首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Forty-one-residue corticotropin-releasing factor is a physiologically significant mediator of the hypothalamic control of corticotropin secretion by the anterior pituitary gland. This releasing hormone is produced by parvicellular neurons in the hypothalamic paraventricular nucleus that project to the external zone of the median eminence. Recent immunocytochemical evidence based on work with a rabbit antiserum against rat corticotropin-releasing factor (code rC70) suggests that about half of the parvicellular corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus synthesize vasopressin, another potent corticotropin secretagogue, while the rest of the cells do not. If this is indeed the case, the neurohumoral control of corticotropin release may be mediated via distinct hypothalamic effector pathways utilizing releasing hormone cocktails of varying composition. In the present study we have examined the specificity of various antisera against rat corticotropin-releasing factor in immunocytochemical staining. Male Wistar rats pretreated with colchicine were used throughout. The brain was fixed by perfusion with a Zamboni type fixative solution. Vibratome sections of the hypothalamus were immunostained with three different primary antisera (codes rC70, rCRF-3, oCRF-N) using the peroxidase-antiperoxidase or avidin-biotin complex methods. All three antisera stained cell groups previously described to be immunopositive for corticotropin-releasing factor. Most notably, however, rC70 labelled a significant number of additional cells, most readily identified in the arcuate and suprachiasmatic nuclei, as well as in the dorsolateral hypothalamic area caudal to the paraventricular nucleus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Opioid peptide- as well as vasopressin-containing neurons synapse on gonadotropin releasing hormone neurons in juvenile macaques. In this study we performed double-label immunostaining for opioid and vasopressin neurons in the paraventricular and supraoptic nuclei in order to assess their interrelationships. Neuroendocrine neurons in the hypothalamus were prelabeled by microinjection of electron-dense retrograde tracer into the median eminence, and were easily identified in frontal Vibratome sections. Sections through the paraventricular and supraoptic nuclei were immunostained for vasopressin with the peroxidase-antiperoxidase technique, and for opioids using the indirect immunogold method. By light microscopy, opioid-immunoreactive inputs appeared to innervate an average of 39% of the vasopressin neurons in the paraventricular nucleus and 33% in the supraoptic nucleus, and were more prevalent anteriorly. Clusters of opioid afferents formed cup-like calices around major processes of many vasopressin neurons, especially in the paraventricular nucleus. Electron microscopy revealed that these groups of opioid axon terminals made frequent symmetrical and fewer asymmetrical synapses on both neuroendocrine and non-neuroendocrine vasopressinergic cell bodies and dendrites. Our study did not reveal vasopressin-opioid synapses in these hypothalamic nuclei, but this does not preclude the possibility of their existence elsewhere. These results indicate that opioid afferents modulate vasopressin neuronal activity in the monkey paraventricular and supraoptic nuclei. Previous results have suggested that corticotropin releasing hormone acts via vasopressinergic neurons to stimulate opioid neuronal activity and to inhibit gonadotropin releasing hormone release. Taken together, the data suggest that stressful stimuli could initiate a series of neuropeptidergic interactions which ultimately alter pulsatile gonadotropin releasing hormone secretion and thus gonadotropin secretion in primates.  相似文献   

3.
R C Maxwell  G Fink 《Neuroscience》1988,24(1):241-263
The aim of this study was to investigate the pattern of [14C]2-deoxyglucose uptake in anaesthetized rat brain produced by electrical stimulation of brain areas implicated, by previous electrical stimulation studies, in the neural control of pituitary hormone and especially gonadotrophin secretion. Stimulation of the median eminence led to a significant increase in the relative metabolic activities of the arcuate, ventromedial hypothalamic, supraoptic and paraventricular nuclei and the preoptic area. Stimulation of the suprachiasmatic or paraventricular nuclei or the medial preoptic area, anterior hypothalamic area, the dorsal or ventral hippocampus or amygdala led to an increase in the relative metabolic activity of many brain regions known to have direct connections with these areas, but in addition produced increases in the relative metabolic activity of areas which have secondary connections. Hippocampal stimulation confirmed previous neuroanatomical findings of major intrinsic functional connections between different fields of the ipsilateral and contralateral hippocampus. Stimulation of the amygdala, unexpectedly, did not change the relative metabolic activity of the arcuate nucleus and medial preoptic area which have neuroanatomical connections with the amygdala. Similarly, stimulation of the medial preoptic area did not change significantly the relative metabolic activity of the mamillary body and dorsomedial thalamic area. The effect of preoptic area stimulation on the relative metabolic activity of several brain regions was changed by ovariectomy and by injection of oestradiol benzoate. Stimulation of the preoptic area and suprachiasmatic nuclei, but not the anterior hypothalamic area or other brain regions, increased significantly the plasma concentrations of luteinizing hormone. These results show that (i) electrical stimulation of brain areas concerned with the control of gonadotrophin and other pituitary hormone secretion changes the metabolic activity of nuclei and neural pathways extrinsic as well as intrinsic to the hypothalamic-pituitary system, (ii) the [14C]2-deoxyglucose method can detect changes in antidromic as well as orthodromic activity and in multi-synaptic pathways, (iii) neuroanatomical pathways are not always activated metabolically by electrical stimulation, and (iv) the preoptic-suprachiasmatic nucleus gonadotrophin control system is discrete and is little affected by increased metabolic activity of the hypothalamus produced by stimulation of the anterior hypothalamic area or other brain areas.  相似文献   

4.
The localization and distribution of nitric oxide synthase in the hypothalamus have been studied with an immunohistochemical technique using antibodies to neuronal rat nitric oxide synthase. Subsequent double-labeling experiments examined the colocalization patterns of nitric oxide synthase and several peptides. Our results demonstrate a widespread occurrence of nitric oxide synthase-immunoreactive nerve cell bodies and processes throughout the hypothalamus, especially in various parts of the preoptic region, in the supraoptic and paraventricular nuclei, the lateral hypothalamic area, the ventromedial and dorsomedial nuclei, the arcuate nucleus and various parts of the mammillary region. Double labeling experiments showed that nitric oxide synthase-like immunoreactivity coexists with substance P-like immunoreactivity in the medial preoptic area, with oxytocin-, cholecystokinin- and galanin message-associated peptide-like immunoreactivity in the supraoptic nucleus, with enkephalin-, oxytocin- and corticotropin releasing factor-like immunoreactivity in the paraventricular nucleus and with enkephalin-like immunoreactivity in the arcuate nucleus. Furthermore, in the ventromedial nucleus, nitric oxide synthase-like immunoreactivity coexisted with enkephalin-, substance P-, and somatostatin-like immunoreactivity, and in the dorsomedial nucleus with enkephalin-, galanin message-associated peptide- and substance P-like immunoreactivity. In the mammillary region nitric oxide synthase-like immunoreactivity coexisted with enkephalin-, cholecystokinin-, and substance P-like immunoreactivity. Among these neuropeptides, enkephalin and substance P were most frequently found in nitric oxide synthase-immunoreactive neurons. We conclude that nitric oxide synthase-immunoreactive neurons contain neuropeptides in various parts of the hypothalamus, and that nitric oxide in the hypothalamus may be involved in a variety of neuroendocrine and autonomic functions.  相似文献   

5.
Hypothalamic connections with the parabrachial nuclei in the cat were studied at light and electron microscopic levels following wheat germ agglutinin-horseradish peroxidase injections into the parabrachial nuclei and electrolytic lesions in the hypothalamus. The greatest concentration of retrogradely labeled neurons occurred in the paraventricular nucleus. Labeled neurons were also seen within the preoptic, anterior, lateral, dorsomedial and ventromedial hypothalamic nuclei. Hypothalamic lesions resulted in the degeneration of terminals forming axosomatic and axodendritic synapses in the parabrachial nuclei, particularly its lateral division. These findings support the idea that hypothalamic connections to specific regions of the parabrachial nuclei may underlie the topographical functional organization demonstrated for these brainstem nuclei.  相似文献   

6.
Parathyroid hormone receptor 2 (PTH2R) and its ligand, tuberoinfundibular peptide of 39 residues (TIP39) constitute a neuromodulator system implicated in endocrine and nociceptive regulation. We now describe the presence and distribution of the PTH2R and TIP39 in the brain of primates using a range of tissues and ages from macaque and human brain. In situ hybridization histochemistry of TIP39 mRNA, studied in young macaque brain, due to its possible decline beyond late postnatal ages, was present only in the thalamic subparafascicular area and the pontine medial paralemniscal nucleus. In contrast, in situ hybridization histochemistry in macaque identified high levels of PTH2R expression in the central amygdaloid nucleus, medial preoptic area, hypothalamic paraventricular and periventricular nuclei, medial geniculate, and the pontine tegmentum. PTH2R mRNA was also detected in several human brain areas by RT-PCR. The distribution of PTH2R-immunoreactive fibers in human, determined by immunocytochemistry, was similar to that in rodents, including dense fiber networks in the medial preoptic area, hypothalamic paraventricular, periventricular and infundibular (arcuate) nuclei, lateral hypothalamic area, median eminence, thalamic paraventricular nucleus, periaqueductal gray, lateral parabrachial nucleus, nucleus of the solitary tract, sensory trigeminal nuclei, medullary dorsal reticular nucleus, and dorsal horn of the spinal cord. Co-localization suggested that PTH2R fibers are glutamatergic, and that TIP39 may directly influence hypophysiotropic somatostatin containing and indirectly influence corticotropin releasing-hormone containing neurons. The results demonstrate that TIP39 and the PTH2R are expressed in the brain of primates in locations that suggest involvement in regulation of fear, anxiety, reproductive behaviors, release of pituitary hormones, and nociception.  相似文献   

7.
Stressors stimulate the release of corticotropin-releasing factor and/or vasopressin from the hypothalamic paraventricular nuclei causing secretion of adrenocorticotropin from the pituitary and corticosteroids from the adrenal cortex. Corticosteroids inhibit activity in the adrenocortical system by association with high affinity, type I and lower affinity type II corticosteroid receptors in brain. Despite the potent inhibitory effects of exogenously infused corticosteroids on basal and stress-induced adrenocorticotropin, sustained or repeated stress causes facilitated responses to novel stressors. Feedback and facilitation of stress responses are observed during the trough of the basal circadian rhythm but not at the peak. We discuss evidence for the hypothesis that the circadian rhythm in energy acquisition determines the rhythms in stress responsiveness and suggest that the adrenocortical system is embedded in a larger hypothalamic neural network that regulates energy balance.  相似文献   

8.
Effects of selective transection of the gastric, celiac, and hepatic branches of the vagus nerve on expression of corticotropin-releasing hormone mRNA in small cell neurons of the hypothalamic paraventricular nuclei in rats administered with bacterial lipopolysaccharide were studied usingin situ hybridization technique. Low doses of lipopolysaccharide stimulated expression of corticotropin-releasing hormone mRNA in rats subjected to axotomy of the gastric or celiac branches of the vagus nerve, but did not change the intensity of autoradiographic labeling in animals with transected hepatic branches. High doses of lipopolysaccharide enhanced expression of corticotropin-releasing hormone mRNA in vagotomized rats of all groups, which indicated the existence of a vagus-independent mechanism responsible for activation of paraventricular neurons mediating the effect of this hormone. The data suggest that the inflammation-dependent activation of stress-regulating neurons in the hypothalamus is controlled by several mechanisms, whose activation depends on the severity of inflammatory processes. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 130, No. 7, pp. 106–109, July, 2000  相似文献   

9.
Effects of selective transection of the gastric, celiac, and hepatic branches of the vagus nerve on expression of corticotropin-releasing hormone mRNA in small cell neurons of the hypothalamic paraventricular nuclei in rats administered with bacterial lipopolysaccharide were studied usingin situ hybridization technique. Low doses of lipopolysaccharide stimulated expression of corticotropin-releasing hormone mRNA in rats subjected to axotomy of the gastric or celiac branches of the vagus nerve, but did not change the intensity of autoradiographic labeling in animals with transected hepatic branches. High doses of lipopolysaccharide enhanced expression of corticotropin-releasing hormone mRNA in vagotomized rats of all groups, which indicated the existence of a vagus-independent mechanism responsible for activation of paraventricular neurons mediating the effect of this hormone. The data suggest that the inflammation-dependent activation of stress-regulating neurons in the hypothalamus is controlled by several mechanisms, whose activation depends on the severity of inflammatory processes. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 130, No. 7, pp. 106–109, July, 2000  相似文献   

10.
11.
Hypothalamic pro-opiomelanocortin neurones have an established role in the control of feeding. While pro-opiomelanocortin is the precursor for at least three melanocortin peptides, alpha-, beta- and gamma-melanocyte-stimulating hormone (MSH), it has been widely assumed that alpha-MSH is the predominant ligand involved. We compared the effects of centrally administered alpha-, beta- and gamma(2)-MSH on hypothalamic neuronal activation and on food intake in rats fasted for 48 h. Significant reductions in food intake were seen with alpha-MSH (first hour) and gamma(2)-MSH (second hour) but not with beta-MSH. The pattern of neuronal activation, assessed by the detection of early growth response factor-1 protein, showed considerable overlap; all three melanocortins activated cells in the arcuate, ventromedial, paraventricular, periventricular and supraoptic nuclei, as well as the preoptic area. alpha-MSH and beta-MSH produced activation in the dorsomedial nuclei while gamma(2)-MSH was only weakly active here. Retrograde labelling by systemic Fluorogold injection revealed that many cells activated by MSH compounds in the arcuate, paraventricular, periventricular and supraoptic nuclei (but not dorsomedial or ventromedial) project outside the blood-brain barrier and are therefore likely to include neuroendocrine cells. Desacetyl-alpha-MSH, which has previously been reported to lack effects on feeding, produced no discernible neuronal activation in the hypothalamus.Our finding that both the pattern of neuronal activation and the distribution of neuroendocrine cells activated in response to these closely related peptides show only partial overlap suggests that, in addition to common pathways, there may exist distinct hypothalamic circuits activated by different pro-opiomelanocortin products. The slower time course of gamma(2)-MSH- versus alpha-MSH-induced suppression of feeding provides further support for the notion that the biological responses to individual melanocortin peptides may involve distinct neuronal mechanisms.  相似文献   

12.
13.
Summary The responses of 700 single neurons in the hypothalamus to electrical stimulation of the preoptic area, limbic structures, and midbrain were studied to determine the location of neurons with multiple inputs and to identify by antidromic activation the projection areas of those neurons.Converging excitatory inputs, observed in 134 responsive hypothalamic neurons, were principally derived from the preoptic, limbic, and midbrain areas. Inputs from separate nuclei of the amygdala were noted in the response of individual hypothalamic neurons. Two classes of short latency transsynaptic responses to amygdala stimulation were defined, indicating either separate pathways from the amygdala to the medial hypothalamus or two types of fibers conducting at different velocities. Stimulation of single or multiple sites in the preoptic and limbic areas, as well as in the arcuate nucleus and medial forebrain bundle produced inhibition of hypothalamic neuronal activity.Most antidromically identified medial hypothalamic neurons projected to the preoptic area, median eminence (tuberoinfundibular neurons), or midbrain. Evidence is presented for collateral projections of tuberoinfundibular neurons to the preoptic area and reticular formation. Medial hypothalamic neurons received inputs from the preoptic area, lateral septal nucleus, amygdala, ventral hippocampus (subiculum), and fornix. These findings illustrate a pattern of reciprocal connections between the medial hypothalamus and limbic and midbrain structures.It was concluded that the hypothalamus contains a type of neuron that is equipped to perform complex integrations and to coordinate directly the behavior of neurons in a diversity of anatomical regions.Abbreviations ABL basolateral nucleus of the amygdala - ACO cotical nucleus of the amygdala - AHA anterior area of the hypothalamus - ARH arcuate nucleus of the hypothalamus - DMH dorsomedial nucleus of the hypothalamus - FX fornix - HPC ventral hippocampus (subiculum) - LS lateral septal nucleus - ME median eminence - MH medial hypothalamus - MFB medial forebrain bundle - MP posterior mamillary nucleus - PH posterior nucleus of the hypothalamus - PMD dorsal premamillary nucleus - PMV ventral premamillary nucleus - POA preoptic area - PVG periventricular gray - PVH paraventricular nucleus of the hypothalamus - RF reticular formation of the mesencephalon - RT reticular nucleus of the thalamus - SUM supramamillary nucleus - VMH ventromedial nucleus of the hypothalamus Performed with financial support from the National Institutes of Health (Grants NS 09688 and RR 00165)  相似文献   

14.
Histochemical methods were used to detect differently directed changes in the metabolic activity of neurons in the anterior hypothalamic nuclei in rats during hyperthermia, fever, and hypothermia. Hyperthermia induced by high temperatures was associated with increases in the activities of enzymes involved in energy metabolism, with increases in RNA contents in neurons in the supraoptic, paraventricular, and median preoptic nuclei of the anterior hypothalamus of the rat, which is evidence for increases in metabolic activity in the neurons of these nuclei. Endotoxin-induced fever was accompanied by decreases in the metabolic activity of neurons in the median preoptic nucleus, while activity in neurons of the supraoptic and paraventricular nuclei showed no significant change. The development of hypothermia induced by low temperatures was characterized by decreases in the metabolic activity of neurons in the supraoptic, paraventricular, and median preoptic nuclei of the anterior hypothalamus. It is suggested that the differently directed changes in metabolic activity in the neurons of the anterior hypothalamus in hyperthermia, fever, and hypothermia are associated with their roles in the central mechanisms of thermoregulation (median preoptic nucleus) and neurosecretory processes (supraoptic and paraventricular nuclei).  相似文献   

15.
Energy homeostasis is controlled to a large extent by various signals that are integrated in the hypothalamus. It is generally considered that neurons in each of the hypothalamic nuclei are regulated by afferent projections that terminate within the cell body region of the nucleus. However, here it is shown that hypothalamic proopiomelanocortin (POMC) neurons receive synaptic inputs onto distal dendrites that reside outside of the cell body region in the arcuate nucleus. Previous studies using whole cell recordings from identified neurons in brain slices have shown that cannabinoids reduce GABA release from inhibitory synapses onto the POMC cells. Here it was found that endocannabinoids inhibited GABAergic inhibitory postsynaptic currents in POMC neurons only in intact sagittal brain slices, but not coronal, horizontal, or sagittal slices that were truncated rostrally at the level of the optic chiasm. Thus endocannabinoids inhibited presynaptic GABA release only at an anatomically distinct subset of POMC-neuron dendrites that extends rostrally beyond the arcuate nucleus into preoptic hypothalamic regions. There are two key results. First, the activity of POMC neurons can be regulated by afferent input at sites much farther from the soma than previously recognized. Second, endocannabinoids can act to inhibit inputs only at selective dendrites. POMC neurons play a critical role in the maintenance of body weight. Therefore these data suggest that energy balance may be regulated, in part, by modulation of POMC neuron activity at sites outside of the arcuate nucleus.  相似文献   

16.
采用WGA-HRP和HRP逆行追踪法,对20只SD大鼠下丘脑向嗅球的投射进行了观察。在同侧下丘脑视前大细胞核均观察到较多的酶标记细胞;同侧下丘脑外侧核和室周核常出现少量酶标记细胞;偶见同侧下丘前核、乳头体外侧核、下丘脑腹内侧核前部、背内侧核腹侧部及弓状核出现少量酶标记细胞。  相似文献   

17.
Ribot E  Lafon P  Ciofi P  Sarrieau A  Tramu G  Corio M 《Neuroscience》2003,120(3):643-648
Intraperitoneal injection of the endotoxin lipopolysaccharide produces an inflammation accompanied by immune system activation and secretion of cytokines that stimulate the hypothalamo-pituitary-adrenal (HPA) axis to release the anti-inflammatory corticosterone. Upstream in HPA axis are neuroendocrine corticotropin-releasing hormone neurons in the paraventricular nucleus whose multipeptidergic phenotype changes during inflammation: coexisting corticotropin-releasing hormone and cholecystokinin mRNAs are up-regulated whereas neurotensin mRNA expression is induced de novo. These changes may be mediated by prostaglandins released from perivascular and microglial cells in response to circulating cytokines. We examined by quantitative in situ hybridization histochemistry whether blockade of prostaglandin synthesis by indomethacin alters phenotypic expression in paraventricular nucleus neurons after lipopolysaccharide. Because indomethacin also elevated circulating corticosterone, animals were adrenalectomized and corticosterone replaced. Results showed that i.p. indomethacin administration suppressed lipopolysaccharide effects in a phenotype non-specific manner: one injection was sufficient to prevent both the increase in corticotropin-releasing hormone and cholecystokinin mRNAs expression and the induction of neurotensin mRNA expression. Therefore, neuroendocrine corticotropin-releasing hormone neurons with different peptidergic phenotypes appear to respond as a whole in the acute phase response to systemic infection.  相似文献   

18.
Csáki A  Kocsis K  Halász B  Kiss J 《Neuroscience》2000,101(3):637-655
Morphological and functional data indicate that glutamatergic innervation of the hypothalamic paraventricular nucleus plays an important role in the control of this prominent cell group. Sources of this neural input are unknown. The present investigations were aimed at studying this question. The retrograde tracer [3H]D-aspartate, which is selectively taken up by the terminals of neurons that use glutamate or aspartate as a neurotransmitter, and is retrogradely transported to their perikarya, was injected into the paraventricular nucleus. The brain was examined for labelled neurons visualized by autoradiography. Labelled neurons were detected in the paraventricular nucleus itself, in several hypothalamic areas including medial and lateral preoptic area, suprachiasmatic nucleus, anterior hypothalamic area, ventromedial nucleus, dorsomedial nucleus, lateral hypothalamic area, posterior part of arcuate nucleus, ventral premammillary nucleus and supramammillary nucleus. Outside the hypothalamus labelled neurons were found in the thalamic paraventricular nucleus and in certain telencephalic regions including lateral septum, bed nucleus of the stria terminalis and amygdala. All of them are known to project to the hypothalamic paraventricular nucleus. We failed to detect labelled neurons in the lower brainstem.From these findings we conclude that firstly, there are glutamatergic/aspartatergic interneurons in the paraventricular nucleus; secondly, all intrahypothalamic and telencephalic, but not lower brainstem afferents to this nucleus contain glutamatergic/aspartatergic fibres; and thirdly, the glutamatergic/aspartatergic innervation of this heterogeneous cell group is extremely complex.  相似文献   

19.
The microscopic organization of the Göttingen minipig (sus scrofa) hypothalamus was studied using Nissl stain, acetylcholinesterase histochemistry, and immunohistochemical staining for calretinin, tyrosin hydroxylase, oxytocin, vasopressin, and orexin A.Mediolaterally the minipig hypothalamus can be divided into three cytoarchitectonic distinct longitudinal zones. The periventricular longitudinal zone comprises the supraoptic, paraventricular, median preoptic, anteroventral periventricular, suprachiasmatic and arcuate nuclei.The medial longitudinal zone includes the prominent medial preoptic, ventromedial, dorsomedial and medial mammillary nuclei. Together with the anterior hypothalamic area, they can be further divided into distinct subregions. The dorsal and posterior hypothalamic areas and the retromammillary and lateral mammillary nuclei are cyto- and chemoarchitectonically distinct but cannot be further divided into subregions.The cell sparse, fiber rich lateral longitudinal zone comprises the lateral preoptic and lateral hypothalamic area as well as the perifornical, lateral tuberal and tuberomammillary nuclei.The findings presented here indicate that the cyto- and chemoarchitecture of the Göttingen minipig hypothalamus is comparable to that of rat, landrace pig, monkey, and human and that the Göttingen minipig may be well suited for future, non-primate, large mammal, hypothalamic research.  相似文献   

20.
Horseradish peroxidase (HRP), injected into the rat caudal medulla oblongata, was detected by immunoperoxidase staining in 120 microns frozen sections, allowing examination of both the distribution and morphology of transporting neurons. In the hypothalamus, several groups of HRP-labeled neurons could be distinguished on the basis of location of the neurons, neural cell size and morphology of the neural processes. Most HRP-labeled neurons were found in the posterior half of the hypothalamus, although scattered single neurons were present as far rostral as the anterior hypothalamus and preoptic area. Prominent groups of HRP-labeled neurons were found in the paraventricular, dorsomedial and arcuate nuclei, near the fornix at two separate levels, and in the lateral posterior hypothalamus. Based on comparison with peptide immunohistochemistry it seems likely that many magnocellular oxytocin, vasopressin and neurophysin neurons in the paraventricular nucleus, and a few ACTH/beta-endorphin neurons in the arcuate nucleus may project to the caudal medulla oblongata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号