated that most cell types may regulate Ly49A expression, but the efficacy to regulate receptor expression may vary depending on the cell type.  相似文献   

12.
Murine natural killer (NK) cell subsets, as defined by expression of members of the Ly49 gene family, discriminate target cells expressing different major histocompatibility complex (MHC) class I alleles. For example, Ly49A+ NK cells lyse H-2b but not H-2d tumor target cells. The specificity arises because Dd on target cells binds to Ly49A, transducing an inhibitory signal into the Ly49A+ NK cells. The capacity of NK cells to discriminate allelic class I determinants raises a key issue: are NK cells self-tolerant, and if so what are the mechanisms that lead to self-tolerance? As previously reported, potentially autoaggressive Ly49A+ NK cells are not clonally deleted in H-2b mice. However, IL-2- cultured Ly49A+ effector cells from H-2b mice exhibit reduced lysis of H-2b (self) concanavalin A blast target cells, compared to Ly49A+ effector cells from H-2d mice. Possible mechanisms accounting for this self-tolerance are addressed in this report. Self-tolerance was not due to anergy of the cells, because the Ly49A+ effector cells from both types of mice lysed β2-microglobulin-deficient target cells efficiently and equivalently. These results also suggest that tolerance results from inhibition mediated by β2m-dependent H-2b class I molecules. Significantly, blockade of Ly49A on Ly49A+ effector cells from H-2b mice did not restore lysis of H-2b target cells, suggesting that inhibition is not mediated through the Ly49A receptor. Additional experiments suggest that inhibition is also not mediated primarily through the Ly49C receptor. These results suggest that Ly49A+ effector cells from H-2b mice, unlike those from H-2d mice, express inhibitory receptors specific for H-2b molecules that are distinct from Ly49A and Ly49C.  相似文献   

13.
NK cell function is regulated by a dual receptor system, which integrates signals from triggering receptors and MHC class I-specific inhibitory receptors. We show here that the src family kinase Fyn is required for efficient, NK cell-mediated lysis of target cells, which lack both self-MHC class I molecules and ligands for NKG2D, an activating NK cell receptor. In contrast, NK cell inhibition by the MHC class I-specific receptor Ly49A was independent of Fyn, suggesting that Fyn is specifically required for NK cell activation via non-MHC receptor(s). Compared to wild type, significantly fewer Fyn-deficient NK cells expressed the inhibitory Ly49A receptor. The presence of a transgenic Ly49A receptor together with its H-2(d) ligand strongly reduced the usage of endogenous Ly49 receptors in Fyn-deficient mice. These data suggest a model in which the repertoire of inhibitory Ly49 receptors is formed under the influenced of Fyn-dependent NK cell activation as well as the respective MHC class I environment. NK cells may acquire Ly49 receptors until they generate sufficient inhibitory signals to balance their activation levels. Such a process would ensure the induction of NK cell self-tolerance.  相似文献   

14.
Natural killer cell function is controlled by interaction of NK receptors with MHC I molecules expressed on target cells. We describe the binding of bacterially expressed Ly49A, the prototype murine NK inhibitory receptor, to similarly engineered H-2Dd. Despite its homology to C-type lectins, Ly49A binds independently of carbohydrate and Ca2+ and shows specificity for MHC I but not bound peptide. The affinity of the Ly49A/H-2Dd interaction as determined by surface plasmon resonance is from 6 to 26 microM at 25 degrees C and is greater by ultracentrifugation at 4 degrees C. Biotinylated Ly49A stains H-2Dd-expressing cells. Competition experiments indicate that the Ly49A and T cell receptor (TCR) binding sites on MHC I are distinct, suggesting complex regulation of cells that bear both TCR and NK cell receptors.  相似文献   

15.
Ly49Q is a member of the polymorphic Ly49 family of NK cell receptors that displays both a high degree of conservation and a unique expression pattern restricted to myeloid lineage cells, including plasmacytoid dendritic cells (pDC). The function and ligand specificity of Ly49Q are unknown. Here, we use reporter cell analysis to demonstrate that a high-affinity ligand for Ly49Q is present on H-2(b), but not H-2(d), H-2(k), H-2(q), or H-2(a)-derived tumor cells and normal cells ex vivo. The ligand is peptide-dependent and MHC Ia-like, as revealed by its functional absence on cells deficient in TAP-1, beta(2)m, or H-2K(b)D(b) expression. Furthermore, Ly49Q is specific for H-2K(b), as the receptor binds peptide-loaded H-2K(b) but not H-2D(b) complexes, and Ly49Q recognition can be blocked using anti-K(b) but not anti-D(b) mAb. Greater soluble H-2K(b) binding to ligand-deficient pDC also suggests cis interactions of Ly49Q and H-2K(b). These results demonstrate that Ly49Q efficiently binds H-2K(b) ligand, and suggest that pDC function, like that of NK cells, is regulated by classical MHC Ia molecules. MHC recognition capability by pDC has important implications for the role of this cell type during innate immune responses.  相似文献   

16.
The mouse inhibitory NK cell receptor Ly49A recognizes the mouse MHC class I molecule H-2D(k). The present study focuses on the species specificity of beta(2)-microglobulin (beta(2)m), an invariant component of MHC class I, in the interaction between Ly49A and H-2D(k). Transfection of the beta(2)m-defective mouse cell line R1E/TL8x.1 with human (h) beta(2)m induced cell-surface expression of H-2D(k), but failed to protect the cells from killing by Ly49A(+) NK cells. In contrast, the cells transfected with mouse (m) beta(2)m were protected from killing by Ly49A(+) NK cells. These data indicate that Ly49A distinguishes mbeta(2)m from hbeta(2)m when it recognizes the H-2D(k) complexes. To identify the species-specific determinant of beta(2)m required for Ly49A recognition of H-2D(k), we prepared a panel of mbeta(2)m mutants and tested the H-2D(k) that included each of the beta(2)m mutants for its capacity to engage Ly49A on NK cells. Ly49A failed to functionally recognize the H-2D(k) that included the mbeta(2)m with K3R and Q29G mutations. Moreover, Ly49A was able to recognize the H-2D(k) that included the hbeta(2)m with R3K and G29Q mutations. These data indicate that Lys3 and Gln29 consist of the central part of the species-specific determinant of beta(2)m required for Ly49A recognition of H-2D(k). The two residues are conserved in the mouse and the rat, in which NK cells use Ly49 family molecules as the receptors specific for MHC class I. These results suggest functional importance of beta(2)m in NK cell recognition of target cells.  相似文献   

17.
NK cells from long-term bone marrow culture (LTBMC) were compared with IL-2-activated splenic NK cells [short-term spleen cell culture (STSC)] with regard to expression of inhibitory Ly49 receptors and cytotoxic function. In the LTBMC, the total number of NK cells expressing either one of the Ly49 molecules A, C/I and G2 was strongly reduced (10-15% of NK1.1(+) cells) compared to the STSC (80-90% of NK1.1(+) cells). With regard to cytotoxic function, we confirmed that LTBMC-derived NK cells efficiently killed the prototype NK target YAC-1. However, against other targets, killing was more variable. First, while STSC-derived NK cells clearly distinguished MHC class I(-) from MHC class I(+) tumor cell targets, LTBMC-derived NK cells did not; they either killed both targets equally well or not at all. Secondly, LTBMC-derived NK cells were largely incapable of killing lymphoblast targets deficient in MHC class I expression. To test whether this cytotoxic defect was due to the low number of Ly49(+) NK cells in the LTBMC, we separated Ly49(+) and Ly49(-) NK cells by cell sorting and tested them individually. This experiment showed that only Ly49(+) NK cells in the LTBMC were able to kill MHC class I(-) lymphoblasts (and to distinguish them from MHC class I(+)), despite good cytotoxicity against YAC-1 cells in both populations. These data suggest that certain modes of NK cell triggering are dependent on Ly49 receptor expression. From our results, we speculate that inhibitory receptors are expressed before triggering receptors for normal self cells during NK cell development, which may be an important mechanism to preserve self tolerance during the early stages of NK cell maturation.  相似文献   

18.
Natural killer (NK) cell function is negatively regulated by inhibitory receptors interacting with major histocompatibility complex class I molecules expressed on target cells. Here we show that the inhibitory Ly49A NK cell receptor not only binds to its H-2D(d) ligand expressed on potential target cells (in trans) but also is constitutively associated with H-2D(d) in cis (on the same cell). Cis association and trans interaction occur through the same binding site. Consequently, cis association restricts the number of Ly49A receptors available for binding of H-2D(d) on target cells and reduces NK cell inhibition through Ly49A. By lowering the threshold at which NK cell activation exceeds NK cell inhibition, cis interaction allows optimal discrimination of normal and abnormal host cells.  相似文献   

19.
Subsets of mouse natural killer (NK) cells express receptors encoded by the Ly49 gene family that recognize allelic determinants on major histocompatibility complex (MHC) class I molecules. Recognition of self class I molecules typically inhibits NK cell lytic function. The presence of NK cell subsets expressing receptors which are able to discriminate class I alleles raises the possibility that there exist mechanisms to coordinate the NK cell receptor repertoire with the class I molecules of the host. In the present study, we determined the effects of class I gene expression on the frequencies of NK cells expressing three different Ly49 receptors defined by monoclonal antibodies. We show here an MHC-dependent skewing of NK cell subsets expressing multiple Ly49 receptors with specificity for self MHC. The results provide the first evidence that the frequencies of NK cells expressing different Ly49 receptors are determined by the host's MHC molecules. The results also extend previous findings that MHC class I expression influences the cell surface levels of each Ly49 receptor, suggesting an additional mechanism by which MHC molecules may influence the effective specificity of NK cells. Models to account for self tolerance and MHC-controlled repertoire differences are discussed.  相似文献   

20.
NK cells monitor expression of MHC class I by inhibitory receptors and preferentially kill cells that lose or down-regulate MHC class I expression. One possible mechanism by which tumor cells evade NK cell killing is continued expression of appropriate MHC class I ligands to engage inhibitory receptors on NK cells. We show here that small-mol.-wt blockers against the mouse inhibitory NK cell receptor Ly49A enhance NK cell killing of such tumor cells. We identified Ly49A-binding peptides by selecting phages with the capacity to bind recombinant Ly49A expressed in Escherichia coli from a phage display random peptide library. The Ly49A-binding peptides could also bind Ly49A expressed on mammalian cells. Importantly, the Ly49A-binding peptides blocked Ly49A recognition of its MHC class I ligands H-2Dd and H-2Dk. Moreover, blockade of Ly49A by the peptides enhanced cytotoxicity of Ly49A+ NK cells towards H-2Dd-expressing tumor cells. These results clearly indicate effectiveness of small-mol.-wt blockers of inhibitory NK cell receptors in enhancing NK cell-mediated killing of tumor cells that are otherwise resistant because of MHC class I expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号